An exploratory study of short-term camping in Antarctica: Hormonal and mood states changes

Vol.11,No.2(2021)

Abstract

Long-term Antarctic expedition’s studies indicated harmful or positive behavioral and psychophysiological adaptive changes that arise from adversities in isolated, confined, and extreme environments. Whereas most of the published studies focused on overwintering situations, most Brazilian Antarctic Program summer expeditions consist of short-term stays. We evaluated the influence of a permanence in Antarctic short-term (13-day) summer camp on the hormonal responses and mood states in eight volunteers. Data collection was carried out at the beginning (initial measure, days 3 to 5) and the end (final measurement, days 10 to 12) of the camping. Morning and evening samples of saliva were obtained to measure the testosterone and cortisol concentrations. Morning blood drops were used to determine thyroid-stimulating hormone (TSH) and thyroxine (T4) concentration. The volunteers also answered a mood states questionnaire. During the short-term camp, T4 (3.92 ± 0.75 vs 2.21 ± 0.71 μg.dL-1) and T4/TSH (3.16 ± 0.97 vs 1.79 ± 0.74 AU) reduced, without concomitant changes in TSH (1.28 ± 0.17 vs 1.30 ± 0.09 μU.mL-1), and salivary cortisol increased (2,392 ± 1,153 vs 4,440 ± 1,941 pg.mL-1) resulting in greater cortisol amplitude (calculated from the difference between morning and evening measurement, 1,400 ± 1,442 vs 3,230 ± 2,046). In men, testosterone increased as well (26.2 ± 12.5 vs 67.8 ± 45.8, all differences with P<0.05). There was a moderate effect in mood states evidenced by increased anger and fatigue, and reduced vigor. At the end of the camp, the change in cortisol correlated with anger, and the final cortisol values with anger and tension. We concluded that staying in a short-term summer camp in Antarctica induced endocrine and mood state changes, indicators of stress reaction.


Keywords:
confinement; isolation; expedition; neuroendocrine; polar; stress
References

Anton-Solanas, A., O'Neill, B. V., Morris, T. E. and Dunbar, J. (2016): Physiological and cognitive responses to an Antarctic expedition: A case report. International Journal of Sports Physiology and Performance, 11(8): 1053-1059. https://doi.org/10.1123/ijspp.2015-0611

Atterwill, C. K. (1981): Effect of acute and chronic tri-iodothyronine (T3) administration to rats on central 5-HT and dopamine-mediated behavioural responses and related brain biochemistry. Neuropharmacology, 20(2): 131-144. https://doi.org/10.1016/0028-3908(81)90195-7

Bartone, P. T., Krueger, G. P. and Bartone, J. V. (2018): Individual differences in adaptability to isolated, confined, and extreme environments. Aerospace Medicine and Human Performance, 89(6): 536-546. https://doi.org/10.3357/AMHP.4951.2018

Bauer, M., Whybrow, P. C. (2001): Thyroid hormone, neural tissue and mood modulation. The world journal of biological psychiatry. The official journal of the World Federation of Societies of Biological Psychiatry, 2(2): 59-69. https://doi.org/10.3109/15622970109027495

Bauer, M., Goetz, T., Glenn, T. and Whybrow, P. C. (2008): The thyroid-brain interaction in thyroid disorders and mood disorders. Journal of Neuroendocrinology, 20(10): 1101-1114. https://doi.org/10.1111/j.1365-2826.2008.01774.x

Bauer, M., Heinz, A. and Whybrow, P. C. (2002): Thyroid hormones, serotonin and mood: Of synergy and significance in the adult brain. Molecular Psychiatry, 7(2): 140-156. https://doi.org/10.1038/sj.mp.4000963

Belanoff, J. K., Gross, K., Yager, A. and Schatzberg, A. F. (2001): Corticosteroids and cognition. Journal of Psychiatric Research, 35(3): 127-145. https://doi.org/10.1016/S0022-3956(01)00018-8

Bianco, A. C., Nunes, M. T., Hell, N. S. and Maciel, R. M. (1987): The role of glucocorticoids in the stress-induced reduction of extrathyroidal 3,5,3'-triiodothyronine generation in rats. Endocrinology, 120(3): 1033-1038. https://doi.org/10.1210/endo-120-3-1033

Blanco, S., Domínguez, J., Jiménez, O., Sánchez, D., Galí, N., Matas, L., Ausina, V. and Galimany, R. (2003): Evaluation of the automatic ELISA Triturus analyser. Journal of Automated Methods & Management in Chemistry, 25(2): 31-34. https://doi.org/10.1155/S1463924603000051

Brillon, D. J., Zheng, B., Campbell, R. G. and Matthews, D. E. (1995): Effect of cortisol on energy expenditure and amino acid metabolism in humans. The American Journal of Physiology, 268(3 Pt 1): E501-E513. https://doi.org/10.1152/ajpendo.1995.268.3.E501

Brown, E. S. (2009): Effects of glucocorticoids on mood, memory, and the hippocampus. Annals of the New York Academy of Sciences, 1179(1): 41-55. https://doi.org/10.1111/j.1749-6632.2009.04981.x

Carrozza, C., Corsello, S. M., Paragliola, R. M., Ingraudo, F., Palumbo, S., Locantore, P., Sferrazza, A., Pontecorvi, A. and Zuppi, C. (2010): Clinical accuracy of midnight salivary cortisol measured by automated electrochemiluminescence immunoassay method in Cushing's syndrome. Annals of Clinical Biochemistry, 47(Pt 3): 228-232. https://doi.org/10.1258/acb.2010.010020

Chrousos, G. P., Gold, P. W. (1992): The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA, 267(9): 1244-1252. https://doi.org/10.1001/jama.1992.03480090092034

Crewther, B. T., Kilduff, L. P. and Cook, C. J. (2014): Trained and untrained males show reliable salivary testosterone responses to a physical stimulus, but not a psychological stimulus. Journal of Endocrinological Investigation, 37(11): 1065-1072. https://doi.org/10.1007/s40618-014-0144-z

Cumming, D. C., Quigley, M. E. and Yen, S. S. (1983): Acute suppression of circulating testosterone levels by cortisol in men. The Journal of Clinical Endocrinology and Metabolism, 57(3): 671-673. https://doi.org/10.1210/jcem-57-3-671

Dickerson, S. S., Kemeny, M. E. (2004): Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3): 355-391. https://doi.org/10.1037/0033-2909.130.3.355

Do, N. V., LeMar, H. and Reed, H. L. (1996): Thyroid hormone responses to environmental cold exposure and seasonal change: A proposed model. Endocrinology and Metabolism, 3: 7-16.

Durdiaková, J., Fábryová, H., Koborová, I., Ostatníková, D. and Celec, P. (2013): The effects of saliva collection, handling and storage on salivary testosterone measurement. Steroids, 78(14): 1325-1331. https://doi.org/10.1016/j.steroids.2013.09.002

Farrace, S., Cenni, P., Tuozzi, G., Casagrande, M., Barbarito, B. and Peri, A. (1999): Endocrine and psychophysiological aspects of human adaptation to the extreme. Physiology & Behavior, 66(4): 613-620. https://doi.org/10.1016/S0031-9384(98)00341-2

Garde, A. H., Hansen, A. M. (2005): Long-term stability of salivary cortisol. Scandinavian Journal of Clinical and Laboratory Investigation, 65(5): 433-436. https://doi.org/10.1080/00365510510025773

Gagnon, D. D., Pullinen, T., Karinen, H., Rintamäki, H. and Kyröläinen, H. (2011): Recovery of hormonal, blood lipid, and hematological profiles from a North Pole expedition. Aviation, Space, and Environmental Medicine, 82(12): 1110-1117. https://doi.org/10.3357/ASEM.3016.2011

Gavhed, D., Mäkinen, T., Holmér, I. and Rintamäki, H. (2000): Face temperature and cardiorespiratory responses to wind in thermoneutral and cool subjects exposed to -10 degrees C. European Journal of Applied Physiology, 83(4-5): 449-456. https://doi.org/10.1007/s004210000262

Ghasemi, A., Zahediasl, S. (2021): Normality tests for statistical analysis: A guide for non-statisticians. International Journal of Endocrinology & Metabolism, 10(2): 486-489. https://doi.org/10.5812/ijem.3505

Hargreaves K. M. (1990): Neuroendocrine markers of stress. Anesthesia Progress, 37(2-3): 99-105.

Harinath, K., Malhotra, A. S., Pal, K., Prasad, R., Kumar, R. and Sawhney, R. C. (2005): Autonomic nervous system and adrenal response to cold in man at Antarctica. Wilderness & Environmental Medicine, 16(2): 81-91. https://doi.org/10.1580/PR30-04.1

Hassi, J., Sikkilä, K., Ruokonen, A. and Leppäluoto, J. (2001): The pituitary-thyroid axis in healthy men living under subarctic climatological conditions. The Journal of Endocrinology, 169(1): 195-203. https://doi.org/10.1677/joe.0.1690195

Helmreich, D. L., Parfitt, D. B., Lu, X. Y., Akil, H. and Watson, S. J. (2005): Relation between the hypothalamic-pituitary-thyroid (HPT) axis and the hypothalamic-pituitary-adrenal (HPA) axis during repeated stress. Neuroendocrinology, 81(3): 183-192. https://doi.org/10.1159/000087001

Hidal, J. T., Kaplan, M. M. (1988): Inhibition of thyroxine 5'-deiodination type II in cultured human placental cells by cortisol, insulin, 3', 5'-cyclic adenosine monophosphate, and butyrate. Metabolism: Clinical and Experimental, 37(7): 664-668. https://doi.org/10.1016/0026-0495(88)90087-X

Hill, E. E., Zack, E., Battaglini, C., Viru, M., Viru, A. and Hackney, A. C. (2008): Exercise and circulating cortisol levels: the intensity threshold effect. Journal of Endocrinological Investigation, 31(7): 587-591. https://doi.org/10.1007/BF03345606

Iwen, K. A., Backhaus, J., Cassens, M., Waltl, M., Hedesan, O. C., Merkel, M., Heeren, J., Sina, C., Rademacher, L., Windjäger, A., Haug, A. R., Kiefer, F. W., Lehnert, H. and Schmid, S. M. (2017): Cold-induced brown adipose tissue activity alters plasma fatty acids and improves glucose metabolism in men. The Journal of Clinical Endocrinology and Metabolism, 102(11): 4226-4234. https://doi.org/10.1210/jc.2017-01250

Izawa, S., Kim, K., Akimoto, T., Ahn, N., Lee, H. and Suzuki, K. (2009): Effects of cold environment exposure and cold acclimatization on exercise-induced salivary cortisol response. Wilderness & Environmental Medicine, 20(3): 239-243. https://doi.org/10.1580/07-WEME-OR-123R2.1

Jackson, A. S., Pollock, M. L. (1978): Generalized equations for predicting body density of men. The British Journal of Nutrition, 40(3): 497-504. https://doi.org/10.1079/BJN19780152

Kakucska, I., Qi, Y. and Lechan, R. M. (1995): Changes in adrenal status affect hypothalamic thyrotropin-releasing hormone gene expression in parallel with corticotropin-releasing hormone. Endocrinology, 136(7): 2795-2802. https://doi.org/10.1210/endo.136.7.7789304

Kanikowska, D., Roszak, M., Rutkowski, R., Sato, M., Sikorska, D., Orzechowska, Z., Bręborowicz, A. and Witowski, J. (2019): Seasonal differences in rhythmicity of salivary cortisol in healthy adults. Journal of Applied Physiology, 126(3): 764-770. https://doi.org/10.1152/japplphysiol.00972.2018

Köhrle J. (2000): Thyroid hormone metabolism and action in the brain and pituitary. Acta Medica Austriaca, 27(1): 1-7. https://doi.org/10.1046/j.1563-2571.2000.00101.x

Kovaničová, Z., Kurdiová, T., Baláž, M., Štefanička, P., Varga, L., Kulterer, O. C., Betz, M. J., Haug, A. R., Burger, I. A., Kiefer, F. W., Wolfrum, C., Ukropcová, B. and Ukropec, J. (2020): Cold exposure distinctively modulates parathyroid and thyroid hormones in cold-acclimatized and non-acclimatized humans. Endocrinology, 161(7): bqaa051. https://doi.org/10.1210/endocr/bqaa051

Kraemer, W. J. (1988): Endocrine responses to resistance exercise. Medicine and Science in Sports and Exercise, 20(5 Suppl): S152-S157. https://doi.org/10.1249/00005768-198810001-00011

Kritz-Silverstein, D., Schultz, S. T., Palinska, L. A., Wingard, D. L. and Barrett-Connor, E. (2009): The association of thyroid stimulating hormone levels with cognitive function and depressed mood: The Rancho Bernardo study. The Journal of Nutrition, Health & Aging, 13(4): 317-321. https://doi.org/10.1007/s12603-009-0029-6

Kulikov, A., Moreau, X. and Jeanningros, R. (1999): Effects of experimental hypothyroidism on 5-HT1A, 5-HT2A receptors, 5-HT uptake sites and tryptophan hydroxylase activity in mature rat brain1. Neuroendocrinology, 69(6): 453-459. https://doi.org/10.1159/000054449

Larsen, J. K., Faber, J., Christensen, E. M., Bendsen, B. B., Solstad, K., Gjerris, A. and Siersbaek-Nielsen, K. (2004): Relationship between mood and TSH response to TRH stimulation in bipolar affective disorder. Psychoneuroendocrinology, 29(7): 917-924. https://doi.org/10.1016/j.psyneuen.2003.08.004

LeBlanc, J., Blais, B., Barabé, B. and Côté, J. (1976): Effects of temperature and wind on facial temperature, heart rate, and sensation. Journal of Applied Physiology, 40(2): 127-131. https://doi.org/10.1152/jappl.1976.40.2.127

Leppäluoto, J., Korhonen, I., Huttunen, P. and Hassi, J. (1988): Serum levels of thyroid and adrenal hormones, testosterone, TSH, LH, GH and prolactin in men after a 2-h stay in a cold room. Acta Physiologica Scandinavica, 132(4): 543-548. https://doi.org/10.1111/j.1748-1716.1988.tb08363.x

Leproult, R., Colecchia, E. F., L'Hermite-Balériaux, M. and Van Cauter, E. (2001): Transition from dim to bright light in the morning induces an immediate elevation of cortisol levels. The Journal of Clinical Endocrinology and Metabolism, 86(1): 151-157. https://doi.org/10.1210/jc.86.1.151

Magalhães, P., Miranda, C. H., Vilar, F. C., Schmidt, A., Bittar, R. R., Paixão, G., Martinez, E. Z. and Maciel, L. (2018): Effects of drying and storage conditions on the stability of TSH in blood spots. Archives of Endocrinology and Metabolism, 62(2): 201-204. https://doi.org/10.20945/2359-3997000000026

Manousou, S., Andersson, M., Eggertsen, R., Hunziker, S., Hulthén, L. and Nyström, H. F. (2020): Iodine deficiency in pregnant women in Sweden: A national cross-sectional study. European Journal of Nutrition, 59(6): 2535-2545. https://doi.org/10.1007/s00394-019-02102-5

Martí, O., Gavaldà, A., Jolín, T. and Armario, A. (1996): Acute stress attenuates but does not abolish circadian rhythmicity of serum thyrotrophin and growth hormone in the rat. European Journal of Endocrinology, 135(6): 703-708. https://doi.org/10.1530/eje.0.1350703

Moraes, M. M., Bruzzi, R. S., Martins, Y., Mendes, T. T., Maluf, C. B., Ladeira, R., Núñez-Espinosa, C., Soares, D. D., Wanner, S. P. and Arantes, R. (2020): Hormonal, autonomic cardiac and mood states changes during an Antarctic expedition: From ship travel to camping in Snow Island. Physiology & Behavior, 224: 113069. https://doi.org/10.1016/j.physbeh.2020.113069

Moraes, M. M., Mendes, T. T., Martins, Y., Espinosa, C. N., Maluf, C. B., Soares, D. D., Wanner, S. P. and Arantes, R. (2018): The changes in maximal oxygen uptake (V̊O2MAX) induced by physical exertion during an Antarctic expedition depend on the initial V̊O2MAX of the individuals: a case study of the Brazilian expedition. International Journal of Circumpolar Health, 77(1): 1521244. https://doi.org/10.1080/22423982.2018.1521244

Mullur, R., Liu, Y. Y. and Brent, G. A. (2014): Thyroid hormone regulation of metabolism. Physiological Reviews, 94(2): 355-382. https://doi.org/10.1152/physrev.00030.2013

Musson, D. M., Sandal, G. M., Harper, M. L. and Helmreich, R. L. (2002): Personality testing in Antarctic expeditioners: Cross cultural comparisons and evidence for generalizability. IAF abstracts, 34th COSPAR Scientific Assembly.

O'Brien, C., Castellani, J. W. and Sawka, M. N. (2011): Thermal face protection delays finger cooling and improves thermal comfort during cold air exposure. European Journal of Applied Physiology, 111(12): 3097-3105. https://doi.org/10.1007/s00421-011-1931-2

Pääkkönen, T., Leppäluoto, J. (2002): Cold exposure and hormonal secretion: A review. International Journal of Circumpolar Health, 61(3): 265-276. https://doi.org/10.3402/ijch.v61i3.17474

Palinkas, L. A., Johnson, J. C., Boster, J. S., Rakusa-Suszczewski, S., Klopov, V. P., Fu, X. Q. and Sachdeva, U. (2004): Cross-cultural differences in psychosocial adaptation to isolated and confined environments. Aviation, Space, and Environmental Medicine, 75(11): 973-980.

Palinkas, L. A., Keeton, K. E., Shea, C. and Leveton, L. B. (2011): Psychosocial characteristics of optimum performance in isolated and confined environments. NASA Report TM-2011-216149. Hanover, MD: NASA.

Palinkas, L. A., Suedfeld, P. (2008): Psychological effects of polar expeditions. Lancet (London, England), 371(9607): 153-163. https://doi.org/10.1016/S0140-6736(07)61056-3

Palinkas, L. A., Reed, H. L., Reedy, K. R., Do, N. V., Case, H. S. and Finney, N. S. (2001): Circannual pattern of hypothalamic-pituitary-thyroid (HPT) function and mood during extended Antarctic residence. Psychoneuroendocrinology, 26(4): 421-431. https://doi.org/10.1016/S0306-4530(00)00064-0

Palinkas, L. A., Reedy, K. R., Shepanek, M., Smith, M., Anghel, M., Steel, G. D., Reeves, D., Case, H. S., Do, N. V. and Reed, H. L. (2007): Environmental influences on hypothalamic-pituitary-thyroid function and behavior in Antarctica. Physiology & Behavior, 92(5): 790-799. https://doi.org/10.1016/j.physbeh.2007.06.008

Pattyn, N., Mairesse, O., Cortoos, A., Marcoen, N., Neyt, X. and Meeusen, R. (2017): Sleep during an Antarctic summer expedition: New light on "polar insomnia". Journal of Applied Physiology (Bethesda, Md.: 1985): 122(4): 788-794. https://doi.org/10.1152/japplphysiol.00606.2016

Re, R. N., Kourides, I. A., Ridgway, E. C., Weintraub, B. D. and Maloof, F. (1976): The effect of glucocorticoid administration on human pituitary secretion of thyrotropin and prolactin. The Journal of Clinical Endocrinology and Metabolism, 43(2): 338-346. https://doi.org/10.1210/jcem-43-2-338

Reed, H. L., Reedy, K. R., Palinkas, L. A., Van Do, N., Finney, N. S., Case, H. S., LeMar, H. J., Wright, J. and Thomas, J. (2001): Impairment in cognitive and exercise performance during prolonged Antarctic residence: Effect of thyroxine supplementation in the polar triiodothyronine syndrome. The Journal of Clinical Endocrinology and Metabolism, 86(1): 110-116. https://doi.org/10.1210/jc.86.1.110

Reed, H. L., Silverman, E. D., Shakir, K. M., Dons, R., Burman, K. D. and O'Brian, J. T. (1990): Changes in serum triiodothyronine (T3) kinetics after prolonged Antarctic residence: The polar T3 syndrome. The Journal of Clinical Endocrinology and Metabolism, 70(4): 965-974. https://doi.org/10.1210/jcem-70-4-965

Russell, G., Lightman, S. (2019): The human stress response. Nature Reviews. Endocrinology, 15(9): 525-534. https://doi.org/10.1038/s41574-019-0228-0

Sandal, G. M., Leon, G. R. and Palinkas, L. (2006): Human challenges in polar and space environments. Reviews in Environmental Science and Bio/Technology, 5: 281-296. https://doi.org/10.1007/s11157-006-9000-8

Scheer, F. A., Buijs, R. M. (1999): Light affects morning salivary cortisol in humans. The Journal of Clinical Endocrinology and Metabolism, 84(9): 3395-3398. https://doi.org/10.1210/jcem.84.9.6102

Schwabe, L., Haddad, L. and Schachinger, H. (2008): HPA axis activation by a socially evaluated cold-pressor test. Psychoneuroendocrinology, 33(6): 890-895. https://doi.org/10.1016/j.psyneuen.2008.03.001

Silva, J. E. (2001): The multiple contributions of thyroid hormone to heat production. The Journal of Clinical Investigation, 108(1): 35-37. https://doi.org/10.1172/JCI200113397

Silva, J. E. (1995): Thyroid hormone control of thermogenesis and energy balance. Thyroid: official journal of the American Thyroid Association, 5(6): 481-492. https://doi.org/10.1089/thy.1995.5.481

Simmons, P. S., Miles, J. M., Gerich, J. E. and Haymond, M. W. (1984): Increased proteolysis. An effect of increases in plasma cortisol within the physiologic range. The Journal of Clinical Investigation, 73(2): 412-420. https://doi.org/10.1172/JCI111227

Steinach, M., Kohlberg, E., Maggioni, M. A., Mendt, S., Opatz, O., Stahn, A. and Gunga, H. C. (2016): Sleep quality changes during overwintering at the german Antarctic stations Neumayer II and III: The Gender Factor. PloS One, 11(2): e0150099. https://doi.org/10.1371/journal.pone.0150099

Strewe, C., Moser, D., Buchheim, J. I., Gunga, H. C., Stahn, A., Crucian, B. E., Fiedel, B., Bauer, H., Gössmann-Lang, P., Thieme, D., Kohlberg, E., Choukèr, A. and Feuerecker, M. (2019): Sex differences in stress and immune responses during confinement in Antarctica. Biology of Sex Differences, 10(1): 20. https://doi.org/10.1186/s13293-019-0231-0

Sullivan, G. M., Feinn, R. (2012): Using effect size-or why the P value is not enough. Journal of Graduate Medical Education, 4(3): 279-282. https://doi.org/10.4300/JGME-D-12-00156.1

Terry, P. C., Lane, A. M. and Fogarty, G. J. (2003): Construct validity of the POMS-A for use with adults. Psychology of Sport and Exercise, 4: 125-139. https://doi.org/10.1016/S1469-0292(01)00035-8

Terry, P. C., Lane, A. M., Lane, H. J. and Keohane, L. (1999): Development and validation of a mood measure for adolescents. Journal of Sports Sciences, 17(11): 861-872. https://doi.org/10.1080/026404199365425

Tipton, M. (2012): A case for combined environmental stressor studies. Extreme Physiology & Medicine, 1(1): 7. https://doi.org/10.1186/2046-7648-1-7

Toyoda, N., Yasuzawa-Amano, S., Nomura, E., Yamauchi, A., Nishimura, K., Ukita, C., Morimoto, S., Kosaki, A., Iwasaka, T., Harney, J. W., Larsen, P. R. and Nishikawa, M. (2009): Thyroid hormone activation in vascular smooth muscle cells is negatively regulated by glucocorticoid. Thyroid official journal of the American Thyroid Association, 19(7): 755-763. https://doi.org/10.1089/thy.2009.0044

Tsibulnikov, S., Maslov, L., Voronkov, N. and Oeltgen, P. (2020): Thyroid hormones and the mechanisms of adaptation to cold. Hormones (Athens, Greece), 19(3): 329-339. https://doi.org/10.1007/s42000-020-00200-2

Van der Spoel, E., Roelfsema, F. and van Heemst, D. (2021): Within-Person variation in serum thyrotropin concentrations: Main sources, potential underlying biological mechanisms, and clinical implications. Frontiers in Endocrinology, 12: 619568. https://doi.org/10.3389/fendo.2021.619568

Vingren, J. L., Kraemer, W. J., Ratamess, N. A., Anderson, J. M., Volek, J. S. and Maresh, C. M. (2010): Testosterone physiology in resistance exercise and training: The up-stream regulatory elements. Sports Medicine, 40(12): 1037-1053. https://doi.org/10.2165/11536910-000000000-00000

Vitale, J. A., Lombardi, G., Weydahl, A. and Banfi, G. (2018): Biological rhythms, chronodisruption and chrono-enhancement: The role of physical activity as synchronizer in correcting steroids circadian rhythm in metabolic dysfunctions and cancer. Chronobiology International, 35(9): 1185-1197. https://doi.org/10.1080/07420528.2018.1475395

Wirth, M. M., Scherer, S. M., Hoks, R. M. and Abercrombie, H. C. (2011). The effect of cortisol on emotional responses depends on order of cortisol and placebo administration in a within-subject design. Psychoneuroendocrinology, 36(7): 945-954. https://doi.org/10.1016/j.psyneuen.2010.11.010

Woods, D. R., Delves, S. K., Britland, S. E., Shaw, A., Brown, P. E., Bentley, C., Hornby, S., Burnett, A., Lanham-New, S. A. and Fallowfield, J. L. (2015): Nutritional status and the gonadotrophic response to a polar expedition. Applied Physiology, Nutrition, and Metabolism, 40(3): 292-297. https://doi.org/10.1139/apnm-2014-0418

Wright, K. P., Jr, Drake, A. L., Frey, D. J., Fleshner, M., Desouza, C. A., Gronfier, C. and Czeisler, C. A. (2015): Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain, Behavior, and Immunity, 47: 24-34. https://doi.org/10.1016/j.bbi.2015.01.004

Xu, C., Zhu, G., Xue, Q., Zhang, S., Du, G., Xi, Y. and Palinkas, L. A. (2003): Effect of the Antarctic environment on hormone levels and mood of Chinese expeditioners. International Journal of Circumpolar Health, 62(3): 255-267. https://doi.org/10.3402/ijch.v62i3.17562

Zimmer, M., Cabral, J. C. C. R., Borges, F. C., Côco, K. G. and Hameister, B. R. (2013): Psychological changes arising from an Antarctic stay: Systematic overview. Estudos de Psicologia (Campinas), 30(3): 415-423. https://doi.org/10.1590/S0103-166X2013000300011

Web sources / Other sources

[1] Zone-related website Time and Date. (2017) Livingston Island, Antarctica Sunrise, Sunset, and Daylength, January 2017 [Online]. https://www.timeanddate.com/sun/@6620723?month=1&year=2017 (Accessed: 10 October 2020).

[2] B032-312 AutoDELFIA Neonatal hTSH 2016. Instructions for use. PerkinElmer: 2016, Wallac Oy, Turku, Finland.

[3] B065-112 AutoDELFIA Neonatal Thyroxine (T4) 2016. Instructions for use. PerkinElmer: 2016, Wallac Oy, Turku, Finland.

Metrics

web of science logo


394

Views

175

PDF views