Variability of soil moisture on three sites in the Northern Antarctic Peninsula in 2022/23

Vol.13,No.1(2023)

Abstract

Soil moisture represents one of the crucial parameters of the terrestrial environments in Antarctica. It affects the biological abundance and also the thermal state of the soils. In this study, we present one year of volumetric water content and soil temperature measurements on James Ross Island, Nelson Island and King George Island. The volumetric water content at all sites increased with depth. The mean summer values were between 0.24 and 0.37 cm3/cm3 (James Ross Island), 0.30 and 0.40 cm3/cm3 (Nelson Island) and 0.11 and 0.36 cm3/cm3 (King George Island). We found that the freezing point of the soils was close to 0°C on Nelson Island and King George Island. We attributed the lower temperature of soil freezing around -0.5°C on James Ross Island to the site location close to the sea. Even though the sites are located in the distinctive climate zones and comprise of contrasting soil types, the only differences of moisture regime were observed the surficial layer of the studied sites.


Keywords:
soil moisture; soil thermal regime; permafrost; freeze-thaw processes
References

Abu-Hamdeh, N. H., Reeder, R. C. (2000): Soil thermal conductivity: Effects of density, moisture, salt concentration, and organic matter. Soil Science Society of America Journal, 64: 1285-1290. doi: 10.2136/sssaj2000.6441285x

Almeida, I., Schaefer, C. E. G. R., Fernandes, R. B. A., Pereira, T. T. C., Nieuwendam, A. and Pereira, A. B. (2014): Active layer thermal regime at different vegetation covers at Lions Rump, King George Island, Maritime Antarctica. Geomorphology, 225: 36-46.

Andresen, C. G., Lawrence, D. M., Wilson, C. J., McGuire, A. D., Koven, C., Schaefer, K., Jafarov, E., Peng, S., Chen, X., Gouttevin, I., Burke, E., Chadburn, S., Ji, D., Chen, G., Hayes, D. and Zhang, W. (2020): Soil moisture and hydrology projections of the permafrost region – a model intercomparison. The Cryosphere, 14: 445-459, doi: 10.5194/tc-14-445-2020

Bing, H., Ma, W. (2011): Laboratory investigation of the freezing point of saline soil. Cold Regions Science and Technology, 67(1–2): 79-88. doi: 10.1016/j.coldregions.2011.02.008

Birkenmajer, K. (1989): A guide to Tertiary geochronology of King George Island, West Antarctica. Polish Polar Research, 10(4): 555-579.

Bockheim, J., Vieira, G., Ramos, M., López-Martínez, J., Serrano, E., Guglielmin, M., Wilhelm, K. and Nieuwendam, A. (2013): Climate warming and permafrost dynamics in the Antarctic Peninsula region. Global and Planetary Change, 100: 215-223. doi: 10.1016/ j.gloplacha.2012.10.018

Borzotta, E., Trombotto, D. (2004): Correlation between frozen ground thickness measured in Antarctica and permafrost thickness estimated on the basis of the heat flow obtained from magnetotelluric soundings. Cold Regions Science and Technology, 40: 81-96. doi: 10.1016/j.coldregions.2004.06.002

Brooks, S. T., Jabour, J., van den Hoff, J. and Bergstrom, D. M. (2019): Our footprint on Antarctica competes with nature for rare ice-free land. Nature Sustainability, 2: 185-190. doi: 10.1038/s41893-019-0237-y

Clayton, L.K., Schaefer, K., Battaglia, M.J., Bourgeau-Chavez, L., Chen, J., Chen, R.H., Chen, A., Bakian-Dogaheh, K., Grelik, S., Jafarov, E., Liu, L., Michaelides, R.J., Moghaddam, M., Parsekian, A.D., Rocha, A.V., Schaefer, S.R., Sullivan, T., Tabatabaeenejad, A., Wang, K., Wilson, K.J., Zebker, H.A., Zhang, T. and Zhao, Y. (2021): Active layer thickness as a function of soil water content. Environmental Research Letters, 16: 055028. doi: 10.1088/1748-9326/abfa4c

Devoie, É. G., Gruber, S. and McKenzie, J. M. (2022): A repository of measured soil freezing characteristic curves: 1921 to 2021. Earth System Science Data, 14: 3365-3377. doi: 10.5194/essd-14-3365-2022

Farouki, O. T. (1981): Thermal properties of soil. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, 136 p.

Farzamian, M., Vieira, G., Monteiro Santos, F. A., Yaghoobi Tabar, B., Hauck, C., Paz, M. C., Bernardo, I., Ramos, M. and de Pablo, M. A. (2020): Detailed detection of active layer freeze–thaw dynamics using quasi-continuous electrical resistivity tomography (Deception Island, Antarctica). The Cryosphere, 14: 1105-1120. doi: 10.5194/tc-14-1105-2020

George, S. F., Fierer, N., Levy, J. S. and Adams B. (2021): Antarctic water tracks: Microbial community responses to variation in soil moisture, pH, and salinity. Frontiers in Microbiology, 12: 616730. doi: 10.3389/fmicb.2021.616730

Guglielmin, M., Dalle Fratte, M. and Cannone, N. (2014): Permafrost warming and vegetation changes in continental Antarctica. Environmental Research Letters, 9(4): 045001. doi: 10.1088/ 1748-9326/9/4/045001

Horrocks, C. A., Newsham, K. K., Cox, F., Garnett, M. H., Robinson, C. H. and Dungait, J. A. J. (2020): Predicting climate change impacts on maritime Antarctic soils: A space-for-time substitution study. Soil Biology and Biochemistry, 141: 107682. doi: 10.1016/j.soilbio.2019.107682

Hrbáček, F., Nývlt, D., Láska, K., Kňažková, M., Kampová, B., Engel, Z., Oliva, M. and Mueller, C. W. (2019): Permafrost and active layer research on James Ross Island: An overview. Czech Polar Reports, 9(1): 20-36. doi: 10.5817/CPR2019-1-3

Hrbáček, F., Oliva, M., Hansen, C., Balks, M., O'Neill, T.A., de Pablo, M.A., Ponti, S., Ramos, M., Vieira, G., Abramov, A., Kaplan Pastíriková, L., Guglielmin, M., Goyanes, G., Francellino, M.R., Schaefer, C. and Lacelle, D. (2023): Active layer and permafrost thermal regimes in the ice-free areas of Antarctica. Earth Science Reviews, 242: 104458. doi: 10.1016/j.earscirev.2023.104458

Hwang, J., Zheng, X., Ripley, E. M., Lee, J. I. and Shin, D. (2011): Isotope geochemistry of volcanic rocks from the Barton Peninsula, King George Island, Antarctica. Journal of Earth Science, 22(1): 40-51. doi: 10.1007/s12583-011-0156-y

Kaplan Pastíriková, L., Hrbáček, F., Uxa, T. and Láska, K. (2023): Permafrost table temperature and active layer thickness variability on James Ross Island, Antarctic Peninsula, in 2004–2021. Science of the Total Environment, 869: 161690. doi: 10.1016/j.scitotenv.2023.161690

Kejna, M., Arazny, A. and Sobota, I. (2013): Climatic change on King George Island in the years 1948–2011. Polish Polar Research, 34(2): 213-225.

Kennedy, A. D. (1993): Water as a limiting factor in the antarctic terrestrial environment: A biogeographical synthesis. Arctic and Alpine Research, 25(4): 308-315.

Levy, J. S., Fountain, A. G., Gooseff, M. N., Welch, K. A. and Berry Lyons, W. (2011): Water tracks and permafrost in Taylor Valley, Antarctica: Extensive and shallow groundwater connectivity in a cold desert ecosystem. GSA Bulletin, 123(11–12): 2295-2311. doi: 10.1130/B30436.1

Martin, P. J., Peel, D. A. (1978): The spatial distribution of 10 m temperatures in the Antarctic Peninsula. Journal of Glaciology, 20(83): 311-317. doi: 10.3189/S0022143000013861

Meier, M., Francelino, M. R., Gasparini, A. S., Thomazini, A., Pereira, A. B., von Kruger, F. L., Fernandes-Filho, E. I. and Schaefer, C. E. G. R. (2023): Soilscapes and geoenvironments at Stansbury Peninsula, Nelson Island, maritime Antarctica. Catena, 223: 106884. doi: 10.1016/j.catena.2022.106884

Mohammed, A., Pavlovskii, I., Cey, E. and Hayashi, M. (2019): Effects of preferential flow on snowmelt partitioning and groundwater recharge in frozen soils. Hydrology and Earth System Sciences, 23(12): 5017-5031. doi: 10.5194/hess-23-5017-2019

Nývlt, D., Braucher, R., Engel, Z., Mlčoch, B., ASTER Team (2014): Timing of the Northern Prince Gustav Ice Stream retreat and the deglaciation of northern James Ross Island, Antarctic Peninsula during the last glacial–interglacial transition. Quaternary Research, 82: 441-449.

Obu, J., Westermann, S., Vieira, G., Abramov, A., Balks, M., Bartsch, A., Hrbáček, F., Kääb, A. and Ramos, M. (2020): Pan-Antarctic map of near-surface permafrost temperatures at 1 km2 scale. The Cryosphere, 14: 497-519.

Oldenborger, G. A., LeBlanc, A. M. (2018): Monitoring changes in unfrozen water content with electrical resistivity surveys in cold continuous permafrost. Geophysical Journal International, 215(2): 965-977. doi: 10.1093/gji/ggy321

Oliva, M., Navarro, F., Hrbáček, F., Hernández, A., Nývlt, D., Perreira, P., Ruiz-Fernández, J. and Trigo, R. (2017): Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Science of the Total Environment, 580: 210-223. doi: 10.1016/j.scitotenv.2016.12.030

Oliva, M., Antoniades, D., Serrano, E., Giralt, S., Liu, E. J., Granados, I., Pla-Rabes, S., Toro, M., Hong, S. G. and Vieira, G. (2019): The deglaciation of Barton Peninsula (King George Island, South Shetland Islands, Antarctica) based on geomorphological evidence and lacustrine records. Polar Record, 55(3): 177-188. doi: 10.1017/S0032247419000469

Palerme, C., Genthon, C., Claud, C., Kay, J. E., Wood, N. B. and L’Ecuyer, T. (2017): Evaluation of current and projected Antarctic precipitation in CMIP5 models. Climate Dynamics, 48: 225-239. doi: 10.1007/s00382-016-3071-1

Robinson, S. A., King, D. H., Bramley-Alves, J., Waterman, M. J., Ashcroft, M. B., Wasley, J., Turnbull, J. D., Miller, R. E., Ryan-Colton, E., Benny, T., Mullany, K., Clarke, L. J., Barry, L. A. and Hua, Q. (2018): Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nature Climate Change, 8(10): 879-884. doi: 10.1038/s41558-018-0280-0

Romanovsky, V. E., Osterkamp, T. E. (2000): Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. Permafrost and Periglacial Processes, 11: 219-239. doi: 10.1002/1099-1530(200007/09)11:3<219::AID-PPP352>3.0.CO;2-7

Royles, J., Amesbury, M. J., Convey, P., Griffiths, H., Hodgson, D. A., Leng, M. J. and Charman, D. J. (2013): Plants and soil microbes respond to recent warming on the Antarctic Peninsula. Current Biology, 23(17): 1702-1706. doi: 10.1016/j.cub.2013.07.011

Scheinost, A. C., Sinowski, W. and Auerswald, K. (1997): Regionalization of soil water retention curves in a highly variable soilscape, I. Developing a new pedotransfer function. Geoderma, 78(3–4): 129-143. doi: 10.1016/S0016-7061(97)00046-3

Seybold, C. A., Balks, M. R. and Harms, D. S. (2010): Characterization of active layer water contents in the McMurdo Sound region, Antarctica. Antarctic Science, 22(6): 633-645. doi: 10.1017/S0954102010000696

Shur, Y., Hinkel, K. M. and Nelson, F. E. (2005): The transient layer: Implications for geocryology and climate-change science. Permafrost and Periglacial Processes, 16: 5-17. doi: 10.1002/ppp.51

Smellie, J. L., Pankhurst, R. J., Thomson, M. R. A. and Davies, R. E. S. (1984): The geology of the South Shetland Islands: IV. Stratigraphy, Geochemistry and Evolution. British Antarctic Survey Scientific Reports, 87: 1-85.

Stachoň, Z., Russnák, J., Nývlt, D. and Hrbáček, F. (2014): Stabilisation of geodetic points in the surroundings of Johann Gregor Mendel Station, James Ross Island, Antarctica. Czech Polar Reports, 4(1): 80-89. doi: 10.5817/CPR2014-1-9

Thomazini, A., Francelino, M. R., Pereira, A. B., Schünemann, A. L., Mendonca, E. S., Michel, R. F. M. and Schaefer, C. E. G. R. (2020): The current response of soil thermal regime and carbon exchange of a paraglacial coastal land system in maritime Antarctica. Land Degradation and Development, 31: 655-666. doi: 10.1002/ldr.3479

Turner, J., Marshall, G. J., Clem, K., Colwell, S., Phillips, T. and Lu, H. (2020): Antarctic temperature variability and change from station data. International Journal of Climatology, 40(6): 2986-3007. doi: 10.1002/joc.6378

Ugolini, F. C., Bockheim, J. G. (2008): Antarctic soils and soil formation in a changing environment: A review. Geoderma, 144(1–2): 1-8. doi: 10.1016/j.geoderma.2007.10.005

van Wessem, J. M., Ligtenberg, S. R. M., Reijmer, C. H., van de Berg, W. J., van den Broeke, M. R., Barrand, N. E., Thomas, E. R., Turner, J., Wuite, J., Scambos, T. A. and van Meijgaard, E. (2016): The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution. The Cryosphere, 10: 271-285. doi: 10.5194/tc-10-271-2016

Watanabe, K., Wake, T. (2009): Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR. Cold Region Science and Technology, 59(1): 34-41. doi: 10.1016/j.coldregions.2009.05.011

Wessolek, G., Bohne, K. and Trinks, S. (2023): Validation of soil thermal conductivity models. International Journal of Thermophysics, 44: 20. doi: 10.1007/s10765-022-03119-5

Wlostowski, A. N., Gooseff, M. N. and Adams, B. J. (2018): Soil moisture controls the thermal habitat of active layer soils in the McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research: Biogeosciences, 123: 46-59. doi: 10.1002/2017JG004018

Zhang, T. (2005): Influence of the seasonal snow cover on the ground thermal regime: An overview. Reviews of Geophysics, 43(4): RG4002. doi: 10.1029/2004RG000157

Zhang, Y., Treberg, M. and Carey, S. K. (2011): Evaluation of the heat pulse probe method for determining frozen soil moisture content. Water Resources Research, 47: W05544. doi: 10.1029 /2010WR010085

Zhou, X., Zhou, J., Kinzelbach, W. and Stauffer, F. (2014): Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR. Water Resources Research, 50(12): 9630-9655. doi: 10.1002/2014WR015640

Web sources / Other sources

[1] Mlčoch, B., Nývlt, D. and Mixa, P. (eds.)(2020): Geological map of James Ross Island – Northern part 1: 25,000. Czech Geological Survey, Praha.

Metrics

0

Crossref logo

0

web of science logo


553

Views

251

PDF views