Unsupervised learning for detection of possible sexual dimorphism in larvae of Belgica antarctica Jacobs (Diptera, Chironomidae)
Vol.12,No.1(2022)
Antarctic midge; polar insect; sexual dimorphism; Antarctic Peninsula; head capsule; morphometry
Ajayi, O. M., Gantz, J. D., Finch, G., Lee, R. E., Denlinger, D. L. and Benoit, J. B. (2021): Rapid stress hardening in the Antarctic midge improves male fertility by increasing courtship success and preventing decline of accessory gland proteins following cold exposure. Journal of Experimental Biology, 224(14): jeb242506. doi: 10.1242/jeb.242506
Allegrucci, G., Carchini, G., Convey, P. and Sbordoni, V. (2012): Evolutionary geographic relationships among orthocladine chironomid midges from maritime Antarctic and sub-Antarctic islands. Biological Journal of the Linnean Society, 106(2): 258-274. doi: 10.1111/j.1095-8312. 2012.01864.x
Atchley, W. (1971): Components of Sexual Dimorphism in Chironomus Larvae (Diptera: Chironomidae). The American Naturalist, 105(945): 455-466. doi: 10.1086/282737
Atchley, W. R., Davis, B. L. (1979): Chromosomal Variability in the Antarctic Insect, Belgica antarctica (Diptera: Chironomidae). Annals of the Entomological Society of America, 72(2): 246-252. doi: 10.1093/aesa/72.2.246
Atchley, W. R., Hilburn, L. R. (1979): Morphometric variability in larvae of the Antarctic fly, Belgica antarctica (Diptera: Chironomidae). Canadian Journal of Zoology, 57(12): 2311-2318. doi: 10.1139/z79-300
Atchley, W. R., Martin, J. (1971): A morphometric analysis of differential sexual dimorphism in larvae of Chironomus (Diptera). Canadian Entomologist, 103(3): 319-327. doi: 10.4039/ Ent103319-3
Benbow, M. E. (2008): Role of larval sexual dimorphism, biased sex ratios, and habitat on the energetics of a tropical chironomid. Environmental Entomology, 37(5): 1162-1173. doi: 10.1093/ee/37.5.1162
Benítez, H. A., Sukhodolskaya, R. A., Órdenes-Clavería, R., Avtaeva, T. A., Kushalieva, S. A. and Saveliev, A. A. (2020): Measuring the inter and intraspecific sexual shape dimorphism and body shape variation in generalist ground beetles in Russia. Insects, 11(6): 361. doi: 10.3390/insects11060361
Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E. and Denlinger, D. L. (2009): Dehydration-induced cross tolerance of Belgica antarctica larvae to cold and heat is facilitated by trehalose accumulation. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 152(4): 518-523. doi: 10.1016/j.cbpa.2008.12.009
Blanckenhorn, W. U. (2007): Case studies of the differential-equilibrium hypothesis of sexual size dimorphism in two dung fly species. In: D. J. Fairbairn, W. U. Blanckenhorn, T. Szekely (eds.): Sex, size and gender roles: evolutionary studies of sexual size dimorphism. Oxford University Press, Oxford, UK, pp. 106–114. doi: 10.5167/uzh-19273
Chown, S. L., Convey, P. (2016): Antarctic Entomology. Annual Review of Entomology, 61: 119-137. doi: 10.1146/annurev-ento-010715-023537
Convey, P., Block, W. (1996): Antarctic Diptera: Ecology, physiology and distribution. European Journal of Entomology, 93(1): 1-13.
Esperk, T., Tammaru, T., Nylin, S. and Teder, T. (2007): Achieving high sexual size dimorphism in insects: Females add instars. Ecological Entomology, 32(3): 243-256. doi: 10.1111/j.1365-2311.2007.00872.x
Fathinia, B., Rastegar-Pouyani, N., Darvishnia, H., Mohamadi, H. and Faizi, H. (2012): Sexual size dimorphism in Rana (Pelophylax) ridibunda ridibunda Pallas, 1771 from a population in Darr-Shahr Township, Ilam Province, western Iran. Amphibian and Reptile Conservation, 5(1): 92-97 (e44).
Finch, G., Nandyal, S., Perretta, C., Nandyal, S., Rosendale, A., Holmes, C., Gantz, J. D., Spacht, D. E., Bailey, S. T., Chen, X., Oyen, K., Didion, E. M., Chakraborty, S., Lee, R. E., Denlinger, D. L., Matter, S. F., Attardo, G. M., Weirauch, M. T. and Benoit, J. B. (2020): Multi-level analysis of reproduction in an Antarctic midge identifies female and male accessory gland products that are altered by larval stress and impact progeny viability. Scientific Reports, 10: 19791. doi: 10.1038/s41598-020-76139-6
Harada, E., Lee, R. E., Denlinger, D. and Goto, S. (2014): Life history traits of adults and embryos of the Antarctic midge Belgica antarctica. Polar Biology, 37(8): 1213-1217. doi: 10.1007/s00300-014-1511-0
Hartigan, J. A., Wong, M. A. (1979): A K-Means Clustering Algorithm. Applied Statistics, 28(1): 100-108. doi: 10.2307/2346830
Jolliffe, I. T. (2002): Principal Component Analysis, 2nd ed. Springer-Verlag, New York, USA, 2002, 488 p. doi: 10.1007/b98835
Kawarasaki, Y., Teets, N. M., Philip, B. N., Potts, L. J., Gantz, J. D., Denlinger, D. L. and Lee, R. E. (2019): Characterization of drought-induced rapid cold-hardening in the Antarctic midge, Belgica antarctica. Polar Biology, 42(6): 1147-1156. doi: 10.1007/s00300-019-02503-6
Kelley, J. L., Peyton, J. T., Fiston-Lavier, A. S., Teets, N. M., Yee, M. C., Johnston, J. S., Bustamante, C. D., Lee, R. E. and Denlinger, D. L. (2014): Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nature Communications, 5: 4611. doi: 10.1038/ncomms5611
Kovalenko, P., Trokhymets, V., Parnikoza, I., Protsenko, Yu., Salganskiy, O., Dzhulai, A., Dykyy, I., Nabokin, M., Kozeretska, I. and Gorobchyshyn, V. (2021): Current status of Belgica antarctica Jacobs, 1900 (Diptera: Chironomidae) distribution by the data of Ukrainian Antarctic Expeditions. Ukrainian Antarctic Journal, 2: 76-93. doi: 10.33275/1727-7485.2.2021.679
Kozeretska, I., Serga, S., Kovalenko, P., Gorobchyshyn, V. and Convey, P. (2022): Belgica antarctica (Diptera: Chironomidae): A natural model organism for extreme environments. Insect Science, 29(1): 2-20. doi: 10.1111/1744-7917.12925
Laiolo, P., Illera, J. and Obeso, J. (2013): Data from: Local climate determines intra- and interspecific variation in sexual size dimorphism in mountain grasshopper communities. Dryad, Dataset. doi: 10.5061/dryad.c5097
Michailova, P., Ilkova, J., Kovalenko, P., Dzhulai, A. and Kozeretska, I. (2021a): Long-term retainment of some chromosomal inversions in a local population of Belgica antarctica Jacobs (Diptera, Chironomidae). Czech Polar Reports, 11(1): 16-24. doi: 10.5817/CPR2021-1-3
Michailova, P., Ilkova, J., Kovalenko, P. A., Gorobchyshyn, V. A., Kozeretska, I. A. and Convey, P. (2021b): External morphology of larvae of Belgica antarctica Jacobs, 1900 (Diptera, Chironomidae) obtained from two locations in Maritime Antarctica. Insects, 12(9): 792. doi: 10.3390/insects12090792
Parnikoza, I., Rozhok, A., Convey, P., Veselski, M., Esefeld, J., Ochyra, R., Mustafa, O., Braun, C., Peter, H.-U., Smykla, J., Kunakh, V. and Kozeretska, I. (2018): Spread of Antarctic vegetation by the kelp gull: comparison of two maritime Antarctic regions. Polar Biology, 41(6): 1143-1155. doi: 10.1007/s00300-018-2274-9
Peckham, V. (1971): Notes on the chironomid midge Belgica antarctica Jacobs at Anvers Island in the Maritime Antarctic. Pacific Insects Monograph, 25: 145-166.
Potts, L. J., Gantz, J. D., Kawarasaki, Y., Philip, B. N., Gonthier, D. J., Law, A. D., Moe, L., Unrine, J. M., McCulley, R. L., Lee Jr., R. E., Denlinger, D. L. and Teets, N. M. (2020): Environmental factors influencing fine-scale distribution of Antarctica’s only endemic insect. Oecologia, 194(4): 529-539. doi: 10.1007/s00442-020-04714-9
Shui, W., Zhou, M., Maddock, S., He, T., Wang, X. and Deng, Q. (2017): A PCA-Based method for determining craniofacial relationship and sexual dimorphism of facial shapes. Computers in Biology and Medicine, 90: 33-49. doi: 10.1016/j.compbiomed.2017.08.023
Spacht, D. E., Gantz, J. D., Devlin, J. J., Lee Jr., R. E., Denlinger, D. L. and Teets, N. M. (2021): Fine-scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect. Oecologia, 197(2): 373-385. doi: 10.1007/s00442-021-05035-1
Stillwell, R. C., Blanckenhorn, W. U., Teder, T., Davidowitz, G. and Fox, C. W. (2010): Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution. Annual Review of Entomology, 55: 227-245. doi: 10.1146/annurev-ento-112408-085500
Stillwell, R. C., Fox, C. W. (2007): Environmental effects on sexual size dimorphism of a seed-feeding beetle. Oecologia, 153(2): 273-280. doi: 10.1007/s00442-007-0724-0
Sugg, P., Edwards, J. S. and Baust, J. (1983): Phenology and life history of Belgica antarctica, an Antarctic midge (Diptera: Chironomidae). Ecological Entomology, 8(1): 105-113. doi: 10.1111/j.1365-2311.1983.tb00487.x
Teder, T., Tammaru, T. (2005): Sexual size dimorphism within species increases with body size in insects. Oikos, 108(2): 321-334. doi: 10.1111/j.0030-1299.2005.13609.x
Usher, M. B., Edwards, M. (1984): A dipteran from south of the Antarctic Circle: Belgica antarctica (Chironomidae), with a description of its larvae. Biological Journal of the Linnean Society, 23(1): 19-31. doi: 10.1111/j.1095-8312.1984.tb00803.x
Vea, I. M., Wilcox A., Frankino, W. A. and Shingleton, A. W. (2021): Sex-specific plasticity explains genetic variation in sexual size dimorphism in Drosophila. bioRxiv, Article 448738. doi: 10.1101/2021.06.16.448738
Wülker, W., Götz, P. (1968): Die Verwendung der Imaginalscheiben zur Bestimmung des Entwicklungszustandes von Chironomus-Larven (Dipt.). Zeitschrift für Morphologie der Tiere, 62(4): 363-388. (In German). doi: 10.1007/BF00401562
Xue, J., Lee, C., Wakeham, S. and Armstrong, R. (2011): Using principal components analysis (PCA) with cluster analysis to study the organic geochemistry of sinking particles in the ocean. Organic Geochemistry, 42(4): 356-367. doi: 10.1016/j.orggeochem.2011.01.012
Yoshida, M., Lee, R. E., Denlinger, D. L. and Goto, S. G. (2021): Expression of aquaporins in response to distinct dehydration stresses that confer stress tolerance in the Antarctic midge Belgica antarctica. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 256: 110928. doi: 10.1016/j.cbpa.2021.110928
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2022 Czech Polar Reports