The drag effect of air bubbles on triple junction migration of pure ice

Vol.11,No.1(2021)

Abstract

The migration of a grain triple junction was studied on ice pure samples with bubbles at -2°C for almost 3 h. This work studies the interaction between Grain Boundary (GB) and bubbles. The evolution of the triple junction was recorded from successive photographs obtained from a LEICA® optical microscope. Simultaneously, numerical simulations of grain triple junction with mobile bubbles were carried out using Monte Carlo method with the following conditions: The bubbles in the bulk were kept immobile and those in the GB were allowed to move. In addition, mobile bubbles were forced to stay inside the GB. The simulations show that bubbles slow down the movement of the GB and of the triple junction. What’s more, the simulated triple junction obtained fits very well the experimental triple junction geometry, and the GB diffusivity values obtained coincide with those measured experimentally at the same temperature and reported by other authors. Finally, the drag effect of the mobile bubbles on the GB migration was verified.

 


Keywords:
ice; grain boundary; tricrystal; surface diffusion; Monte Carlo
References

Achával, P. I., Di Prinzio, C. L. (2018): Three-dimensional grain growth with mobile particles using Monte Carlo method. Matéria (Rio de Janeiro), 23(2). https://doi.org/10.1590/s1517-707620180002.0443

Alley, R. B., Perepezko, J. H. and Bentley, C. R. (1986a): Grain Growth in polar ice: I. Theory. Journal of Glaciology, 32(112): 415-424. https://doi.org/10.3189/S0022143000012120

Alley, R. B., Perepezko, J. H. and Bentley, C. R. (1986b): Grain Growth in polar ice: II. Application. Journal of Glaciology, 32(112): 425-433. https://doi.org/10.3189/S0022143000012132

Anderson, M. P., Srolovitz, D. J., Grest, G. S. and Sahni, P. S. (l984): Computer simulation of grain growth – I. Kinetics. Acta Metallurgica, 32(5): 783-791. https://doi.org/10.1016/0001-6160(84)90151-2

Arena, L., Nasello, O. B. and Levi, L. (1997): Effect of bubbles on grain growth in ice. The Journal of Physical Chemistry B, 101(32): 6109-6112. https://doi.org/10.1021/jp9632394

Arnaud, L., Barnola, J. M. and Duval, P. (2000): Physical modeling of the densification of snow/firn and ice in the upper part of polar ice sheets. In: T. Hondoh (ed.): Physics of Ice Core Records. Hokkaido University Press, Sapporo, pp. 285305.

Arnaud, L., Gay, M., Barnola, J. M. and Duval, P. (1998): Imaging of firn and bubbly ice in coaxial reflected light: a new technique for the characterization of these porous media. Journal of Glaciology, 44(147): 326-332. https://doi.org/10.3189/S0022143000002653

Azuma, N., Miyakoshi, T., Yokoyama, S. and Takata, M. (2012): Impeding effect of air bubbles on normal grain growth of ice. Journal of Structural Geology, 42: 184-193. https://doi.org/10.1016/j.jsg.2012.05.005

Castelnau, O., Thorsteinsson, T., Kipfstuhl, J., Duval, P. and Canova, G. R. (1996): Modelling fabric development along the GRIP ice core, central Greenland.Annals of Glaciology,23: 194-201. https://doi.org/10.3189/S0260305500013446

Choudhury, S., Jayaganthan, R. (2008): Monte Carlo simulation of grain growth in 2D and 3D bicrystals with mobile and immobile impurities.Materials Chemistry and Physics, 109(2-3): 325-333. https://doi.org/10.1016/j.matchemphys.2007.11.037

Di Prinzio, C. L., Druetta, E. and Nasello, O. B. (2013): More about Zener drag studies with Monte Carlo simulations. ModellingandSimulation in Materials Scienceand Engineering, 21(2): 025007, pp. 1-8. https://doi.org/10.1088/0965-0393/21/2/025007

Di Prinzio, C. L., Nasello, O. B. (1997): Study of grain boundary motion in ice bicrystals.The Journal of Physical Chemistry B, 101(39): 7687-7690. https://doi.org/10.1021/jp963258d

Durand, G., Weiss, J., Lipenkov, V., Barnola, J. M., Krinner, G., Parrenin, F., Delmonte, B., Ritz, C., Duval, P., Rothlisberger, R. and Bigler, M. (2006): Effect of impurities on grain growth in cold ice sheets. Journal of Geophysical Research, 111: F01015, pp. 1-18. https://doi.org/10.1029/2005JF000320

Gow, A. J. (1969): On the rate of growth of grains and crystals in south polar firn. Journal of Glaciology, 8(53): 241-252. https://doi.org/10.3189/S0022143000031233

Gow, A. J., Meese, D. A., Alley, R. B., Fitzpatrick, J. J., Anandakrishnan, S., Woods, G. A., and Elder, B. C. (1997): Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: A review.Journal of Geophysical Research: Oceans,102(C12): 26559-26575. https://doi.org/10.1029/97JC00165

Guillet, G., Preunkert, S., Ravanel, L., Montagnat, M. and Friedrich, R. (2021): Investigation of a cold-based ice apron on a high-mountain permafrost rock wall using ice texture analysis and micro-14C dating: A case study of the Triangle du Tacul ice apron (Mont Blanc massif, France). Journal of Glaciology, 1-8. https://doi.org/10.1017/jog.2021.65

Krachler, M., Zheng, J., Koerner, R., Zdanowicz, C., Fisher, D. and Shotyk, W. (2005): Increasing atmospheric antimony contamination in the northern hemisphere: snow and ice evidence from Devon Island, Arctic Canada.Journal of Environmental Monitoring,7(12): 1169-1176. https://doi.org/10.1039/b509373b

Morland, L.W. (2009): Age–depth correlation, grain growth and dislocation-density evolution, for three ice cores. Journal of Glaciology, 55(190): 345-352. https://doi.org/10.3189/002214309788608723

Nasello, O., Arena, L. E. and Levi, L. (1992a): Grain growth in pure ice, effects of mobile bubbles. In: N. Maeno and T. Hondoh (eds.): Physics and Chemistry of Ice. Hokkaido University Press, Sapporo, pp. 422427.

Nasello, O., Di Prinzio, C. L. and Levi, L. (1992b): Grain boundary migration in bicrystals of ice. In: N. Maeno and T. Hondoh (eds.):Physics and Chemistry of Ice. Hokkaido University Press, Sapporo, pp. 206–211.

Nasello, O. B., Di Prinzio, C. L. (2011): Anomalus effects of hydrostatic pressure on ice surface self-diffusion. Surface Science, 605(11-12): 1103-1105. https://doi.org/10.1016/j.susc.2011.03.014

Patterson, J. D., Saltzman, E. S. (2021): Diffusivity and solubility of H2 in ice Ih: Implications for the behavior of H2 in polar ice. Journal of Geophysical Research: Atmospheres, 126, e2020JD033840. https://doi.org/10.1029/2020JD033840

Roessiger, J., Bons, P. D. and Faria, S. H. (2014): Influence of bubbles on grain growth in ice.Journal of Structural Geology,61: 123-132. https://doi.org/10.1016/j.jsg.2012.11.003

Seltzer, A. M., Ng, J., Aeschbach, W., Kipfer, R., Kulongoski, J. T., Severinghaus, J. P. and Stute, M. (2021): Widespread six degrees Celsius cooling on land during the Last Glacial Maximum. Nature, 593(7858): 228-232. https://doi.org/10.1038/s41586-021-03467-6

Severinghaus, J. P., Brook, E.J. (1999): Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice.Science,286(5441): 930-934. https://doi.org/10.1126/science.286.5441.930

Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. and Bender, M. L. (1998): Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice.Nature,391(6663): 141-146. https://doi.org/10.1038/34346

Srolovitz, D. J., Anderson, M. P., Grest, G. S. and Sahni, P. S. (1983): Grain growth in two dimensions. Scripta Metallurgica, 17(2): 241-246. https://doi.org/10.1016/0036-9748(83)90106-0

Srolovitz, D. J., Anderson, M. P., Sahni, P. S. and Grest, G. S. (l984): Computer simulation of grain growth – II. Grain size distribution, topology, and local dynamics. Acta Metallurgica, 32(5): 793-802. https://doi.org/10.1016/0001-6160(84)90152-4

Sutton, A. P., Balluffi, R. W. (1995): Interfaces in crystalline materials. Clarendon Press. Materials Park, OH ISBN 0-198513851-2.

Metrics

web of science logo


125

Views

61

PDF views