Evaluation of stabilization rate of high and low molecular organic matter in cryoconite holes from the Arctic, Antarctic and Caucasus mountain ecosystems by 13C–NMR spectroscopy

Vol.11,No.2(2021)

Abstract

Cryoconite holes are considered as a place of accumulation of organomineral matter, including black carbon. It is formed as a result of incomplete combustion of carboncontaining fragments of natural and anthropogenic origin. Such material is transported by the wind and participates in the formation of cryoconite on the ice surface. The accumulation of organic matter in cryoconite can significantly affect the climate of our planet. To assess the processes of resistance to biodegradation of organic matter in cryoconite, molecular methods of analysis were used. This work presents the qualitative and quantitative evaluation of composition of humic acids, formed in selected cryoconite holes of various geographical regions. To identify them, the 13C–NMR spectroscopy method was used, which makes it possible to reveal trends in the accumulation of specific structural fragments and the rate of stabilization of cryoconite organic matter. The analysis of the elemental composition revealed that the most condensed macromolecules of humic acids accumulate in cryoconite holes on Mount Elbrus. In the molecules of humic acids, the accumulation of aliphatic structural fragments up to 71-73% occurs to a greater extent, while the composition of the aliphatic fragments depended on local precursors of humification. In the Arctic and Antarctic ecosystems, humic acids with relatively homogeneous composition are formed. These ecosystems are characterized by the domination of moss-lichen communities, which are characterized by a predominance of lipids and carbohydrates in the chemical composition. Black carbon is an important part of the planetary carbon cycle. Under the conditions of active deglaciation, cryoconite material can enter the periglacial zone, and under the action of soil microorganisms, it can become an additional source of greenhouse gases in the atmosphere.


Keywords:
black carbon; cryoconite; deglaciation; polar region; 13C-NMR spectroscopy
References

ADDIN EN.REFLIST Abakumov, E. (2008): Content of available forms of nitrogen, potassium and phosphorus in ornithogenic and other soils of the Fildes Peninsula (King George Island, Western Antarctica). Biological Communications, 63: 109-116. https://doi.org/10.21638/spbu03.2018.203

Abakumov, E., Lodygin, E. and Tomashunas, V. (2015): 13C-NMR and ESR characterization of humic substances isolated from soils of two siberian Arctic Islands. International Journal of Ecology. Article ID 390591. 7 p. https://doi.org/10.1155/2015/390591

Abakumov, E., Maksimova, E. and Tsibart, A. (2018): Assessment of postfire soils degradation dynamics: Stability and molecular composition of humic acids with use of spectroscopy methods. Land Degradation & Development, 29: 2092-2101. https://doi.org/10.1002/ldr.2872

Abakumov, E. V., Gagarina, E. I., Sapega, V. F. and Vlasov, D. Y. (2013): Micromorphological features of the fine earth and skeletal fractions of soils of West Antarctica in the areas of Russian Antarctic stations. Eurasian Soil Science, 46: 1219-1229. https://doi.org/10.1134/S1064229313120028

Acosta Navarro, J. C., Varma, V., Riipinen, I., Seland, Ø., Kirkevåg, A., Struthers, H., Iversen, T., Hansson, H. C. and Ekman, A. M. L. (2016): Amplification of Arctic warming by past air pollution reductions in Europe. Nature Geoscience, 9: 277-281. https://doi.org/10.1038/ngeo2673

Akilan, A., Abdul Azeez, K. K., Schuh, H., Padhy, S. and Kumar Kotluri, S. (2019): Perturbations in atmospheric gaseous components over coastal Antarctica detected in GPS signals and its natural origin to volcanic eruption. Polar Science, 19: 69-76. https://doi.org/10.1016/j.polar.2018.11.009

Alexis, M. A., Rumpel, C., Knicker, H., Leifeld, J., Rasse, D., Péchot, N., Bardoux, G. and Mariotti, A. (2010): Thermal alteration of organic matter during a shrubland fire: A field study. Organic Geochemistry, 41: 690-697. https://doi.org/10.1016/j.orggeochem.2010.03.003

Amaro, E., Padeiro, A., Mão De Ferro, A., Mota, A. M., Leppe, M., Verkulich, S., Hughes, K. A., Peter, H.-U. and Canário, J. (2015): Assessing trace element contamination in Fildes Peninsula (King George Island) and Ardley Island, Antarctic. Marine Pollution Bulletin, 97: 523-527. https://doi.org/10.1016/j.marpolbul.2015.05.018

Andreae, M. O., Gelencsér, A. (2006): Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmospheric Chemistry and Physics, 6: 3131-3148. https://doi.org/10.5194/acp-6-3131-2006

Baccolo, G., Nastasi, M., Massabò, D., Clason, C., Di Mauro, B., Di Stefano, E., Łokas, E., Prati, P., Previtali, E., Takeuchi, N., Delmonte, B. and Maggi, V. (2020): Artificial and natural radionuclides in cryoconite as tracers of supraglacial dynamics: Insights from the Morteratsch glacier (Swiss Alps). Catena, 191: 104577. https://doi.org/10.1016/j.catena.2020.104577

Boike, J., Kattenstroth, B., Abramova, K., Bornemann, N., Chetverova, A., Fedorova, I., Fröb, K., Grigoriev, M., Grüber, M., Kutzbach, L., Langer, M., Minke, M., Muster, S., Piel, K., Pfeiffer, E. M., Stoof, G., Westermann, S., Wischnewski, K., Wille, C. and Hubberten, H. W. (2013): Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998-2011). Biogeosciences, 10: 2105-2128. https://doi.org/10.5194/bg-10-2105-2013

Bolshiyanov, D. Y., Sokolov, V. T., Yozhikov, I. S., Bulatov, R. K., Rachkova, A. N., Fedorov, G. B. and Paramzin, A. S. (2016): Conditions of the alimentation and the variability of glaciers of the Severnaya Zemlya Archipelago from observations of 2014–2015. Ice and Snow, 56: 358-368. https://doi.org/10.15356/2076-6734-2016-3-358-368

Bond, T. C., Bergstrom, R. W. (2006): Light absorption by carbonaceous particles: An investigative review. Aerosol Science and Technology, 40: 27-67. https://doi.org/10.1080/02786820500421521

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G. and Zender, C. S. (2013): Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118: 5380-5552. https://doi.org/10.1002/jgrd.50171

Bronnikova, M. A. (2011): Interpretation of micromorphological features of soils and regoliths. Eurasian Soil Science, 44: 824-828. https://doi.org/10.1134/S1064229311070027

Casey, K. A., Kaspari, S. D., Skiles, S. M., Kreutz, K. and Handley, M. J. (2017): The spectral and chemical measurement of pollutants on snow near South Pole, Antarctica. Journal of Geophysical Research: Atmospheres, 122: 6592-6610. https://doi.org/10.1002/2016JD026418

Celis, J. E., Barra, R., Espejo, W., González-Acuña, D. and Jara, S. (2014): Trace Element Concentrations in Biotic Matrices of Gentoo Penguins (Pygoscelis Papua) and Coastal Soils from Different Locations of the Antarctic Peninsula. Water, Air, & Soil Pollution, 226: 2266. https://doi.org/10.1007/s11270-014-2266-5

Christner, B. C., Kvitko, B. H. and Reeve, J. N. (2003): Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles, 7: 177-183. https://doi.org/10.1007/s00792-002-0309-0

Chukov, S. N., Abakumov, E. V. and Tomashunas, V. M. (2015): Characterization of humic acids from antarctic soils by nuclear magnetic resonance. Eurasian Soil Science, 48: 1207-1211. https://doi.org/10.1134/S1064229315110046

Dickens, W. A., Kuhn, G., Leng, M. J., Graham, A. G. C., Dowdeswell, J. A., Meredith, M. P., Hillenbrand, C. D., Hodgson, D. A., Roberts, S. J., Sloane, H. and Smith, J. A. (2019): Enhanced glacial discharge from the eastern Antarctic Peninsula since the 1700s associated with a positive Southern Annular Mode. Scientific Reports, 9: 14606. https://doi.org/10.1038/s41598-019-50897-4

Dziadowiec, H., Gonet, S. and Plichta, W. 1994. Properties of humic acids of Arctic tundra soils in Spitsbergen. Polish Polar Research, 15: 71.

Ejarque, E., Abakumov, E. (2016): Stability and biodegradability of organic matter from Arctic soils of Western Siberia: insights from 13C-NMR spectroscopy and elemental analysis. Solid Earth, 7: 153-165. https://doi.org/10.5194/se-7-153-2016

Feldmann, J., Levermann, A. and Mengel, M. (2019): Stabilizing the West Antarctic Ice Sheet by surface mass deposition. Science Advances, 5: 4132. https://doi.org/10.1126/sciadv.aaw4132

Flanner, M. G., Zender, C. S., Randerson, J. T. and Rasch, P. J. (2007): Present-day climate forcing and response from black carbon in snow. Journal of Geophysical Research: Atmospheres, № 112. https://doi.org/10.1029/2006JD008003

Gedgafova, F. V., Gorobtsova, O. N., Uligova, T. S., Tembotov, R. K. and Khakunova, E. M. (2019): Changes in biological activity of mountain gray forest soils of the Central Caucasus (Terskiy variant of vertical zonation within Kabardino-Balkaria) resulting from agricultural use. Eurasian Soil Science, 4: 23-30.

Groenewerg, W. J., Beunk, F. (1992): The petrography and geochemistry of the King George Island Supergroup and the Admiralty Bay Group volcanics, South Shetland Islands. In: J. Lopez-Martinez (ed.): Geologia de la Antartida Occidental, pp. 46–60. Salamanca: III Congreso Geologico de Espanay VIII Congresso Latinoamericano de Geologia.

Hara, K., Sudo, K., Ohnishi, T., Osada, K., Yabuki, M., Shiobara, M. and Yamanouchi, T. (2019): Seasonal features and origins of carbonaceous aerosols at Syowa Station, coastal Antarctica. Atmospheric Chemistry and Physics, 19: 7817-7837. https://doi.org/10.5194/acp-19-7817-2019

Hatcher, P. G., Schnitzer, M., Dennis, L. W. and Maciel, G. E. (1981): Aromaticity of humic substances in soils. Soil Science Society of America Journal, 45: 1089-1094. https://doi.org/10.2136/sssaj1981.03615995004500060016x

Hegg, D. A., Warren, S. G., Grenfell, T. C., Sarah, J. D. and Clarke, A. D. (2010): Sources of light-absorbing aerosol in arctic snow and their seasonal variation. Atmospheric Chemistry and Physics, 10: 10923-10938. https://doi.org/10.5194/acp-10-10923-2010

Khakunova, E. M., Gorobtsova, O. N., Gedgafova, F. V., Uligova, T. S. and Tembotov, R. Kh. (2018): Change in biological activity of Central Caucasus mountain Chernozems under agricultural use (within the boundaries of the Elbrus vertical zonation pattern in Kabardino-Balkaria). Eurasian Soil Science, 3: 12-18.

Knicker, H. (2007): How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry, 85: 91-118. https://doi.org/10.1007/s10533-007-9104-4

Knoblauch, C., Beer, C., Sosnin, A., Wagner, D. and Pfeiffer, E.-M. (2013): Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Global Change Biology, 19: 1160-1172. https://doi.org/10.1111/gcb.12116

Lodygin, E., Beznosikov, V. and Abakumov, E. (2017): Humic substances elemental composition of selected taiga and tundra soils from Russian European North-East. Polish Polar Research, 38: 125-147. https://doi.org/10.1515/popore-2017-0007

Lodygin, E. D., Beznosikov, V. A. (2010): The molecular structure and elemental composition of humic substances from Albeluvisols. Chemistry and Ecology, 26: 87-95. https://doi.org/10.1515/popore-2017-0007

Lodygin, E. D., Beznosikov, V. A. and Vasilevich, R. S. (2014): Molecular composition of humic substances in tundra soils (13C-NMR spectroscopic study). Eurasian Soil Science, 47: 400-406. https://doi.org/10.1134/S1064229314010074

Lupachev, A., Abakumov, E. and Gubin, S. (2017): The influence of cryogenic mass exchange on the composition and stabilization rate of soil organic matter in cryosols of the Kolyma Lowland (North Yakutia, Russia). Geosciences, 7: 24. https://doi.org/10.3390/geosciences7020024

Manousakas, M., Popovicheva, O., Evangeliou, N., Diapouli, E., Sitnikov, N., Shonija, N. and Eleftheriadis, K. (2020): Aerosol carbonaceous, elemental and ionic composition variability and origin at the Siberian High Arctic, Cape Baranova. Tellus B: Chemical and Physical Meteorology, 72: 1-14. https://doi.org/10.1080/16000889.2020.1803708

Nordli, Ø., Przybylak, R., Ogilvie, A. E. J. and Isaksen, K. (2014): Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898-2012. Polar Research, 33. https://doi.org/10.3402/polar.v33.21349

Notz, D., Stroeve, J. (2016): Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 345: 747-750. https://doi.org/10.1126/science.aag2345

Orlov, D. S. (1990): Soil humic acids and general theory humification. Mosсow, Moscov state University. 327 p.

Pengerud, A., Dignac, M.-F., Certini, G., Strand, L. T., Forte, C. and Rasse, D. P. (2017): Soil organic matter molecular composition and state of decomposition in three locations of the European Arctic. Biogeochemistry, 135: 277-292. https://doi.org/10.1007/s10533-017-0373-2

Polyakov, V., Abakumov, E. (2020a): Stabilization of organic material from soils and soil-like bodies in the Lena River Delta (13C-NMR spectroscopy analysis). Spanish Journal of Soil Science, 10: 170-190. https://doi.org/10.3232/SJSS.2020.V10.N2.05

Polyakov, V., Abakumov, E. and Mavlyudov, B. (2020b): Black carbon as a source of trace elements and nutrients in Ice Sheet of King George Island, Antarctica. Geosciences, 10. https://doi.org/10.3390/geosciences10110465

Polyakov, V., Abakumov, E. V. (2020b): Humic acids isolated from selected soils from the Russian Arctic and Antarctic: Characterization by Two-Dimensional 1H-13C HETCOR and 13C CP/Mas NMR Spectroscopy. Geosciences, 10. https://doi.org/10.3390/geosciences10010015

Polyakov, V., Zazovskaya, E. and Abakumov, E. (2019a): Molecular composition of humic substances isolated from selected soils and cryconite of the Grønfjorden area, Spitsbergen. Polish Polar Research, 40: 105.

Polyakov, V. I., Abakumov, E. V. and Tembotov, R. (2020c): Black carbon as a factor in deglaciation in polar and mountain ecosystems: A Review. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 52: 6-33. https://doi.org/10.17223/19988591/52/1

Polyakov, V. I., Chegodaeva, N. A. and Abakumov, E. V. (2019b): Molecular and elemental composition of humic acids isolated from selected soils of the Russian Arctic. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 47: 6-21. https://doi.org/10.17223/19988591/47/1

Reid, J. S., Koppmann, R., Eck, T. F. and Eleuterio, D. P. (2005): A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics, 5: 799-825. https://doi.org/10.5194/acp-5-799-2005

Rototaeva, O. V., Nosenko, G. A., Kerimov, A. M., Kutuzov, S. S., Lavrentiev, I. I., Nikitin, S. A., Kerimov, A. A. and Tarasova, L. N. (2019): Changes of the mass balance of the Garabashy Glacier, Mount Elbrus, at the turn of 20th and 21st centuries. Ice and Snow, 59. https://doi.org/10.15356/2076-6734-2019-1-5-22

Schaefer, C. E. G. R., Simas, F. N. B., Gilkes, R. J., Mathison, C., Da Costa, L. M. and Albuquerque, M. A. (2008): Micromorphology and microchemistry of selected Cryosols from maritime Antarctica. Geoderma, 144: 104-115. https://doi.org/10.1016/j.geoderma.2007.10.018

Semenov, V. M., Ivannikov, L. A. and Tulina, A. S. (2009): Stabilization of organic matter in the soil. Agrochimia, 10: 77-96.

Serreze, M. C., Holland, M. M. and Stroeve, J. (2007): Perspectives on the Arctic´s Shrinking Sea-Ice Cover. Science, 315: 1533. https://doi.org/10.1126/science.1139426

Singh, P., Tsuji, M., Singh, S. M. and Takeuchi, N. (2020): Contrasting patterns of microbial communities in glacier cryoconite of Nepali Himalaya and Greenland, Arctic. Sustainability, 12: 6477. https://doi.org/10.3390/su12166477

Stone, R. S., Sharma, S., Herber, A., Eleftheriadis, K. and Nelson, D. W. (2014): A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements. ELEMENTA - Science of the Antropocene, 000027. https://doi.org/10.12952/journal.elementa.000027

Swift, R. S. (1996): Organic matter characterization. Methods of Soil Analysis, 1011-1069. https://doi.org/10.2136/sssabookser5.3.c35

Szymański, W. (2017): Chemistry and spectroscopic properties of surface horizons of Arctic soils under different types of tundra vegetation – A case study from the Fuglebergsletta coastal plain (SW Spitsbergen). CATENA, 156: 325-337. https://doi.org/10.1016/j.catena.2017.04.024

Szymański, W., Skiba, M., Wojtuń, B. and Drewnik, M. (2015): Soil properties, micromorphology, and mineralogy of Cryosols from sorted and unsorted patterned grounds in the Hornsund area, SW Spitsbergen. Geoderma, 253-254: 1-11. https://doi.org/10.1016/j.geoderma.2015.03.029

Tunved, P., Ström, J. and Krejci, R. (2013): Arctic aerosol life cycle: Linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard. Atmospheric Chemistry and Physics, 13: 3643-3660. https://doi.org/10.5194/acp-13-3643-2013

van Krevelen, D. W. (1950): Studies of gas absorption. VI. A graphical representation for the efficiency of physical absorption. Recueil des Travaux Chimiques des Pays-Bas, 69: 503-508. https://doi.org/10.1002/recl.19500690416

Vasilevich, R., Lodygin, E., Beznosikov, V. and Abakumov, E. (2018): Molecular composition of raw peat and humic substances from permafrost peat soils of European Northeast Russia as climate change markers. Science of The Total Environment, 615: 1229-1238. https://doi.org/10.1016/j.scitotenv.2017.10.053

Vasilevich, R. S., Beznosikov, V. A. and Lodygin, E. D. (2019): Molecular structure of humus substances in permafrost peat mounds in forest-tundra. Eurasian Soil Science, 52: 283-295. https://doi.org/10.1134/S1064229319010150

Wang, M., Overland, J. E. (2009): A sea ice free summer Arctic within 30 years? Geophysical Research Letters, 36. https://doi.org/10.1029/2009GL037820

Warneke, C., Bahreini, R., Brioude, J., Brock, C. A., De Gouw, J. A., Fahey, D. W., Froyd, K. D., Holloway, J. S., Middlebrook, A., Miller, L., Montzka, S., Murphy, D. M., Peischl, J., Ryerson, T. B., Schwarz, J. P., Spackman, J. R. and Veres, P. (2009): Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophysical Research Letters, 36. https://doi.org/10.1029/2008GL036194

Zolotarev, E. A., Kharkovets, E. G. (2012): Development of glaciers of Mount Elbrus after the little ice age. Ice and Snow, 52: 15-22. https://doi.org/10.15356/2076-6734-2012-2-15-22

Zubrzycki, S., Kutzbach, L. and Pfeiffer, E. M. (2014): Permafrost-affected soils and their carbon pools with a focus on the Russian Arctic. Solid Earth, 5: 595-609. https://doi.org/10.5194/se-5-595-2014

Zwally, H. J., Li, J., Robbins, J. W., Saba, J. L., Yi, D. and Brenner, A. C. (2017): Mass gains of the Antarctic ice sheet exceed losses. Journal of Glaciology, 61: 1019-1036. https://doi.org/10.3189/2015JoG15J071

Web sources / Other sources

[1] Council, A. (2019): Expert Group on Black Carbon and Methane - Summary of Progress and Recommendations 2019.

[2] AMAP 2015. AMAP Assessment (2015): Black carbon and ozone as Arctic climate forcers. Arctic Monitoring and Assessment Programme (AMAP). Oslo, Norway.

[3] WRB, F. 2015. IUSS Working Group WRB World Reference Base for Soil Resources 2014, update 2015.

Metrics

0

Crossref logo

0

web of science logo


211

Views

142

PDF views