Effect of geotextile cover on snow and ice melt on Triangular Glacier, the north-eastern Antarctic Peninsula

Vol.12,No.2(2022)

Abstract

A prominent increase in air temperature during the last decade has prompted summer melting and surface lowering of glaciers in the Antarctic Peninsula region. Accelerated mass loss from small land-terminating glaciers on James Ross Island has attracted research attention to local conditions of snow and ice melt that remain poorly known. This study focuses on the potential effects of non-woven geotextile on snow and ice melt on the surface of Triangular Glacier. The measurements of surface elevation changes reveal a total melt-season ablation of 1.3 to 1.6 m during the summer 2021/22. Over half of the melt season the surface lowering ranged from 0.5 m at the shaded glacier head to 0.8 m on the glacier surface unconstrained by topography, implying the importance of local topography on surface melting. The protection of glacier surface with non-woven geotextile covers reduced the snow and ice ablation by 40 to 69%. The lower effect of this protection is attributed to less intense surface melt at the shaded site. The efficiency of the geotextile cover is consistent with the reported values from mid-latitude sites but it is higher compared to the recently reported estimates from a high-elevation region in Asia.


Keywords:
snow; glacier; surface melt; geotextile; Antarctic Peninsula
References

Bird, R. E., Hulstrom, R. L. (1981): A simplified clear sky model for direct and diffuse insolation on horizontal surfaces. Solar Energy Research Institute, Golden, CO. 38 p. doi: 10.2172/ 6510849

Bliss, A. K., Cuffey, K. M. and Kavanaugh, J. L. (2011): Sublimation and surface energy budget of Taylor Glacier, Antarctica. Journal of Glaciology, 57(204): 684-696. doi: 10.3189/ 002214311797409767

Burkhart, P. A., Alley, R. B., Thompson, L. G., Balog, J. D., Baldauf, P. E. and Baker, G. S. (2017): Savor the cryosphere. GSA Today, 27: 4-10. doi: 10.1130/GSATG293A.1

Cuffey, K. M., Paterson, W. S. B. (2010): The physics of glaciers. Butterworth-Heinneman, Amsterdam. 704 p.

Edwards, T. L. and 83 others (2021): Projected land ice contributions to twenty-first-century sea level rise. Nature, 593: 74-82. doi: 10.1038/s41586-021-03302-y

Engel, Z., Láska, K., Kavan, J. and Smolíková, J. (2022, in press): Persistent mass loss of Triangular Glacier, James Ross Island, north-eastern Antarctic Peninsula. Journal of Glaciology. doi: 10.1017/jog.2022.42

Francelino, M. R., Schaefer, C., Skansi, M. d. L. M., Colwell, S., Bromwich, D. H., Jones, P., King, J. C., Lazzara, M. A., Renwick, J., Solomon, S., Brunet, M. and Cerveny, R. S. (2021): WMO evaluation of two extreme high temperatures occurring in February 2020 for the Antarctic Peninsula region. Bulletin of the American Meteorological Society, 102(11): E2053-E2061. doi: 10.1175/BAMS-D-21-0040.1

González-Herrero, S., Barriopedro, D., Trigo, R.M., López-Bustins, J. A. and Oliva, M. (2022): Climate warming amplified the 2020 record-breaking heatwave in the Antarctic Peninsula. Communications Earth & Environment, 3: 122. doi: 10.1038/s43247-022-00450-5

Hock, R. (2003): Temperature index melt modelling in mountain areas. Journal of Hydrology, 282(1–4): 104-115. doi: 10.1016/S0022-1694(03)00257-9

Hock, R., Hutchings, J. K. and Lehning, M. (2017): Grand challenges in cryospheric sciences: Toward better predictability of glaciers, snow and sea ice. Frontiers in Earth Science, 5: 64. doi: 10.3389/feart.2017.00064

Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F. and Kääb, A. (2021): Accelerated global glacier mass loss in the early twenty-first century. Nature, 592: 726-731. doi: 10.1038/s41586-021-03436-z

Huss, M., Schwyn, U., Bauder, A. and Farinotti, D. (2021): Quantifying the overall effect of artificial glacier melt reduction in Switzerland, 2005–2019. Cold Regions Science and Technology, 184: 103237. doi: 10.1016/j.coldregions.2021.103237

Laffin, M. K., Zender, C. S., van Wessem, M. and Marinsek, S. (2022): The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse. The Cryosphere, 16: 1369-1381. doi: 10.5194/tc-16-1369-2022

Lenssen, N., Schmidt, G., Hansen, J., Menne, M., Persin, A., Ruedy, R. and Zyss, D. (2019): Improvements in the GISTEMP uncertainty model. Journal of Geophysical Research: Atmospheres, 124(12): 6307-6326. doi: 10.1029/2018JD029522

Li, Y. (2013): Determining topographic shielding from digital elevation models for cosmogenic nuclide analysis: A GIS approach and field validation. Journal of Mountain Science, 10: 355-362. doi: 10.1007/s11629-013-2564-1

Liu, S., Wang, F., Xie, Y., Xu, C., Xue, Y., Yue, X. and Wang, L. (2022): Quantifying the artificial reduction of glacial ice melt in a mountain glacier (Urumqi Glacier No. 1, Tien Shan, China). Remote Sensing, 14: 2802. doi: 10.3390/rs14122802

Navarro, F. J., Jonsell, U. Y., Corcuera, M. I. and Martín-Español, A. (2013): Decelerated mass loss of Hurd and Johnsons Glaciers, Livingston Island, Antarctic Peninsula. Journal of Glaciology, 59(213): 115-128. doi: 10.3189/2013JoG12J144

Nestler, A., Huss, M., Ambartzumian, R. and Hambarian, A. (2014): Hydrological implications of covering wind-blown snow accumulations with geotextiles on Mount Aragats, Armenia. Geosciences, 4: 73-92. doi: 10.3390/geosciences4030073

Oerlemans, J., Haag, M. and Keller, F. (2017): Slowing down the retreat of the Morteratsch glacier, Switzerland, by artificially produced summer snow: A feasibility study. Climatic Change, 145: 189-203. doi: 10.1007/s10584-017-2102-1

Olefs, M., Obleitner, F. (2007): Numerical simulations on artificial reduction of snow and ice ablation, Water Resources Research, 43: W06405. doi: 10.1029/2006WR005065

Olefs, M., Fischer, A. (2008): Comparative study of technical measures to reduce snow and ice ablation in Alpine glacier ski resorts. Cold Regions Science and Technology, 52: 371-384. doi: 10.1016/j.coldregions.2007.04.021

Olefs, M., Lehning, M. (2010): Textile protection of snow and ice: measured and simulated effects on the energy and mass balance. Cold Regions Science and Technology, 62: 126-141. doi: 10.1016/j.coldregions.2010.03.011

Orlove, B., Wiegandt, E. and Luckman, B. N. (2008): The place of glaciers in natural and cultural landscapes. In: B. Orlove, E. Wiegandt and B. N. Luckman (eds.): Darkening Peaks. University of California Press, Berkeley, pp. 3–19.

Peixoto, J. P., Oort, A. H. (1992): Physics of Climate. Springer-Verlag, New York, Berlin, Heidelberg, 520 p.

Sauter, T., Galos, S. P. (2016): Effects of local advection on the spatial sensible heat flux variation on a mountain glacier. The Cryosphere, 10: 2887-2905. doi: 10.5194/tc-10-2887-2016

Senese, A., Azzoni, R. S., Maragno, D., D’Agata, C., Fugazza, D., Mosconi, B., Trenti, A., Meraldi, E., Smiraglia, C. and Diolaiuti, G. (2020): The non-woven geotextiles as strategies for mitigating the impacts of climate change on glaciers. Cold Regions Science and Technology, 173: 103007. doi: 10.1016/j.coldregions.2020.103007

Skogsberg, K., Lundberg, A. (2005): Wood chips as thermal insulation of snow. Cold Regions Science and Technology, 43: 207-218. doi: 10.1016/j.coldregions.2005.06.001

Sommer, C., Malz, P., Seehaus, T. C., Lippl, S., Zemp, M. and Braun, M. H. (2020): Rapid glacier retreat and downwasting throughout the European Alps in the early 21st century. Nature Communications, 11: 3209. doi: 10.1038/s41467-020-16818-0

Sun, M., Li, Z., Yao, X., Zhang, M. and Jin, S. (2015): Modeling the hydrological response to climate change in a glacierized high mountain region, northwest China. Journal of Glaciology, 61(225): 127-136. doi: 10.3189/2015JoG14J033

Thost, D. E., Truffer, M. (2008): Glacier recession on Heard Island, Southern Indian Ocean. Arctic, Antarctic, and Alpine Research, 40(1): 199-214. doi: 10.1657/1523-0430(06-084) [THOST]2.0.CO;2

Thibert, E., Eckert, N. and Vincent, C. (2013): Climatic drivers of seasonal glacier mass balances: an analysis of 6 decades at Glacier de Sarennes (French Alps). The Cryosphere, 7: 47-66. doi: 10.5194/tc-7-47-2013

Xie, Y., Wang, F., Xu, C., Yue, X., Yang, S. and Huang, S. (2022, under review): Applying artificial cover to reduce the melting of the Dagu Glacier, the East Qinghai-Tibetan Plateau. Advances in Climate Change Research. doi: 10.2139/ssrn.4215361

Web sources / Other sources

[1] Czech Geological Survey (2009): James Ross Island – northern part. Topographic Map

1 : 25,000. Czech Geological Survey, Praha.

[2] GISTEMP Team (2022): GISS Surface Temperature Analysis (GISTEMP), version 4.

NASA Goddard Institute for Space Studies.

Dataset accessed 2022-12-12 at https://data.giss.nasa.gov/gistemp/

Metrics

0

Crossref logo

web of science logo


365

Views

360

PDF views