Interannual variation of soil heat flux in a grass-dominated alpine tundra. Preliminary study from the Jeseníky Mts.

Vol.12,No.2(2022)

Abstract

Soil heat flux (G) is an important component of the surface energy balance of terrestrial ecosystems. In polar and alpine tundra, G enters the subsurface layers during summer and relatively high G is released from soil during winter. Measuring of energy cycle in polar and alpine treeless ecosystems is challenging due to complex physics of seasonal changes associated with freeze-thaw cycle. That is why field data on G are much less abundant compared to the other World regions. In our 2 year study, we quantified soil heat flux in two alpine plots differing in the characteristics of vegetation cover. The first one was a wind-swept alpine grassland, while the other one was the same vegetation cover localized in a close neighbourhood of a patchy Pinus mugo stand. Our results suggest that both sites had similar yearly time courses of G with peak values of the heat flux to the soil recorded in spring season after the snow melt (April/May). Maxima of heat flux from the soil were found in the December-January period. In summer season (April-October), proportion of G to global radiation (R) reached low values, typically below 10%. Regression analysis revealed that in spite of similar vegetation cover and microrelief of the two study plots, the site neighbouring to the P. mugo stand responded to R more sensitively than the open plot dominated by a grassland community exclusive-ly. Data recorded and the relationships presented in the paper are discussed with the results of similar studies performed in polar and treeless alpine regions.


Keywords:
alpine ecosystems; thermal regime; grassland; Nardus sp.; Pinus mugo
References

Alves, M., Soares, J. (2016): Diurnal variation of soil heat flux at an Antarctic local area during warmer months. Applied and Environmental Soil Science, 2016: 1769203. doi: 10.1155/2016/1769203

Ambrožová, K., Hrbáček, F. and Láska, K. (2020): The summer surface energy budget of the ice-free area of northern James Ross Island and its impact on the ground thermal regime. Atmosphere, 11(8): 877. doi: 10.3390/atmos11080877

Choi, T., Lee, B., Kim, S., Yoon, Y. and Lee, H. (2008): Net radiation and turbulent energy exchanges over a non-glaciated coastal area on King George Island during four summer seasons. Antarctic Science, 20(1): 99-112. doi: 10.1017/S095410200700082X

Cristóbal, J., Prakash, A., Anderson, M. C., Kustas, W. P., Euskirchen, E. S. and Kane, D. L. (2017): Estimation of surface energy fluxes in the Arctic tundra using the remote sensing thermal-based Two-Source Energy Balance model. Hydrology and Earth System Sciences, 21: 1339-1358. doi: 10.5194/hess-21-1339-2017

Gao, Z., Russell, E. S., Missik, J. E. C., Huang, M., Chen, X., Strickland, C. E., Clayton, R., Arntzen, E., Ma, Y. and Liu, H. (2017): A novel approach to evaluate soil heat flux calculation: An analytical review of nine methods. Journal of Geophysical Research: Atmospheres, 122: 6934-6949. doi: 10.1002/2017JD027160

Hošek, E. (1964): Zalesňování horských holí na Králickém Sněžníku a Keprníku kolem roku 1900 [Reforestation of alpine grasslands in Kralicky Sneznik and Keprnik mountains]. Časopis Slezského Muzea (C) [Acta Musei Silesiae], Opava, 3: 65-73. (In Czech).

Hošek, E. (1984): Průzkum dlouhodobého vývoje lesních porostů v oblasti SPR Vrchol Pradědu. – Ms. [Depon. in: Správa CHKO Jeseníky, Jeseník.] (In Czech).

Juszak, I., Eugster, W., Heijmans, M. M. P. D. and Schaepman-Strub, G. (2016): Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra. Biogeosciences, 13: 4049-4064, doi: 10.5194/bg-13-4049-2016

Lafleur, P. M., Humphreys, E. R. (2018): Tundra shrub effects on growing season energy and carbon dioxide exchange. Environmental Research Letters, 13: 055001. doi: 10.1088/1748-9326/aab863

Langer, M., Westermann, S., Muster, S., Piel, K. and Boike, J. (2011): The surface energy balance of a polygonal tundra site in northern Siberia. Part 1: Spring to fall. Cryosphere, 5: 151-171. doi: 10.5194/tc-5-151-2011

Lund, M., Hansen, B. U., Pedersen, S. H., Stiegler, C. and Tamstorf, M. P. (2014): Characteristics of summer-time energy exchange in a high Arctic tundra heath 2000–2010. Tellus B: Chemical and Physical Meteorology, 66(1): 21631. doi: 10.3402/tellusb.v66.21631

Lund, M., Stiegler, C., Abermann, J., Citterio, M., Hansen, B. U. and van As, D. (2017): Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland. Ambio, 46(Suppl 1): 81-93. doi: 10.1007/s13280-016-0867-5

Migała, K., Wojtuń, B., Szymański, W. and Muskała, P. (2014): Soil moisture and temperature variation under different types of tundra vegetation during the growing season: A case study from the Fuglebekken catchment, SW Spitsbergen. Catena, 116: 10-18. doi: 10.1016/j.catena.2013.12.007

Morris, S. M. (2018): Variability of Ground Heat Flux at Tiksi Station. PhD thesis. University of Coloredo, Boulder, USA, 82 p.

Prošek, P., Brázdil, R. (1994): Energy balance of the tundra at the Spitsbergen Island (Svalbard) in the summer seasons of 1988 and 1990. Scripta - Geography, 24: 43-60.

Prošek, P., Janouch, M. and Láska, K. (2000): Components of the energy balance of the ground surface and their effect on the thermics of the substrata of the vegetation oasis at Henryk Arctowski Station, King George Island, South Shetland Islands. Polar Record, 36(196), 3-18. doi: 10.1017/S003224740001593X

Russell, E. S., Liu, H., Gao, Z., Finn, D. and Lamb, B. (2015): Impacts of soil heat flux calculation methods on the surface energy balance closure. Agricultural and Forest Meteorology, 214–215: 189-200. doi: 10.1016/j.agrformet.2015.08.255

Šafář, J. et al. (2003): Olomoucko [Olomouc region]. In: Mackovčin P., Sedláček M. (eds.): Chráněná území ČR, svazek VI, [Protected areas of the Czech Republic, volume VI]. Agentura ochrany přírody a krajiny ČR a EkoCentrum Brno, Praha, [Agency for Nature and Landscape Protection of the Czech Republic and EkoCentrum Brno. Prague], 456 p. (In Czech).

Stiegler, C., Johansson, M., Christensen, T. R., Mastepanov, M. and Lindroth, A. (2016): Tundra permafrost thaw causes significant shifts in energy partitioning. Tellus B: Chemical and Physical Meteorology, 68(1): 30467. doi: 10.3402/tellusb.v68.30467

Votrubová, J., Dohnal, M., Vogel, T. and Tesař, M. (2012): On parameterization of heat conduction in coupled soil water and heat flow modelling. Soil and Water Research, 7(4): 125-137. doi: 10.17221/21/2012-SWR

Yao, J, Gu, L, Yang, C, Chen, H., Wang, J., Ding, Y., Li, R., Zhao, L., Xiao, Y., Qiao, Y., Shi, J. and Chen, C. (2020): Estimation of surface energy fluxes in the permafrost region of the Tibetan Plateau based on in situ measurements and the surface energy balance system model. International Journal of Climatology, 40: 5783-5800. doi: 10.1002/joc.6551

Zeidler, M., Banaš, M., Duchoslav, M. and Lešková, M. (2010): The impact of dwarf pine plantation on alpine plant communities in the Hrubý Jeseník Mts. Příroda, 29: 37-50. (In Czech). http://old.botany.upol.cz/prezentace/duch/publ/priroda2010.pdf

Web sources / Other sources

[1] Czech Hydrometeorological Institute, Brach Office, Brno: Průběh srážkových úhrnů v České republice 1961-2019 | Blog o meteorologii, hydrologii a kvalitě ovzduší. (In Czech). https://chmibrno.org/blog/

Metrics

0

Crossref logo

web of science logo


315

Views

239

PDF views