Vitality and growth rate of agar plate-cultivated Antarctic microautotrophs: Analysis of PSII functioning by chlorophyll fluorescence parameters

Vol.12,No.2(2022)

Abstract

In our study, we focused on the growth of three different microautotrophs isolated from Antarctic lichens (Placopsis contortuplicata, Solorina spongiosa) and cryptoendolithic algal vegetation. The isolates were purified and inoculated on agar plates, Bold´s Basal Medium (BBM). The growth of the cultures and the markers of physiological (photosynthetic) activity were monitored by chlorophyll fluorescence in 1 week intervals for 3 months after inoculation. For the assessment of photosynthetic activity, the method of slow Kautsky kinetics supplemented with saturation pulses was applied. Four chlorophyll fluorescence parameters calculated: (1) maximum quantum yield of PSII  (FV/FM), (2) effective quantum yield of photosynthetic processes in PSII (ΦPSII), (3) non-photochemical quenching of chlorophyll fluorescence, and (4) background chlorophyll fluorescence ratio (F0/F0´). Troughout the cultivation period, the maximum quantum yield of PSII (FV/FM) showed high values in all three autotrophs with only slight increase in the first part of the cultivation period, followed by slight decrease in the second part. The ΦPSII values showed a rapid decline within the first 4 weeks of cultivation followed by more or less constant values in the isolates from P. contortuplicata and cryptoendolithic alga. Contrastingly, time course of ΦPSII rather showed an increase followed by a decrease in S. spongiosa isolate. NPQ (related to the activation of protective mechanisms) increased in the second part of cultivation period, the rate of increase and maximum values were species-specific. The species-specific differences in chlorophyll fluorescence parameters are discussed as well as their potential for evaluation of photosynthetic performance of in vitro cultivated algal/cyanobacterial cultures on agar plates.


Keywords:
lichen photobionts; algal biotechnology; Kautsky kinetics
References

Albrecht, M., Khanipour Roshan, S., Fuchs, L., Karsten, U. and Schumann, R. (2022): Applicability and limitations of high-throughput algal growth rate measurements using in vivo fluorescence in microtiter plates. Journal of Applied Phycology, 34: 2037-2049. doi: 10.1007/ s10811-022-02778-z

Allen, J. F., Mullineaux, C. W. (2004): Probing the mechanism of state transitions in oxygenic photosynthesis by chlorophyll fluorescence spectroscopy. Kinetics and imaging. In: G. C. Papageorgiou, Govindjee (eds): Chlorophyll fluorescence: A signature of photosynthesis. Advances in photosynthesis and respiration vol 19. Springer, Dordrecht, The Netherlands, pp. 447–461.

Balarinová, Váczi, P., Barták, M., Hazdrová, J. and Forbelská, M. (2013): Temperature-dependent growth rate and photosynthetic performance of Antarctic symbiotic alga Trebouxia sp. cultivated in a bioreactor. Czech Polar Reports, 3(1): 19-27. doi: 10.5817/CPR2013-1-4

Benedetti, M., Vecchi, V., Barera, S. and Dall’Osto, L. (2018): Biomass from microalgae: The potential of domestication towards sustainable biofactories. Microbial Cell Factories, 17: 173. doi: 10.1186/s12934-018-1019-3

Bhatti, A. F., Kirilovsky, D., van Amerongen, H. and Wientjes, E. (2021): State transitions and photosystems spatially resolved in individual cells of the cyanobacterium Synechococcus elongatus. Plant Physiology, 186: 569-580. doi: 0.1093/plphys/kiab063

Cazzaniga, S., Perozeni, F., Baier, T. and Ballottari, M. (2022): Engineering astaxanthin accumulation reduces photoinhibition and increases biomass productivity under high light in Chlamydomonas reinhardtii. Biotechnology for Biofuels and Bioproducts, 15(1): 77. doi: 10.1186/s13068-022-02173-3

Dufková, K., Barták, M., Morkusová, J., Elster, J. and Hájek, J. (2019): Screening of growth phases of Antarctic algae and cyanobacteria cultivated on agar plates by chlorophyll fluorescence imaging. Czech Polar Reports, 9(2): 170-181. doi: 10.5817/CPR2019-2-15

Haberkorn, I., Off, C. L., Besmer, M. D., Buchmann, L. and Mathys, A. (2021): Automated online flow cytometry advances microalgal ecosystem management as in situ, high-temporal resolution monitoring tool. Frontiers in Bioengineering and Biotechnology, 9: 642671. doi: 10.3389/fbioe.2021.642671

Hyka, P., Lickova, S., Přibyl, P., Melzoch, K. and Kovar, K. (2013): Flow cytometry for the development of biotechnological processes with microalgae. Biotechnology Advances, 31(1): 2-16. doi: 10.1016/j.biotechadv.2012.04.007

Khan, A., Habib, M., Hossain, M. and Miah, M. (2018): Culture of Chlorella vulgaris in press mud media as sugar mill waste. International Journal of Fisheries and Aquatic Research, 3(2): 41-45.

Kim, E. J., Kim, S., Choi, H. G. and Han, S. J. (2020): Co-production of biodiesel and bioethanol using psychrophilic microalga Chlamydomonas sp. KNM0029C isolated from Arctic Sea ice. Biotechnology for Biofuels, 13: 20. doi: 10.1186/s13068-020-1660-z

Kodru, S., Malavath, T., Devadasu, E., Nellaepalli, S., Stirbet, A., Subramanyam, R. and Govindjee (2015): The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii. Photosynthesis Research, 125(1-2): 219-231. doi: 10.1007/s11120-015-0084-2

Küpper, H., Šetlík, I. and Hlásek, M. (2004): A versatile chamber for simultaneous measurements of oxygen exchange and fluorescence in filamentous and thallous algae as well as higher plants. Photosynthetica, 42: 579-583.

Malapascua, J. R. F., Jerez, C. G., Sergejevová, M., Figueroa, F. L. and Masojídek, J. (2014): Photosynthesis monitoring to optimize growth of microalgal mass cultures: Application of chlorophyll fluorescence techniques. Aquatic Biology, 22: 123-140.

Marečková, M., Barták, M. and Hájek, J. (2019): Temperature effects on photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum: A chlorophyll fluorescence study. Polar Biology, 42: 685-701. doi: 10.1007/s00300-019-02464-w

Masojídek, J., Štěrbová, K., Rearte, A., Celis-Plá, P., Torzillo, G., Benavides, S., Neori, A., Álvarez-Gómez, F., Lukeš, M., Caporgno, M., Abdala Díaz, R., Miazek, K., Massocato, T., Carmo, J., Atzmueller, R., Mahrouqui, H., Suárez-Estrella, F. and Lopez Figueroa, F. (2021): Changes in photosynthesis, growth and biomass composition in outdoor Chlorella g120 culture during the metabolic shift from heterotrophic to phototrophic cultivation regime. Algal Research, 56: 102303. doi: 10.1016/j.algal.2021.102303

Nielsen, S. L., Hansen, B. W (2019): Evaluation of the robustness of optical density as a tool for estimation of biomass in microalgal cultivation: The effects of growth conditions and physiological state. Aquaculture Research, 50(9): 2698-2706.

Nikolaou, A., Bernardi, A., Meneghesso, A., Bezzo, F., Morosinotto, T. and Chachuat, B. (2015): A model of chlorophyll fluorescence in microalgae integrating photoproduction, photoinhibition and photoregulation. Journal of Biotechnology, 194: 91-99. doi: 10.1016/ j.jbiotec.2014.12.001

Orekhova, A., Barták, M. and Hájek, J. (2018): Post rapid freezing growth of Antarctic strain of Heterococcus sp. monitored by cell viability and chlorophyll fluorescence. Cryobiology, 85: 39-46.

Ozaki, H., Ikeuchi, M., Ogawa, T., Fukuzawa, H. and Sonoike, K. (2007): Large-scale analysis of chlorophyll fluorescence kinetics in Synechocystis sp. PCC 6803: Identification of the factors involved in the modulation of photosystem stoichiometry. Plant and Cell Physiology, 48(3): 451-458.

Ozaki, H., Sonoike, K. (2009): Quantitative analysis of the relationship between induction kinetics of chlorophyll fluorescence and function of genes in the cyanobacterium Synechocystis sp. PCC 6803. Photosynthesis Research, 101(1): 47-58.

Rochaix, J. D. (2014): Regulation and dynamics of the Light-Harvesting System. Annual Review of Plant Biology, 65: 287-309.

Roháček, K. (2002): Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, and mutual relationspips. Photosynthetica, 40: 13-29.

Ruban, A.V. (2016): Non-photochemical chlorophyll fluorescence quenching: Mechanism and effectiveness in protecting plants from photodamage. Plant Physiology, 170: 1903-1916.

Sathasivam, R., Radhakrishnan, R., Hashem, A. and Abd Allah, E. F. (2019): Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4): 709-722. doi: 10.1016/j.sjbs.2017.11.003

Schoeters, F., Spit, J., Azizah, R. N. and Van Miert, S. (2022): Pilot-scale cultivation of the snow alga Chloromonas typhlos in a photobioreactor. Frontiers in Bioengineering and Biotechnology, 10: 896261. doi: 10.3389/fbioe.2022.896261

Stirbet, A., Govindjee (2016): The slow phase of chlorophyll a fluorescence induction in silico: Origin of the S–M fluorescence rise. Photosynthesis Research, 130: 193-213.

Stirbet, A., Riznichenko, G. Y., Rubin, A. B. and Govindjee (2014): Modeling chlorophyll a fluorescence transient: Relation to photosynthesis. Biochemistry, 79: 291-323.

Šnokhous, K. (2021): Optimalization and design of cultivation system for microalgae production under polar climate conditions. Thesis, Czech Technical University. https://dspace.cvut.cz/handle/10467/96964

Štroch, M., Špunda, V. and Kurasová, I. (2004): Non-radiative dissipation of absorbed excitation energy within photosynthetic apparatus of higher plants. Photosynthetica, 42: 323-337. doi: 10.1023/B:PHOT.0000046149.97220.18

Thaipratum, R., Melis, A., Svasti, J. and Yokthongwattana, K. (2009): Analysis of non-photochemical energy dissipating processes in wild type Dunaliella salina (green algae) and in zea1, a mutant constitutively accumulating zeaxanthin. Journal of Plant Research, 122: 465-476.

Vale, M. A., Ferreira, A., Pires, J. C. M. and Gonçalves A. L. (2020): Chapter 17 - CO2 capture using microalgae. Advances in Carbon Capture. Methods, Technologies and Applications, 381-405. doi: 10.1016/b978-0-12-819657-1.00017-7

Yee, W., Tang, S. G. H., Phua, P. S. P. and Megawarnan, H. (2019): Long-term maintenance of 23 strains of freshwater microalgae on solid microbiological culture media: A preliminary study. Algal Research, 41: 101516. doi: 10.1016/j.algal.2019.101516

Ziganshina, E. E., Bulynina, S. S. and Ziganshin, A. M. (2020): Comparison of the photoautotrophic growth regimens of Chlorella sorokiniana in a photobioreactor for enhanced biomass productivity. Plants-Basel, 9(7): 169. doi: 10.3390/biology9070169

Metrics

0

Crossref logo

0


300

Views

288

PDF views