Species-specific responses of Antarctic terrestrial microalgae to salinity stress. Comparative study in Klebsormidium sp. and Stigeoclonium sp.
Vol.12,No.1(2022)
chlorophyll fluorescence; microalgae; quantum yield; OJIP; salt stress; PSII inhibition; Klebsormidium sp.; Stigeoclonium sp.
Affenzeller, M. J., Darehshouri, A., Andosch, A., Lütz, C. and Lütz-Meindl, U. (2009): Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. Journal of Experimental Botany, 60(3): 939-954. doi: 10.1093/jxb/ern348
Anandraj, A., White, S., Naidoo, D. and Mutanda, T. (2020): Monitoring the acclimatization of a Chlorella sp. From freshwater to hypersalinity using photosynthetic parameters of pulse amplitude modulated fluorometry. Bioresource Technology, 309: 123380. doi: 10.1016/ j.biortech.2020.123380
Bartolomé, M. C., D´ors, A. and Sánchez-Fortún, S. (2009): Toxic effects induced by salt stress on selected freshwater prokaryotic and eukaryotic microalgal species. Ecotoxicology, 18: 174-179. doi: 10.1007/s10646-008-0269-y
Bazzani, E., Lauritano, C., Mangoni, O., Bolinesi, F. and Saggiomo, M. (2021): Chlamydomonas responses to salinity stress and possible biotechnological exploitation. Journal of Marine Science and Engineering, 9: 1242. doi: 10.3390/jmse9111242
Borchhardt, N., Gründling-Pfaff, S. (2020): Ecophysiological response against temperature in Klebsormidium (Streptophyta) strains isolated from biological soil crusts of Arctic and Antarctica indicate survival during global warming. Frontiers in Ecology and Evolution, 8: 153. doi: 10.3389/fevo.2020.00153
Donner, A., Glaser, K., Borchhardt, N. and Karsten, U. (2017): Ecophysiological response on dehydration and temperature in terrestrial Klebsormidium (Streptophyta) isolated from biological soil crusts in Central European grasslands and forests. Microbial Ecology, 73(4): 850-864. doi: 10.1007/s00248-016-0917-3
Elster, J., Degma, P., Kováčik, Ľ., Valentová, L., Šramková, K. and Batista Pereira, A. (2008): Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the Antarctic, Arctic and Slovakia. Biologia, 63 (6): 843-851. doi: 10.2478/s11756-008-0111-2
Endo, T., Schreiber, U. and Asada, K. (1995): Suppression of quantum yield of photosystem II by hyperosmotic stress in Chlamydomonas reinhardtii. Plant and Cell Physiology, 36(7): 1253-1258. doi: 10.1093/oxfordjournals.pcp.a078883
Haitz, M., Lichtenthaler, H. K (1988): The measurement of Rfd-values as plant vitality indices with the portable field chlorophyll fluorometer and the PAM-fluorometer. In: H. K. Lichtenthaler (ed.): Applications of Chlorophyll Fluorescence, pp. 249–254. Kluwer Academic Publishers.
Hinojosa-Vidal, E., Marco, F., Martínez-Alberola, F., Escaray, F. J., García-Breijo, F., Reig-Armiñana, J., Carrasco, P. and Barreno, E. (2018): Characterization of the responses to saline stress in the symbiotic green microalga Trebouxia sp. TR9. Planta, 248: 1473-1486.
Hniličková, H., Hnilička, F., Martinková, J. and Kraus, K. (2017): Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant, Soil and Environment, 63: 362-367. doi: 10.17221/398/2017-PSE
Holzinger, A., Pichrtová, M. (2016): Abiotic stress tolerance of Charophyte green algae: New challenges for omics techniques. Frontiers in Plant Science, 7: 678. doi: 10.3389/fpls.2016. 00678
Hounslow, E., Evans, C. A., Pandhal, J., Sydney, T., Couto, N., Pham, T. K., Gilmour, D. J. and Wright, P. C. (2021): Quantitative proteomic comparison of salt stress in Chlamydomonas reinhardtii and the snow alga Chlamydomonas nivalis reveals mechanisms for salt-triggered fatty acid accumulation via reallocation of carbon resources. Biotechnology for Biofuels, 14: 121. doi: 10.1186/s13068-021-01970-6
Hu, J., Jin, L., Wang, X., Cai, W., Liu, Y. and Wang, G. (2014): Response of photosynthetic systems to salinity stress in the desert cyanobacterium Scytonema javanicum. Advances in Space Research, 53(1): 30-36.
Kalaji, M. H., Rutkowska, A. (2004): Reactions of photosynthetic apparatus of maize seedlings to salt stress. Zeszyty Problemowe Postepow Nauk Rolniczych, 496: 545-558.
Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestič, M., Zivcak, M., Samborska, I. A., Cetner, M. D., Łukasik, I., Goltsev, V. and Ladle, R.J. (2016): Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38: 102. doi: 10.1007/s11738-016-2113-y
Kaplan, F., Lewis, L. A., Herburger, K. and Holzinger, A. (2013). Osmotic stress in the arctic and antarctic green alga Zygnema sp. (Zygnemtales, Streptophyta): Effects on photosynthesis and ultrastructure. Micron, 44: 317-330. doi: 10.1016/j.micron.2012.08.004
Kaur, M., Saini, K. C., Ojah, H., Sahoo, R., Gupta, K., Kumar, A. and Bast, F. (2022): Abiotic stress in algae: Response, signaling and transgenic approaches. Journal of Applied Phycology, 34: 1843-1869. doi: 10.1007/s10811-022-02746-7
Komárek, J., Elster, J. and Komárek, O. (2008): Diversity of the cyanobacterial microflora ofthe northern part of James Ross Island, NW Weddell Sea, Antarctica. Polar Biology, 31: 853-865.
Kumar, V., Mondal, S., Gupta, A., Maurya, P. K., Sinha, R. P., Häder, D. and Singh, S. P. (2021): Light-dependent impact of salinity on the ecophysiology of Synechococcus elongatus PCC 7942: Genetic and comparative protein structure analyses of UV-absorbing mycosporine-like amino acids (MAAs) biosynthesis. Environmental and Experimental Botany, 191: 104620.
León, R., Galván, F. (1994): Halotolerance studies on Chlamydomonas reinhardtii: Glycerol excretion by free and immobilized cells. Journal of Applied Phycology, 6: 13-20.
Liang, Y., Sun, M., Rian, C., Cao, C. and Li, Z. (2014): Effects of salinity stress on the growth and chlorophyll fluorescence of Phaeodactylum tricornutum and Chaetoceros gracilis (Bacillariophyceae). Botanica Marina, 57(6): 469-476.
Liu, F., Pang, S. J. (2010): Stress tolerance and antioxidant enzymatic activities in the metabolisms of the reactive oxygen species in two intertidal red algae Grateloupia turuturu and Palmaria palmata. Journal of Experimental Marine Biology and Ecology, 382: 82-87.
Lu, C.-M., Vonshak, A. (2002): Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologia Plantarum, 114: 405-413.
Lu, C.-M., Zhang, J.-H. (1999): Effects of salt stress on PSII function and photoinhibition in the cyanobacterium Spirulina platensis. Journal of Plant Physiology, 155: 740-745.
Marečková, M., Barták, M. (2016): Effects of short-term low temperature stress on chlorophyll fluorescence transients in Antarctic lichen species. Czech Polar Reports, 6(1): 54-65.
Masojídek, J., Koblížek, M. and Torzillo, G. (2000): Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp. grown under nitrogen deficiency and salinity stress. Journal of Applied Phycology, 12(3): 417-426.
Neale, P. J., Melis, A. (1989): Salinity-stress enhances photoinhibition of photosynthesis in Chlamydomonas reinhardtii. Journal of Plant Physiology, 134: 619-622.
Nedbalová, L., Nývlt, D., Kopáček, J., Čobr, M. and Elster, J. (2013): Freshwater lakes of Ulu Peninsula, James Ross Island, north-east Antarctic Peninsula: Origin, geomorphology and physical and chemical limnology. Antarctic Science, 25(3): 358-372.
Neelam, S., Subramanyam, R. (2013): Alteration of photochemistry and protein degradation of photosystem II from Chlamydomonas reinhardtii under high salt grown cells. Journal of Photochemistry and Photobiology. B, Biology, 124: 63-70.
Oláh, V., Hepp, A., Irfan, M. and Mészáros, I. (2021): Chlorophyll fluorescence imaging-based duckweed phenotyping to assess acute phytotoxic effects. Plants (Basel), 10(12): 2763. doi: 10.3390/plants10122763.
Orekhova, A., Barták, M., Özkar, A. and Elster, J. (2019): The effect of shock freezing on physiological properties and consequent growth of Antarctic filamentous (Stigeoclonium sp.) and coccal alga (Diplosphaera chodatii) on agar plates. Czech Polar Reports, 9: 37-48.
Piratru, L., Perreault, F., Chu, F.L., Oukarroum, A., Sleno, L., Popovic, R. and Dewez, D. (2012): Long-term stress induced by nitrate deficiency, sodium chloride, and high light on photosystem II activity and carotenogenesis of green alga Scenedesmus sp. Botany, 90: 1007-1014.
Reynoso, G. T., de Gamboa, B. A. (1982): Salt tolerance in the freshwater algae Chlamydomonas reinhardii: Effect of proline and taurine. Comparative Biochemistry and Physiology Part A: Physiology, 73: 95-99.
Rindi, F., Guiry, M. D. and López-Bautista, J. M. (2008): Distribution, morphology, and phylogeny of Klebsormidium (Klebsormidiales, Charophyceae) in urban environments in Europe. Journal of Phycology, 44: 1529-1540. doi: 10.1111/j.1529-8817.2008.00593.x
Sheety, P., Gitau, M. M. and Maróti, G. (2019): Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells, 8: 1657. doi: 10.3390/cells8121657
Shin, Y. K., Bhandari, S. R., Jo, J. S., Song, J. W., Cho, M. C., Yang, E. Y. and Lee, J. G. (2020): Response to salt stress in lettuce: Changes in chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities. Agronomy, 10: 1627. doi: 10.3390/agronomy 10111627.
Shin, Y. K., Bhandari, S. R. and Lee, J. G. (2021): Monitoring of salinity, temperature, and drought stress in grafted watermelon seedlings using chlorophyll fluorescence. Frontiers in Plant Science, 12: 786309. doi: 10.3389/fpls.2021.786309
Škaloud, P. (2006): Variation and taxonomic significance of some morphological features in European strains of Klebsormidium (Klebsormidiophyceae, Streptophyta). Nova Hedwigia, 83: 533-550.
Subramanyam, R., Jolley, C., Thangaraj, B., Nellaepalli, S., Webber, A. N. and Fromme, P. (2010): Structural and functional changes of PSI-LHCI supercomplexes of Chlamydomonas reinhardtii cells grown under high salt conditions. Planta, 231: 913-922.
Stirbet, A., Riznichenko, G. Yu., Rubin, A. B. and Govindjee (2014): Modeling chlorophyll a fluorescence transient: Relation to photosynthesis. Biochemistry (Moscow), 79: 291-323.
Strasser, R. J., Srivastava, A. and Tsimilli-Michael, M. (2000): The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: M. Yunus, U. Pathre, P. Mohanty (eds.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. CRC Press, New York 2000, pp. 445–483.
Stamenković, M., Hanelt, D. (2014): Sensitivity of photosynthesis to UV radiation in sensitivity of photosynthesis to UV radiation in several Cosmarium strains (Zygnematophyceae, Streptophyta) is related to their geographic distribution. Photochemical & Photobiological Sciences, 13: 1066-1081. doi: 10.1039/c3pp50192b
Teronpi, H., Baruah, P. P. and Deka, H. (2021): Salinity stress as a critical factor to trigger lipid accumulation in a freshwater microalga Lobochlamys sp. GUEco1006. Biologia, 12: 3647-3658.
Vilumbrales, D., Skácelová, K. and Barták, M. (2013): Sensitivity of Antarctic freshwater algae to salt stress assessed by fast chlorophyll fluorescence transient. Czech Polar Reports, 3: 163-172.
Zhang, T., Gong, H., Wen, X. and Lu, C. (2010): Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis. Journal of Plant Physiology, 167: 951-958.
Zuo, Z., Chen, Z., Zhu, Y., Bai, Y. and Wang, Y. (2014): Effects of NaCl and Na2CO3 stresses on photosynthetic ability of Chlamydomonas reinhardtii. Biologia, 69: 1314-1322.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2022 Czech Polar Reports