Interspecific differences in desiccation tolerance of selected Antarctic lichens: Analysis of photosystem II effectivity and quenching mechanisms

Vol.12,No.1(2022)

Abstract
Lichens can survive and cope with unsufficient water supply resulting in low intrathalline relative water content. Under such conditions, photosynthesis is negatively affected by different degree of dehydration. In our study, fully hydrated samples of Xanthoria elegans, Umbilicaria decussata and Usnea aurantiaco-atra were light-acclimated and during following desiccation from a fully hydrated to dry state, steady-state chlorophyll fluorescence (FS), effective quantum yield of photochemical processes in PSII (ФPSII), and nonphotochemical quenching (qN) were measured in response to decreasing relative water content (RWC). The three experimental lichen species showed a high desiccation tolerance. The desiccation-induced decrease in ФPSII was found in X. elegans, U. decussata and U. aurantiaco-atra, at the RWC values below 30%. This is well comparable to the evidence reached in other Arctic / Antarctic lichen species. Interspecific differences in desiccation tolerance of these selected Antarctic lichens, based on the analysis of photosystem II effectivity and quenching mechanisms, were described and discussed.

Keywords:
chlorophyll fluorescence; drought stress; James Ross Island; Nelson Island; primary photosynthetic processes
References

Backhaus, T., De la Torre, R., Lyhme, K., De Vera, J. and Meeßen, J. (2015): Desiccation and low temperature attenuate the effect of UVC254 nm in the photobiont of the astrobiologically relevant lichens Circinaria gyrosa and Buellia frigida. International Journal of Astrobiology, 14(3): 479-488. doi: 10.1017/S1473550414000470

Balarinová, K., Barták, M., Hazdrová, J., Hájek, J. and Jílková, J. (2014): Changes in photosynthesis, pigment composition and glutathione contents in two Antarctic lichens during a light stress and recovery. Photosynthetica, 52(4): 538-547.

Barták, M., Hájek, J., Orekhova, A., Villagra, J., Marín, C., Palfner, G. and Casanova-Katny, A. (2021): Inhibition of primary photosynthesis in desiccating antarctic lichens differing in their photobionts, thallus morphology, and spectral properties. Microorganisms, 9(4): 818. doi: 10.3390/microorganisms9040818

Barták, M., Hájek, J., Vráblíková, H. and Dubová, J. (2004): High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione. Plant Biology, 6: 333-341.

Barták, M., Váczi, P., Hájek, J. and Smykla, J. (2007): Low-temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria elegans. Polar Biology, 31(1): 47-51.

Barták, M., Vráblíková, H. and Hájek, J. (2003): Sensitivity of photosystem 2 of Antarctic lichens to high irradiance stress: Fluorometric study of fruticose (Usnea antarctica) and foliose (Umbilicaria decussata) species. Photosynthetica, 41(4): 497-504.

Barták, M., Hájek, J., Morkusová, J., Skácelová, K. and Košuthová, A. (2018): Dehydration-induced changes in spectral reflectance indices and chlorophyll fluorescence of Antarctic lichens with different thallus color, and intrathalline photobiont. Acta Physiologiae Plantarum, 40: 177. doi: 10.1007/s11738-018-2751-3

Becket, R. P., Marschall, M. and Laufer, Z. (2005): Hardening enhances photoprotection in the moss Atrichum androgynum during rehydration by increasing fast- rather than slow-relaxing quenching. Journal of Bryology, 27(1): 7-12. doi: 10.1179/174328205X40536

Bednaříková, M., Váczi, P., Lazár, D. and Barták, M. (2020a): Photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum when affected by desiccation and low temperatures. Photosynthesis Research, 145(2): 159-177. doi: 10.1007/s11120-020-00773-4

Bednaříková, M., Folgar-Cameán, Y., Kučerová, Z., Lazár, D., Špundová, M., Hájek, J. and Barták, M. (2020b): Analysis of K-and L-band appearance in OJIPs in Antarctic lichens in low and high temperature. Photosynthetica, 58(SI): 646-656.

Beltrán-Sanz, N., Raggio, J., Gonzalez, S., Dal Grande, F., Prost, S., Green, A., Pintado, A. and Sancho, L. G. (2022): Climate change leads to higher NPP at the end of the century in the Antarctic Tundra: Response patterns through the lens of lichens. The Science of the Total Environment, 835: 155495. doi: 10.1016/j.scitotenv.2022.155495

Cho, S. M., Lee, H., Hong, S. G. and Lee, J. (2020): Study of ecophysiological responses of the antarctic fruticose lichen Cladonia borealis using the PAM fluorescence system under natural and laboratory conditions. Plants (Basel), 9(1): 85. doi: 10.3390/plants9010085

Colesie, C., Büdel, B., Hurry, V. and Green, T. G. A. (2018): Can Antarctic lichens acclimatize to changes in temperature? Global Change Biology, 24(3): 1123-1135. doi: 10.1111/gcb.13984

Green, T. G. A., Sancho, L. G. and Pintado, A. (2011): Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: U. Luttge, E. Beck, D. Bartels (eds.): Plant Desiccation Tolerance. Springer: Berlin/Heidelberg, Germany, pp. 89–120.

Guéra, A., Gasulla, F. and Barreno, E. (2016): Formation of photosystem II reaction centers that work as energy sinks in lichen symbiotic Trebouxiophyceae microalgae. Photosynthesis Research, 128: 15-33. doi: 10.1007/s11120-015-0196-8

Hájek, J., Barták, M., Hazdrová, J. and Forbelská, M. (2016): Sensitivity of photosynthetic processes to freezing temperature in extremophilic lichens evaluated by linear cooling and chlorophyll fluorescence. Cryobiology, 73(3): 329-334.

Hájek, J., Hojdová, A., Trnková, K., Váczi, P., Bednaříková, M. and Barták, M. (2021): Responses of thallus anatomy and chlorophyll fluorescence-based photosynthetic characteristics of two Antarctic species of genus Usnea to low temperature. Photosynthetica, 59(1): 95-105.

Hájek, J., Váczi, P., Barták, M., Smejkal, L. and Lipavská, H. (2009): Cryoproective role of ribitol in Xanthoparmelia somloensis. Biologia Plantarum, 53(4): 677-684.

Hamerlynck, E. P., Csintalan, Z., Nagy, Z., Tuba, Z., Goodin, D. and Henebry, G. M. (2002): Ecophysiological consequences of contrasting microenvironments on the desiccation tolerant moss Tortula ruralis. Oecologia, 131(4): 498-505. doi: 10.1007/s00442-002-0925-5

Heber, U. (2008): Photoprotection of green plants: A mechanism of ultra-fast thermal energy dissipation in desiccated lichens. Planta, 228: 641-650.

Jupa, R. (2012): Interspecific differences in photosynthetic efficiency and spectral reflectance in two Umbilicaria species from Svalbard during controlled desiccation. Czech Polar Reports, 2: 31-41.

Kappen, L., Schroeter, B., Green, T. G. A. and Seppelt, R. D. (1998): Chlorophyll a fluorescence and CO2 exchange of Umbilicaria aprina under extreme light stress in the cold. Oecologia, 113(3): 325-331.

Kosugi, M., Miyake, A., Kasino, Y., Shibata, Y., Satoh, K. and Itoh, S. (2013): Lichens assist the drought-induced fluorescence quenching of their photobiont green algae through arabitol. In: Photosynthesis Research for Food, Fuel and the Future. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg, pp. 514–520. doi: 10.1007/978-3-642-32034-7_109

Kosugi, M., Maruo, F., Inoue, T., Kurosawa, N., Kawamata, A., Koike, H., Kamei, Y., Kudoh, S. and Imura, S. (2018): A comparative study of wavelength-dependent photoinactivation in photosystem II of drought-tolerant photosynthetic organisms in Antarctica and the potential risks of photoinhibition in the habitat. Annals of Botany, 122(7): 1263-1278. doi: 10.1093/aob/ mcy139

Kranner, I., Zorn, M., Turk, B., Wornik, S., Beckett, R.P. and Batič, F. (2003): Biochemical traits of lichens differing in relative desiccation tolerance. New Phytologist, 160: 167-176. doi: 10.1046/j.1469-8137.2003.00852.x

Marečková, M., Barták, M. and Hájek, J. (2019): Temperature effects on photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum: A chlorophyll fluorescence study. Polar Biology, 42(4): 685-701.

Mishra, K. B., Vítek, P. and Barták, M. (2019): A correlative approach, combining chlorophyll a fluorescence, reflectance, and Raman spectroscopy, for monitoring hydration induced changes in Antarctic lichen Dermatocarpon polyphyllizum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 208: 13-23.

Nayaka, S., Saxena, P. (2014): Physiological responses and ecological success of lichen Stereocaulon foliolosum and moss Racomitrium subsecundum growing in same habitat in Himalaya. Indian Journal of Fundamental and Applied Life Sciences, 4: 167-179.

Pannewitz, S., Green, T., Schlensog, M., Seppelt, R., Sancho, L. and Schroeter, B. (2006): Photosynthetic performance of Xanthoria mawsonii C. W. Dodge in coastal habitats, Ross Sea region, continental Antarctica. The Lichenologist, 38(1): 67-81. doi: 10.1017/S0024282905005 384

Proctor, M. C. F., Ligrone, R. and Duckett, J. G. (2007): Desiccation tolerance in the moss Polytrichum formosum: Physiological and fine-structural changes during desiccation and recovery. Annals of Botany, 99(6): 1243. doi: 10.1093/aob/mcm098

Proctor, M. C., Smirnoff, N. (2000): Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: chlorophyll fluorescence and inhibitor experiments. Journal of Experimental Botany, 51(351): 1695-704. doi: 10.1093/jexbot/51.351.1695

Raggio, J., Green, T. G. A. and Sancho, L. G. (2016): In situ monitoring of microclimate and metabolic activity in lichens from Antarctic extremes: A comparison between South Shetland Islands and the McMurdo Dry Valleys. Polar Biology, 39(1): 113-122.

Ruchika, Csintalan, Z. and Péli, E. R. (2020): Effect of salicylic acid pre-treatment after long-term desiccation in the moss Syntrichia ruralis (Hedw.) Web. and Mohr. Plants (Basel), 9(9): 1097. doi: 10.3390/plants9091097.

Sadowsky, A., Ott, S. (2012): Photosynthetic symbionts in Antarctic terrestrial ecosystems: The physiological response of lichen photobionts to drought and cold. Symbiosis, 58(1): 81-90.

Sancho, L., De Los Ríos, A., Pintado, A., Colesie, C., Raggio, J., Ascaso, C. and Green, A. (2020): Himantormia lugubris, an Antarctic endemic on the edge of the lichen symbiosis. Symbiosis, 82(1): 49-58.

Sass, L., Csintalan, Z., Tuba, Z. and Vass I. (1996): Thermoluminescence studies on the function of Photosystem II in the desiccation tolerant lichen Cladonia convoluta. Photosynthesis Research, 48(1-2): 205-212. doi: 10.1007/BF00041010

Schroeter, B., Green, T. A., Pannewitz, S., Schlensog, M. and Sancho, L. G. (2010): Fourteen degrees of latitude and a continent apart: Comparison of lichen activity over two years at continental and maritime Antarctic sites. Antarctic Science, 22(6): 681-690.

Schroeter, B., Green, T. G., Pintado, A., Türk, R. and Sancho, L. G. (2021): Summer activity patterns for a moss and lichen in the maritime Antarctic with respect to altitude. Polar Biology, 44(11): 2117-2137.

Slavov, C., Reus, M. and Holzwarth, A. R. (2013): Two different mechanisms cooperate in the desiccation-induced excited state quenching in Parmelia lichen. The Journal of Physical Chemistry B, 117(38): 11326-11336. doi: 10.1021/jp402881f

Smith, V. R., Gremmen, N. J. M. (2001): Photosynthesis in a sub-Antarctic shore-zone lichen. New Phytologist, 149(2): 291-299.

Tuba, Z., Csintalan, Z. and Proctor, M. C. F. (1996): Photosynthetic responses of a moss, Tortula ruralis, ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: A baseline study at present-day CO2 concentration. New Phytologist, 133(2): 353-361. doi: 10.1111/j.1469-8137. 1996.tb01902.x

Wieners, P. C., Mudimu, O. and Bilger, W. (2012): Desiccation-induced non-radiative dissipation in isolated green lichen algae. Photosynthesis Research, 113: 239-247.

Williams, L., Borchhardt, N., Colesie, C., Baum, C., Komsic-Buchmann, K., Rippin, M., Becker, B., Karsten, U. and Büdel, B. (2017): Biological soil crusts of Arctic Svalbard and of Livingston Island, Antarctica. Polar Biology, 40: 399-411. doi: 10.1007/s00300-016-1967-1

Metrics

web of science logo


222

Views

240

PDF views