The importance of Arctic driftwood for interdisciplinary global change research (Short Communication / Methodological note)

Vol.12,No.2(2022)

Abstract

The Arctic is one of the regions most sensitive to global warming, for which climate and environmental proxy archives are largely insufficient. Arctic driftwood provides a unique resource for research into the circumpolar entanglements of terrestrial, coastal and marine factors and processes – past, present, future. Here, first dendrochronological and wood anatomical insights into 639 Arctic driftwood samples are presented. Samples were collected across northern Norway (n =430) and north-western Iceland (n =209) in 2022. The overall potentials and limitations of Arctic driftwood to improve tree-ring chronologies from the boreal forest, and to reconstruct changes in sea ice extent and ocean current dynamics are discussed. Finally, the role driftwood has possibly played for Arctic settlements in the past hundreds of years is examined.


Keywords:
Arctic Ocean; climate change; dendrochronology; driftwood supply; sea-ice dynamics
References

Alix, C. (2005): Deciphering the impact of change on the driftwood cycle: contribution to the study of human use of wood in the Arctic. Global and Planetary Change, 47: 83-98. doi: 10.1016/j.gloplacha.2004.10.004

Alix, C. (2012): Using wood on King Island, Alaska. Études/Inuit/Studies, 36(1): 89-112. doi: 10.7202/1015955ar

Alix, C. (2016). A critical resource: Wood use and technology in the North American Arctic. The Oxford Handbook of the Prehistoric Arctic, Oxford Univ. Press. doi: 10.1093/oxfordhb/ 9780199766956.013.12

Alix, C., Brewster, K. (2004): Not all driftwood is created equal: wood use and value along the Yukon and Kuskowim Rivers, Alaska. Alaska Journal of Anthropology, 2: 2-19.

Baillie, M. G. L., Pilcher, J. R. (1973): A simple cross-dating program for tree-ring research. Tree-Ring Bulletin, 33: 7-14.

Bartholin, T., Hjort, C. (1987): Dendrochronological studies of recent driftwood on Svalbard, In: L. Kairukstis, Z. Bednarz, E. Feliksik (eds.): Methods of Dendrochronology. Polish Academy of Sciences, Systems Resarch Institute, Warsaw, Poland, pp. 207–219.

Blanchette, R.A., Held, B.W., Hellmann, L., Millman, L. and Büntgen, U. (2016): Arctic driftwood reveals unexpectedly rich fungal diversity. Fungal Ecology, 23: 58-65.

Burns, A., Pickering, M. D., Green, K. A., Pinder, A. P., Gestsdóttir, H., Usai, M-R., Brothwell, D. R. and Keely, B. J. (2017): Micromorphological and chemical investigation of late-Viking age grave fills at Hofstaðir, Iceland. Geoderma, 306: 183-194. doi: 10.1016/ j.geoderma.2017.06.021

Charles, F., Coston-Guarini, J., Guarini, J. M. and Fanfard, S. (2016): Wood decay at sea. Journal of Sea Research, 114: 22-25. doi: 10.1016/j.seares.2016.05.002

Dalaiden, Q., Goosse, H., Lecomte, O. and Docquier, D. (2018): A model to interpret driftwood transport in the Arctic. Quaternary Science Review, 191: 89-100. doi: 10.1016/j.quascirev. 2018.05.004.

Dennis, A., Foote, P. and Perkins, R. (2000): Laws of Early Iceland: Grágás II. University of Manitoba Press, Winnipeg. 453 p.

Eckstein, D., Bauch, J. (1969): Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt, 88: 230-250.

Eggertsson, Ó. (1993): Origin of the driftwood on the coasts areas of Iceland, a dendrochronological study. Jökull, 43: 15-32.

Eggertsson, Ó. (1994a): Driftwood as an indicator of relative changes in the influx of Arctic and Atlantic water into the coastal areas of Svalbard. Polar Research, 13: 209-218.

Eggertsson, Ó. (1994b): Mackenzie River driftwood: A dendrochronological study. Arctic, 47: 128-136.

Eggertsson, Ó., Laeyendecker, D. (1995): A dendrochronological study of the origin of driftwood in Frobisher Bay, Baffin Island, NWT, Canada. Arctic and Alpine Research, 27: 180-186.

Funder, S., Goosse, H., Jepsen, H., Kaas, E., Kjær, K. H., Korsgaard, N. J., Larsen, N. K., Linderson, H., Lyså, A. and Möller, P. (2011). A 10,000-year record of Arctic Ocean sea-ice variability–view from the beach. Science, 333: 747-750.

Giddings, J. L. (1940). The application of tree-ring dates to Arctic sites. Tree-Ring Bulletin, 7(2): 10-14.

Giddings, J. L. (1952): Driftwood and problems of Arctic sea currents. Proceedings of the American Philosophical Society, 96: 129-142.

Gordov, E. P., Bryant, K., Bulygina, O. N., Csiszar, I., Eberle, J., Fritz, S., Gerasimov, I., Gerlach, R., Hese, S. and Kraxner, F. (2013): Development of information-computational infrastructure for environmental research in Siberia as a baseline component of the northern Eurasia Earth science partnership initiative (NEESPI) studies, Regional environmental changes in Siberia and their global consequences. Springer, pp. 19–55.

Häggblom, A. (1982): Driftwood in Svalbard as an indicator of sea ice conditions. Geografiska Annaler. Series A. Physical Geography, 64: 81-94.

Hantemirov, R. M., Corona, C., Guillet, S., Shiyatov, S. G., Stoffel, M., Osborn, T. J., Melvin, T. M., Gorlanova, L. A., Kukarskih, V. V., Surkov, A. Y., Von Arx, G. and Fonti, P. (2022): Current Siberian heating is unprecedented during the past seven millennia. Nature Communications, 13: 4968. doi: 10.1038/s41467-022-32629-x

Hellmann, L., Tegel, W., Eggertsson, Ó., Schweingruber, F.H., Blanchette, R., Kirdyanov, A., Gärtner, H. and Büntgen, U. (2013): Tracing the origin of Arctic driftwood. Journal of Geophysical Research: Biogeosciences, 118: 68-76.

Hellmann, L., Tegel, W., Geyer, J., Kirdyanov, A. V., Nikolaev, A. N., Eggertsson, Ó., Altman, J., Reinig, F., Morganti, S. and Wacker, L. (2017). Dendro-provenancing of Arctic driftwood. Quaternary Science Review, 162: 1-11.

Hellmann, L., Tegel, W., Kirdyanov, A. V., Eggertsson, Ó., Esper, J., Agafonov, L., Nikolaev, A. N., Knorre, A. A., Myglan, V. S., Churakova (Sidorova), O., Schweingruber, F. H., Nievergelt, D., Verstege, A. and Büntgen, U. (2015): Timber logging in Central Siberia is the main source for recent Arctic driftwood. Arctic, Antarctic, and Alpine Research, 47: 449-460.

Hellmann, L., Kirdyanov, A. V. and Büntgen, U. (2016a): Effects of boreal timber rafting on the composition of Arctic driftwood. Forests, 7: 257. doi:10.3390/f7110257

Hellmann, L., Agafonov, L., Churakova (Sidorova), O., Düthorn, E., Eggertsson, Ó., Esper, J., Kirdyanov, A. V., Knorre, A., Moiseev, P., Myglan, V.S., Nikolaev, A. N., Reinig, F., Schweingruber, F. H., Solomina, O., Tegel, W. and Büntgen, U. (2016b): Regional coherency of boreal forest growth defines Arctic driftwood provenancing. Dendrochronologia, 39: 3-9. doi: 10.1016/j.dendro.2015.12.010

Hole, G. M., Macias-Fauria, M. (2017): Out of the woods: Driftwood insights into Holocene pan–Arctic sea ice dynamics. Journal of Geophysical Research: Oceans, 122: 7612-7629.

Hole, G. M., Rawson, T., Farnsworth, W. R., Schomacker, A., Ingólfsson, Ó. and Macias-Fauria, M. (2021): A driftwood-based record of Arctic sea ice during the last 500 years from northern Svalbard reveals sea ice dynamics in the Arctic Ocean and Arctic peripheral seas. Journal of Geophysical Research: Oceans, 126: e2021JC017563. doi: 10.1029/2021JC017563

Hollstein, E. (1980): Mitteleuropäische Eichenchronologie. Trierer dendrochronologische Forschungen zur Archäologie und Kunstgeschichte (Trierer Grabungen und Forschungen, Mainz am Rhein).

Johansen, S. (1998): The origin and age of driftwood on Jan Mayen. Polar Research, 17: 125-146.

Johansen, S. (1999): Origin of driftwood in north Norway and its relevance for transport routes of drift ice and pollution to the Barents Sea. Science of the Total Environment, 231: 201-225.

Johansen, S. (2001): A dendrochronological analysis of driftwood in the Northern Dvina delta and on northern Novaya Zemlya. Journal of Geophysical Research: Oceans, 106: 19929-19938.

Johansen, S., Hytteborn, H. (2001): A contribution to the discussion of biota dispersal with drift ice and driftwood in the North Atlantic. Journal of Biogeography, 28: 105-115.

Kirdyanov, A. V., Piermattei, A., Kolář, T., Rybníček, M., Krusic, P. J., Nikolaev, A. N., Reinig, F. and Büntgen, U. (2018): Notes towards an optimal sampling strategy. Dendrochronologia, 52: 162-166. doi: 10.1016/j.dendro.2018.10.002

Kolář, T., Rybníček, M., Eggertsson, Ó., Kirdyanov, A., Čejka, T., Čermák, P., Žid, T., Vavrčík, H. and Büntgen, U. (2022): Predicted sea-ice loss will terminate Iceland’s driftwood supply by 2060 CE. Global and Planetary Change, 213: 103834. doi: 10.1016/j.gloplacha. 2022.103834

Krumpen, T., Belter, H. J., Boetius, A., Damm, E., Haas, C., Hendricks, S., Nicolaus, M., Nöthig, E-M., Paul, S., Peeken, I., Ricker, R. and Stein, R. (2019): Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter. Scientific Reports, 9: 5459. doi: 10.1038/s41598-019-41456-y

Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K., Steffen, W. and Schellnhuber, H.J. (2019): Climate tipping points – too risky to bet against. Nature, 575: 592-595.

Linderholm H.W., Gunnarson, B.E., Fuentes M., Büntgen, U. and Hormes, A. (2021): The origin of driftwood on eastern and south-western Svalbard. Polar Science, 29: 100658. doi: 10.1016/j.polar.2021.100658

Malmros, C. (1994): Exploitation of local, drifted and imported wood by the Vikings on the Faroe Islands. Botanical Journal of Scotland, 46(4): 552-558. doi: 10.1080/13594869409441762

Mooney, D. E. (2016): A ‘North Atlantic island signature’ of timber exploitation: Evidence from wooden artefact assemblages from Viking Age and Medieval Iceland. Journal of Archaeological Science: Reports, 7: 280-289. doi: 10.1016/j.jasrep.2016.05.021

Nash, S. E. (2000): James Louis Giddings' Archaeological Tree-Ring Dating in the American Arctic: A Forgotten Legacy. Arctic Anthropology, 37(1): 60-78.

Oswalt, W. (1951): The origin of driftwood at Hooper Bay, Alaska. Tree-Ring Bulletin, 18: 6-8.

Pinta, E. (2018): Norse Management of Wooden Resources across the North Atlantic: Highlights from the Norse Greenlandic Settlements. Environmental Archaeology, 26(1): 1-13. doi: 10.1080/ 14614103.2018.1547510

Power, C. C., Assmann, J. J., Prendin, A. L., Treier, U. A., Kerby, J. T. and Normand, S. (2022): Improving ecological insights from dendroecological studies of Arctic shrub dynamics: Research gaps and potential solutions. Science of The Total Environment, 851(2): 158008. doi: 10.1016/j.scitotenv.2022.158008

Rämä, T., Nordén, J., Davey, M. L., Mathiassen, G. H., Spatafora, J. W. and Kauserud, H. (2014): Fungi ahoy! Diversity on marine wooden substrata in the high North. Fungal Ecology, 8: 46-58.

Sander, L., Kirdyanov, A., Crivellaro, A. and Büntgen, U. (2021): Short communication: Driftwood provides reliable chronological markers in Arctic coastal deposits. Geochronology, 3: 171-180. doi: 10.5194/gchron-2020-28

Schweingruber, F.H. (1990): Anatomy of European woods. An atlas for the identification of European trees, shrubs and dwarf shrubs. Paul Haupt Publisher, Berne, Switzerland and Stuttgart, Germany. 800 p.

Schweingruber, F. H. (1996): Tree Rings and Environment-Dendrochronology. Haupt, Bern, 609 p.

Shumilov, O.I., Kasatkina, E.A., Krapiec, M., Chochorowski, J. and Szychowska-Krapiec, E. (2020): Tree-ring dating of Russian Pomor settlements in Svalbard. Dendrochronologia, 62: 125721. doi: 10.1016/j.dendro.2020.125721

Steelandt, S., Bhiry, N., Marguerie, D., Desbiens, C., Napartuk, M. and Desrosiers, P. M. (2013): Inuit knowledge and use of wood resources on the west coast of Nunavik, Canada. Études/Inuit/Studies, 37: 147-173.

Steelandt, S., Marguerie, D., Bhiry, N. and Delwaide, A. (2015): A study of the composition, characteristics, and origin of modern driftwood on the western coast of Nunavik (Quebec, Canada). Journal of Geophysical Research: Biogeosciences, 120: 480-501.

Stone, J. (1958): The origin of driftwood on Nunivak Island, Alaska. Tree-Ring Bulletin, 22: 12-15.

Witze, A. (2020): Why arctic fires are bad news for climate change. Nature, 585: 336-337.

Woelders, L., Lenaerts, J. T. M., Hagemans, K., Akkerman, K., Van Hoof, T. B. and Hoek, W. Z. (2018): Recent climate warming drives ecological change in a remote high-Arctic lake. Scientific Reports, 8: 6858. doi: 10.1038/s41598-018-25148-7

Web sources / Other sources

[1] IPCC, 2018: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)].

[2] IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

[3] IAWA Committee (1989): IAWA list of microscopic features for hardwood identification. IAWA Bull. n.s. 10: 219–232.

Metrics

0

Crossref logo

0

web of science logo


456

Views

359

PDF views