What does critical temperature tell us about the resistance of polar lichens to freezing stress? Applicability of linear cooling method to ecophysiological studies.



Lichens from polar regions are well adapted to low temperature and considered cryoresistant. However, interspecific differences in their cryoresistance exist according to the degree of their adaptation and severity of the environment. In our study, we applied linear cooling technique in order to evaluate the interspecific differences in several lichen species. Thalli segments of Umbilicaria antarctica, Nephroma antarctica, Placopsis contortuplicata and Lasallia pustulata were exposed to the cooling from 20 to –35°C at a constant rate of 2°C min-1. Simultaneously with the cooling, chlorophyll fluorescence parameters evaluating potential (FV/FM) and effective yield of primary photochemical processes in PSII (FPSII) were measured in 30 s interval. Temperature response curves of FV/FM and FPSII formed typical S-curves that were species specific. Critical temperature (cooling point at which FPSII equals 0), was found in a narrow range of –25 to –28°C, suggesting that all experimental lichen species have a high resistance to sub-zero temperatures. The method of linear cooling used in this study has proven its applicability in ecophysiological studies since it is sensitive enough for the evaluation of species-specific differences in cryoresistance. This study describes different parameters that can be derived from the S-curves and discuss their proper use in ecophysiological and stress physiology studies.

cryoresistance; chlorophyll fluorescence; photosystem II; primary photosynthesis

Barták, M. (2014): Lichen photosynthesis. Scaling from the cellular to the organism level. In: Hohmann-Marriott, M. (eds.): The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration, vol 39, pp. 379–400. Springer, Dordrecht. doi: 10.1007/978-94-017-8742-0_20

Barták, M., Váczi, P., Hájek, J. and Smykla, J. (2007): Low-temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria Antarctica and Xanthoria elegans. Polar Biology, 31(1): 47-51. doi: 10.1007/s00300-007-0331-x

Barták, M., Hájek, J., Orekhova, A., Villagra, J., Marín, C., Palfner, G. and Casanova-Katny, A. (2021): Inhibition of primary photosynthesis in desiccating antarctic lichens differing in their photobionts, thallus morphology, and spectral properties. Microorganisms, 9: 818. doi: 10.3390/microorganisms9040818

Cho, S. M., Lee, H., Hong, S. G. and Lee, J. (2020): Study of ecophysiological responses of the Antarctic fruticose lichen Cladonia borealis using the PAM fluorescence system under natural and laboratory conditions. Plants, 9(1): 85. doi: 10.3390/plants9010085

Colesie, C., Green, T. A., Raggio, J. and Büdel, B. (2016): Summer activity patterns of Antarctic and high alpine Lichendominated biologicalsoil crusts–Similar but different? Arctic, Antarctic, and Alpine Research, 48(3): 449-460, doi: 10.1657/AAAR0015-047

Colesie, C., Walshaw, C. V., Sancho, L. G., Davey, M. P. and Gray, A. (2023): Antarctica's vegetation in a changing climate. WIREs Climate Change, 14(1): e810. doi: 10.1002/wcc.810

Day, J. G., Watanabe, M. M., Morris, G. J., Fleck, R. A. and McLellan, M. R. (1997): Long-term viability of preserved eukaryotic algae. Journal of Applied Phycology, 9: 121-127.

Deltoro, V. I., Calatayud, Á., Morales, F., Abadía, A. and Barreno, E. (1999): Changes in net photosynthesis, chlorophyll fluorescence and xanthophyll cycle interconversions during freeze-thaw cycles in the Mediterranean moss Leucodon sciuroides. Oecologia, 120(4): 499-505.

Folgar-Cameán, Y, Barták, M. (2019): Evaluation of photosynthetic processes in Antarctic mosses and lichens exposed to controlled rate cooling: Species-specific responses. Czech Polar Reports, 9(1): 114-124.

Hájek, J., Barták, M., Hazdrová, J. and Forbelská, M. (2016): Sensitivity of photosynthetic processes to freezing temperature in extremophiliclichens evaluated by linear cooling and chlorophyll fluorescence. Cryobiology, 73(3): 329-334. doi: 10.1016/j.cryobiol.2016.10.002

Hájek, J., Hojdová, A., Trnková, K., Váczi, P., Bednaříková, M. and Barták, M. (2021): Responses of thallus anatomy and chlorophyll fluorescence-based photosynthetic characteristics of two Antarctic species of genus Usnea to low temperature. Photosynthetica, 59(1): 95-105. doi: 10.32615/ps.2021.002

Hájek, J., Váczi, P., Barták, M. and Jahnová, L. (2012): Interspecific differences in cryoresistance of lichen symbiotic algae of genus Trebouxia assessed by cell viability and chlorophyll fluorescence. Cryobiology, 64: 215-222.

Haranczyk, H., Grandjean, J., Olech, M. and Michalik, M. (2003): Freezing of water bound in lichen thallus as observed by 1H NMR. II. Freezing protection mechanisms in a cosmopolitan lichen Cladonia mitis and in Antarctic lichen species at different hydration levels. Colloids and Surfaces B: Biointerfaces, 28(4): 251-260. doi: 10.1016/S0927-7765(02)00150-9

Hejduková, E., Nedbalová, L. (2021): Experimental freezing of freshwater pennate diatoms from polar habitats. Protoplasma, 258: 1213-1229. doi: 10.1007/s00709-021-01648-8

Honegger, R. (1998): The lichen symbiosis – what is so spectacular about it. Lichenologist, 30: 193-212.

Honegger, R. (2003): The impact of different long-term storage conditions on the viability of lichen-forming ascomycetes and their green algal photobiont, Trebouxia spp. Plant Biology, 5(3): 324-330.

Kappen, L., Schroeter, B., Green, T. and Seppelt, R. D. (1998): Chlorophyll a fluorescence and CO2 exchange of Umbilicaria aprina under extreme light stress in the cold. Oecologia, 113: 325-331.

Laguna-Defior, C., Pintado, A., Green, T. G. A., Blanquer, J. M. and Sancho, L. G. (2016): Distributional and ecophysiological study on the Antarctic lichens species pair Usnea antarctica / Usnea aurantiaco-atra. Polar Biology, 39: 1183-1195. doi: 10.1007/s00300-015-1832-7

Lange, O. L., Belnap, J. and Reichenberger, H. (1998): Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: Role of water content on light and temperature responses of CO2 exchange. Functional Ecology, 12: 195-202.

Mishra, A., Hájek, J., Tuháčková, T., Barták, M. and Mishra, K. B. (2015): Features of chlorophyll fluorescence transients can be used to investigate low temperature induced effects on photosystem II of algal lichens from polar regions. Czech Polar Reports, 5: 99-111.

Nakanishi K., Deuchi, K. and Kuwano, K. (2012): Cryopreservation of four valuable strains of microalgae, including viability and characteristics during 15 years of cryostorage. Journal of Applied Phycology, 24: 1381-1385. doi: 10.1007/s10811-012-9790-8

Puhovkin, A., Bezsmertna, O. and Parnikoza, I. (2022): Interspecific differences in desiccation tolerance of selected Antarctic lichens: Analysis of photosystem II effectivity and quenching mechanisms. Czech Polar Reports, 12: 31-43.

Puhovkin, A., Hájek, J. Giordano, D., Sekerák, J. and Barták, M. (2023, accepted, in press): Interspecific differences in cryoresistance of autotrophic organisms from polar regions sensed by chlorophyll fluorescence method. Problems in Cryobiology and Cryomedicine.

Šabacká, M., Elster, J. (2006): Response of cyanobacteria and algae from Antarctic Wetland habitats to freezing and desiccation stress. Polar Biology, 30: 31-37. doi: 10.1007/s00300-006-0156-z

Sancho, L. G., Pintado, A. and Green, T. G. (2019): Antarctic studies show lichens to be excellent biomonitors of climate change. Diversity, 11(3): 42.

Schroeter, B., Green, T. G., Pintado, A., Türk, R. and Sancho, L. G. (2021): Summer activity patterns for a moss and lichen in the maritime Antarctic with respect to altitude. Polar Biology, 44(11): 2117-2137. doi: 10.1007/s00300-021-02939-9

Schroeter, B., Scheidegger, C. (1995): Water relations in lichens at subzero temperatures–structural changes and carbon dioxide exchange in the lichen Umbilicaria aprina from continental Antarctica. New Phytologist, 131: 273-285.

Steiner, P., Buchner, O., Andosch, A., Holzinger, A., Lütz-Meindl, U. and Neuner, G. (2021): Winter survival of the unicellular green alga Micrasterias denticulata: Insights from field monitoring and simulation experiments. Protoplasma, 258(6): 1335-1346. doi: 10.1007/s00709-021-01682-6.

Wang, L., Liu, H. and Wu, Q.-F. (2014): Responses of photosynthetic activities of two foliose lichens to freezing-thawing alternation under different thallus water conditions. Mycosystema, 33(3): 680-689.



Crossref logo





PDF views