Interspecific differences in desiccation tolerance of selected Antarctic lichens: Analysis of photosystem II effectivity and quenching mechanisms
Vol.12,No.1(2022)
chlorophyll fluorescence; drought stress; James Ross Island; Nelson Island; primary photosynthetic processes
Backhaus, T., De la Torre, R., Lyhme, K., De Vera, J. and Meeßen, J. (2015): Desiccation and low temperature attenuate the effect of UVC254 nm in the photobiont of the astrobiologically relevant lichens Circinaria gyrosa and Buellia frigida. International Journal of Astrobiology, 14(3): 479-488. doi: 10.1017/S1473550414000470
Balarinová, K., Barták, M., Hazdrová, J., Hájek, J. and Jílková, J. (2014): Changes in photosynthesis, pigment composition and glutathione contents in two Antarctic lichens during a light stress and recovery. Photosynthetica, 52(4): 538-547.
Barták, M., Hájek, J., Orekhova, A., Villagra, J., Marín, C., Palfner, G. and Casanova-Katny, A. (2021): Inhibition of primary photosynthesis in desiccating antarctic lichens differing in their photobionts, thallus morphology, and spectral properties. Microorganisms, 9(4): 818. doi: 10.3390/microorganisms9040818
Barták, M., Hájek, J., Vráblíková, H. and Dubová, J. (2004): High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione. Plant Biology, 6: 333-341.
Barták, M., Váczi, P., Hájek, J. and Smykla, J. (2007): Low-temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria elegans. Polar Biology, 31(1): 47-51.
Barták, M., Vráblíková, H. and Hájek, J. (2003): Sensitivity of photosystem 2 of Antarctic lichens to high irradiance stress: Fluorometric study of fruticose (Usnea antarctica) and foliose (Umbilicaria decussata) species. Photosynthetica, 41(4): 497-504.
Barták, M., Hájek, J., Morkusová, J., Skácelová, K. and Košuthová, A. (2018): Dehydration-induced changes in spectral reflectance indices and chlorophyll fluorescence of Antarctic lichens with different thallus color, and intrathalline photobiont. Acta Physiologiae Plantarum, 40: 177. doi: 10.1007/s11738-018-2751-3
Becket, R. P., Marschall, M. and Laufer, Z. (2005): Hardening enhances photoprotection in the moss Atrichum androgynum during rehydration by increasing fast- rather than slow-relaxing quenching. Journal of Bryology, 27(1): 7-12. doi: 10.1179/174328205X40536
Bednaříková, M., Váczi, P., Lazár, D. and Barták, M. (2020a): Photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum when affected by desiccation and low temperatures. Photosynthesis Research, 145(2): 159-177. doi: 10.1007/s11120-020-00773-4
Bednaříková, M., Folgar-Cameán, Y., Kučerová, Z., Lazár, D., Špundová, M., Hájek, J. and Barták, M. (2020b): Analysis of K-and L-band appearance in OJIPs in Antarctic lichens in low and high temperature. Photosynthetica, 58(SI): 646-656.
Beltrán-Sanz, N., Raggio, J., Gonzalez, S., Dal Grande, F., Prost, S., Green, A., Pintado, A. and Sancho, L. G. (2022): Climate change leads to higher NPP at the end of the century in the Antarctic Tundra: Response patterns through the lens of lichens. The Science of the Total Environment, 835: 155495. doi: 10.1016/j.scitotenv.2022.155495
Cho, S. M., Lee, H., Hong, S. G. and Lee, J. (2020): Study of ecophysiological responses of the antarctic fruticose lichen Cladonia borealis using the PAM fluorescence system under natural and laboratory conditions. Plants (Basel), 9(1): 85. doi: 10.3390/plants9010085
Colesie, C., Büdel, B., Hurry, V. and Green, T. G. A. (2018): Can Antarctic lichens acclimatize to changes in temperature? Global Change Biology, 24(3): 1123-1135. doi: 10.1111/gcb.13984
Green, T. G. A., Sancho, L. G. and Pintado, A. (2011): Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: U. Luttge, E. Beck, D. Bartels (eds.): Plant Desiccation Tolerance. Springer: Berlin/Heidelberg, Germany, pp. 89–120.
Guéra, A., Gasulla, F. and Barreno, E. (2016): Formation of photosystem II reaction centers that work as energy sinks in lichen symbiotic Trebouxiophyceae microalgae. Photosynthesis Research, 128: 15-33. doi: 10.1007/s11120-015-0196-8
Hájek, J., Barták, M., Hazdrová, J. and Forbelská, M. (2016): Sensitivity of photosynthetic processes to freezing temperature in extremophilic lichens evaluated by linear cooling and chlorophyll fluorescence. Cryobiology, 73(3): 329-334.
Hájek, J., Hojdová, A., Trnková, K., Váczi, P., Bednaříková, M. and Barták, M. (2021): Responses of thallus anatomy and chlorophyll fluorescence-based photosynthetic characteristics of two Antarctic species of genus Usnea to low temperature. Photosynthetica, 59(1): 95-105.
Hájek, J., Váczi, P., Barták, M., Smejkal, L. and Lipavská, H. (2009): Cryoproective role of ribitol in Xanthoparmelia somloensis. Biologia Plantarum, 53(4): 677-684.
Hamerlynck, E. P., Csintalan, Z., Nagy, Z., Tuba, Z., Goodin, D. and Henebry, G. M. (2002): Ecophysiological consequences of contrasting microenvironments on the desiccation tolerant moss Tortula ruralis. Oecologia, 131(4): 498-505. doi: 10.1007/s00442-002-0925-5
Heber, U. (2008): Photoprotection of green plants: A mechanism of ultra-fast thermal energy dissipation in desiccated lichens. Planta, 228: 641-650.
Jupa, R. (2012): Interspecific differences in photosynthetic efficiency and spectral reflectance in two Umbilicaria species from Svalbard during controlled desiccation. Czech Polar Reports, 2: 31-41.
Kappen, L., Schroeter, B., Green, T. G. A. and Seppelt, R. D. (1998): Chlorophyll a fluorescence and CO2 exchange of Umbilicaria aprina under extreme light stress in the cold. Oecologia, 113(3): 325-331.
Kosugi, M., Miyake, A., Kasino, Y., Shibata, Y., Satoh, K. and Itoh, S. (2013): Lichens assist the drought-induced fluorescence quenching of their photobiont green algae through arabitol. In: Photosynthesis Research for Food, Fuel and the Future. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg, pp. 514–520. doi: 10.1007/978-3-642-32034-7_109
Kosugi, M., Maruo, F., Inoue, T., Kurosawa, N., Kawamata, A., Koike, H., Kamei, Y., Kudoh, S. and Imura, S. (2018): A comparative study of wavelength-dependent photoinactivation in photosystem II of drought-tolerant photosynthetic organisms in Antarctica and the potential risks of photoinhibition in the habitat. Annals of Botany, 122(7): 1263-1278. doi: 10.1093/aob/ mcy139
Kranner, I., Zorn, M., Turk, B., Wornik, S., Beckett, R.P. and Batič, F. (2003): Biochemical traits of lichens differing in relative desiccation tolerance. New Phytologist, 160: 167-176. doi: 10.1046/j.1469-8137.2003.00852.x
Marečková, M., Barták, M. and Hájek, J. (2019): Temperature effects on photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum: A chlorophyll fluorescence study. Polar Biology, 42(4): 685-701.
Mishra, K. B., Vítek, P. and Barták, M. (2019): A correlative approach, combining chlorophyll a fluorescence, reflectance, and Raman spectroscopy, for monitoring hydration induced changes in Antarctic lichen Dermatocarpon polyphyllizum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 208: 13-23.
Nayaka, S., Saxena, P. (2014): Physiological responses and ecological success of lichen Stereocaulon foliolosum and moss Racomitrium subsecundum growing in same habitat in Himalaya. Indian Journal of Fundamental and Applied Life Sciences, 4: 167-179.
Pannewitz, S., Green, T., Schlensog, M., Seppelt, R., Sancho, L. and Schroeter, B. (2006): Photosynthetic performance of Xanthoria mawsonii C. W. Dodge in coastal habitats, Ross Sea region, continental Antarctica. The Lichenologist, 38(1): 67-81. doi: 10.1017/S0024282905005 384
Proctor, M. C. F., Ligrone, R. and Duckett, J. G. (2007): Desiccation tolerance in the moss Polytrichum formosum: Physiological and fine-structural changes during desiccation and recovery. Annals of Botany, 99(6): 1243. doi: 10.1093/aob/mcm098
Proctor, M. C., Smirnoff, N. (2000): Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: chlorophyll fluorescence and inhibitor experiments. Journal of Experimental Botany, 51(351): 1695-704. doi: 10.1093/jexbot/51.351.1695
Raggio, J., Green, T. G. A. and Sancho, L. G. (2016): In situ monitoring of microclimate and metabolic activity in lichens from Antarctic extremes: A comparison between South Shetland Islands and the McMurdo Dry Valleys. Polar Biology, 39(1): 113-122.
Ruchika, Csintalan, Z. and Péli, E. R. (2020): Effect of salicylic acid pre-treatment after long-term desiccation in the moss Syntrichia ruralis (Hedw.) Web. and Mohr. Plants (Basel), 9(9): 1097. doi: 10.3390/plants9091097.
Sadowsky, A., Ott, S. (2012): Photosynthetic symbionts in Antarctic terrestrial ecosystems: The physiological response of lichen photobionts to drought and cold. Symbiosis, 58(1): 81-90.
Sancho, L., De Los Ríos, A., Pintado, A., Colesie, C., Raggio, J., Ascaso, C. and Green, A. (2020): Himantormia lugubris, an Antarctic endemic on the edge of the lichen symbiosis. Symbiosis, 82(1): 49-58.
Sass, L., Csintalan, Z., Tuba, Z. and Vass I. (1996): Thermoluminescence studies on the function of Photosystem II in the desiccation tolerant lichen Cladonia convoluta. Photosynthesis Research, 48(1-2): 205-212. doi: 10.1007/BF00041010
Schroeter, B., Green, T. A., Pannewitz, S., Schlensog, M. and Sancho, L. G. (2010): Fourteen degrees of latitude and a continent apart: Comparison of lichen activity over two years at continental and maritime Antarctic sites. Antarctic Science, 22(6): 681-690.
Schroeter, B., Green, T. G., Pintado, A., Türk, R. and Sancho, L. G. (2021): Summer activity patterns for a moss and lichen in the maritime Antarctic with respect to altitude. Polar Biology, 44(11): 2117-2137.
Slavov, C., Reus, M. and Holzwarth, A. R. (2013): Two different mechanisms cooperate in the desiccation-induced excited state quenching in Parmelia lichen. The Journal of Physical Chemistry B, 117(38): 11326-11336. doi: 10.1021/jp402881f
Smith, V. R., Gremmen, N. J. M. (2001): Photosynthesis in a sub-Antarctic shore-zone lichen. New Phytologist, 149(2): 291-299.
Tuba, Z., Csintalan, Z. and Proctor, M. C. F. (1996): Photosynthetic responses of a moss, Tortula ruralis, ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: A baseline study at present-day CO2 concentration. New Phytologist, 133(2): 353-361. doi: 10.1111/j.1469-8137. 1996.tb01902.x
Wieners, P. C., Mudimu, O. and Bilger, W. (2012): Desiccation-induced non-radiative dissipation in isolated green lichen algae. Photosynthesis Research, 113: 239-247.
Williams, L., Borchhardt, N., Colesie, C., Baum, C., Komsic-Buchmann, K., Rippin, M., Becker, B., Karsten, U. and Büdel, B. (2017): Biological soil crusts of Arctic Svalbard and of Livingston Island, Antarctica. Polar Biology, 40: 399-411. doi: 10.1007/s00300-016-1967-1
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2022 Czech Polar Reports