Dataset compilation by GRASS GIS for thematic mapping of Antarctica: Topographic surface, ice thickness, subglacial bed elevation and sediment thickness

Vol.11,No.1(2021)

Abstract

This paper presents the GRASS GIS-based thematic mapping of Antarctica using scripting approach and associated datasets on topography and geophysics. The state-of-the art in cartographic development points at two important aspects. The first one comprises shell scripting promoted repeatability of the GIS technique, increased automatization in cartographic workflow, and compatibility of GRASS with Python, PROJ and GDAL libraries which enables advanced geospatial data processing: converting formats, re-projecting and spatial analysis. The second aspect is that data visualization greatly influences geologic research through improving the interpretation between the Antarctic glaciation and surface. This includes the machine learning algorithms of image classification enabling to distinguish between glacier and non-glacier surfaces through automatically partitioning data and analysis of various types of surfaces. Presented detailed maps of Antarctic include visualized datasets from the ETOPO1, GlobSed, EGM96 and Bedmap2 projects. The grids include bed and surface elevation, ETOPO1-based bathymetry and topography, bed, ice and sediment thickness, grounded bed uncertainty, subglacial bed elevation, geoid undulations, ice mask grounded and shelves. Data show the distribution of the present-day glacier, geophysical fields and topographic landforms for analysis of processes and correlations between the geophysical and geological phenomena. Advances in scripting cartography are significant contributions to the geological and glaciological research. Processing high-resolution datasets of Southern Ocean retrieved by remote sensing methods present new steps in automatization of the digital mapping, as presented in this research, and promotes comprehensive monitoring of geological, permafrost and glacial processes in Antarctica. All maps have been plotted using GRASS GIS version 7.8. with technical details of scripts described and interpreted.

 


Keywords:
Antarctic; GRASS GIS; script; cartography; mapping; topography; ETOPO1; ice shelf thickness; sedimentation; geoid; geophysics
References

Aquilina, A., Connelly, D. P., Copley, J. T., Green, D. R., Hawkes, J. A., Hepburn, L., Huvenne, V. A., Marsh, L., Mills, R. A. and Tyler, P. A. (2013): Geochemical and visual indicators of hydrothermal fluid flow through a sediment-hosted volcanic ridge in the Central Bransfield Basin (Antarctica). Plos One, 8: e54686. https://doi.org/10.1371/journal.pone.0054686

Amante, C., Eakins, B. W. (2009): ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum, 19.

Babcock, H. C. (1978): Automated cartography data formats and graphics: The ETL experience. The American Cartographer, 5(1): 21-29. https://doi.org/10.1559/152304078784023024

Bamber, J. L., Gomez-Dans, J. L. and Griggs, J. A. (2009): A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods. The Cryosphere, 3: 101-111. https://doi.org/10.5194/tc-3-101-2009

Becker, N. C. (2005): Painting by numbers: A GMT primer for merging swath-mapping sonar data of different types and resolutions. Computers & Geosciences, 31(8): 1075-1077. https://doi.org/10.1016/j.cageo.2005.02.016

Behrendt, J. C. (2013): The aeromagnetic method as a tool to identify Cenozoic magmatism in the West Antarctic Rift System beneath the West Antarctic Ice Sheet - A review; Thiel subglacial volcano as possible source of the ash layer in the WAISCORE. Tectonophysics, 585: 124-136. https://doi.org/10.1016/j.tecto.2012.06.035

Bell, J. B., Woulds, C., Brown, L. E., Little, C. T. S., Sweeting, C. J., Reid, W. D. K. and Glover, A. G. (2016): Macrofaunal ecology of sedimented hydrothermal vents in the Bransfield Strait, Antarctica. Frontiers in Marine Science, 3: 32. https://doi.org/10.3389/fmars.2016.00032

Beltran, C., Golledge, N. R., Ohneiser, C., Kowalewski, D. E., Sicre, M.-A., Hageman, K. J., Smith, R., Wilson, G. S. and Mainié, F. (2020): Southern Ocean temperature records and ice-sheet models demonstrate rapid Antarctic ice sheet retreat under low atmospheric CO2 during Marine Isotope Stage 31. Quaternary Science Reviews, 228: 106069. https://doi.org/10.1016/j.quascirev.2019.106069

Bivand, R. S. (2019): Scripting and toolbox approaches to spatial analysis in a GIS context. In: Spatial Analytical Perspectives on GIS. https://doi.org/10.1201/9780203739051-3

Bohoyo, F., Larter, R. D., Galindo-Zaldivar, J., Leat, P. T., Maldonado, A., Tate, A. J., Gowland, E. J. M., Arndt, J. E., Dorschel, B., Kim, Y. D., Hong, J. K., Flexas, M. M., Lopez-Martinez, J., Maestro, A., Bermudez, O., Nitsche, F. O., Livermore, R. A. and Riley, T. R. (2016): Bathymetry and geological setting of the Drake Passage. BAS GEOMAP 2 Series. Cambridge, British Antarctic Survey. URL: http://nora.nerc.ac.uk/515070/

Bohoyo, F., Larter, R. D., Galindo-Zaldívar, J., Leat, P. T., Maldonado, A., Tate, A. J., Flexas, M. M., Gowland, E. J. M., Arndt, J. E., Dorschel, B., Kim, Y. D., Hong, J. K., López-Martínez, J., Maestro, A., Bermúdez, O., Nitsche, F. O., Livermore, R. A. and Riley, T. R. (2019): Morphological and geological features of Drake Passage, Antarctica, from a new digital bathymetric model. Journal of Maps, 15(2): 49-59. https://doi.org/10.1080/17445647.2018.1543618

Bragagnolo, L., da Silva, R. V. and Grzybowski, J. M. V. (2020): Landslide susceptibility mapping with r.landslide: A free open-source GIS-integrated tool based on Artificial Neural Networks. Environmental Modelling & Software, 123: 104565. https://doi.org/10.1016/j.envsoft.2019.104565

Bromley, G. R. M., Hall, B. L., Stone, J. O., Conway, H. and Todd, C. E. (2010): Late cenozoic deposits at Reedy Glacier, Transantarctic Mountains: Implications for former thickness of the West Antarctic Ice Sheet. Quaternary Science Reviews, 29(3–4): 384-398. https://doi.org/10.1016/j.quascirev.2009.07.001

Brus, D. J. (2019): Sampling for digital soil mapping: A tutorial supported by R scripts. Geoderma, 338: 464–480. https://doi.org/10.1016/j.geoderma.2018.07.036

Camerlenghi, A., Domack, E., Rebesco, M., Gilbert, R., Ishman, S., Leventer, A., Brachfeld, S. and Drake, A. (2001): Glacial morphology and post-glacial contourites in northern Prince Gustav Channel (NW Weddell Sea, Antarctica). Marine Geophysical Research, 22: 417-443. https://doi.org/10.1023/A:1016399616365

Cande, S. C., Stock, J. M., Muller, R. D. and Ishihara, T. (2000): Cenozoic motion between East and West Antarctica. Nature, 404: 145-150.

Cook, A. J., Vaughan, D. G. (2010): Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere, 4: 77-98. https://doi.org/10.5194/tc-4-77-2010

Dalziel, I. W. D. (1992): Antarctica: A tale of two supercontinents? Annual Review of Earth and Planetary Sciences, 20: 501-526. https://doi.org/10.1146/annurev.ea.20.050192.002441

Divins, D. (2003): Total sediment thickness of the world’s oceans and marginal seas. NOAA National Geophysical Data Center, Boulder.

Eagles, G., Larter, R. D., Gohl, K. and Vaughan, A. P. M. (2009): West Antarctic rift system in the Antarctic Peninsula. Geophysical Research Letters, 36: L21305, https://doi.org/10.1029/2009gl040721

Flowerdew, M. J., Tyrrell, S., Riley, T. R., Whitehouse, M. J. Mulvaney, R., Leat, P. T. and Marschall, H. R. (2012): Distinguishing East and West Antarctic sediment sources using the Pb isotope composition of detrital K-feldspar. Chemical Geology, 292–293: 88-102. https://doi.org/10.1016/j.chemgeo.2011.11.006

Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C. and Zirizzotti, A. (2013): BEDMAP2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7: 375-393. https://doi.org/10.5194/tc-7-375-2013

Fretwell, P. (2012): BEDMAP 2: Progress, plans and publication. Quaternary International, 279–280(16): 151. https://doi.org/10.1016/j.quaint.2012.08.144

Gales, J. A., Leat, P. T., Larter, R. D., Kuhn, G., Hillenbrand, C.-D., Graham, A. G. C., Mitchell, N. C., Tate, A. J., Buys, G. B. and Jokat, W. (2014): Large-scale submarine landslides, channel and gully systems on the southern Weddell Sea margin, Antarctica. Marine Geology, 348: 73-87. https://doi.org/10.1016/j.margeo.2013.12.002

Gales, J. A., Larter, R. D., Leat, P. T. and Jokat, W. (2016): Components of an Antarctic trough-mouth fan: examples from the Crary Fan, Weddell Sea. Geological Society, London, Memoirs, 46: 377-378. https://doi.org/10.1144/M46.82

Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P. and Hillenbrand, C. (2007): Swath-bathymetric mapping. Reports on Polar and Marine Research, 557: 38-45. https://doi.org/10.6084/m9.figshare.7439231

Gibson, L. C., Gibson, S. and Leat, P. T. (2010): Melt production and mantle refertilisation above a subduction zone: Direct constraints from Antarctic Peninsula spinel-peridotite xenoliths. American Geophysical Union, Fall Meeting 2010, abstract id. V11F-07

Gohl, K., Eagles, G., Udintsev, G., Larter, R. D., Uenzelmann-Neben, G., Schenke, H.-W., Lemenkova, P., Grobys, J., Parsiegla, N., Schlueter, P., Deen, T., Kuhn, G. and Hillenbrand, C.-D. (2006a): Tectonic and sedimentary processes of the West Antarctic margin of the Amundsen Sea embayment and Pine Island Bay. 2nd SCAR Open Science Meeting, 12–14 July 2006, Hobart, Australia. https://doi.org/10.6084/m9.figshare.7435484


Gohl, K., Uenzelmann-Neben, G., Eagles, G., Fahl, A., Feigl, T., Grobys, J., Just, J., Leinweber, V., Lensch, N., Mayr, C., Parsiegla, N., Rackebrandt, N., Schlüter, P., Suckro, S., Zimmermann, K., Gauger, S., Bohlmann, H., Netzeband, G. and Lemenkova, P. (2006b): Crustal and sedimentary structures and geodynamic evolution of the West Antarctic continental margin and Pine Island Bay. Expeditionsprogramm Nr.75 ANT XXIII/4 ANT XXIII/5, 11–12. https://doi.org/10.13140/RG.2.2.16473.36961


Graham, A. G. C., Nitsche, F. O. and Larter, R. D. (2011): An improved bathymetry compilation for the Bellingshausen Sea, Antarctica, to inform ice-sheet and ocean models. The Cryosphere, 5: 95-106. https://doi.org/10.5194/tc-5-95-2011

Greene, C. A., Gwyther, D. E. and Blankenship, D. D. (2017): Antarctic mapping tools for matlab. Computers & Geosciences, 104: 151-157. https://doi.org/10.1016/j.cageo.2016.08.003

Griggs, J., Bamber, J. (2011): Antarctic ice-shelf thickness from satellite radar altimetry. Journal of Glaciology, 57(203): 485-498. https://doi.org/10.3189/002214311796905659

Halberstadt, A. R. W., Chorley, H., Levy, R. H., Naish, T., DeConto, R. M., Gasson, E. and Kowalewski, D. E. (2021): CO2 and tectonic controls on Antarctic climate and ice-sheet evolution in the mid-Miocene. Earth and Planetary Science Letters, 564: 116908. https://doi.org/10.1016/j.epsl.2021.116908

Hamilton, M., Wessel, P., Taylor, B. and Luis, J. (2019): Producing marine geophysical archive files from raw underway data. Computers & Geosciences, 133: 104321. https://doi.org/10.1016/j.cageo.2019.104321

Hernandez, D. (1994): Qualitative Representation of Spatial Knowledge, Berlin: Springer Verlag.

Hodgson, D. A., Jordan, T. A., De Rydt, J., Fretwell, P. T., Seddon, S. A., Becker, D., Hogan, K. A., Smith, A. M. and Vaughan, D. G. (2019): Past and future dynamics of the Brunt Ice Shelf from seabed bathymetry and ice shelf geometry. The Cryosphere, 13: 545-556. https://doi.org/10.5194/tc-13-545-2019

Hogg, A. E., Gilbert, L., Shepherd, A., Muir, A. S. and McMillan, M. (2021): Extending the record of Antarctic ice shelf thickness change, from 1992 to 2017. Advances in Space Research, 68(2): 724-731. https://doi.org/10.1016/j.asr.2020.05.030

Hogg, A. E., Shepherd, A., Cornford, S. L., Briggs, K. H., Gourmelen, N., Graham, J. A., Joughin, I., Mouginot, J., Nagler, T., Payne, A. J., Rignot, E. and Wuite, J. (2017): Increased ice flow in Western Palmer Land linked to ocean melting. Geophysical Research Letters, 44: 4159-4167. https://doi.org/10.1002/2016GL072110

Huang, X., Gohl, K. and Jokat, W. (2014): Variability in Cenozoic sedimentation and paleo-water depths of the Weddell Sea basin related to pre-glacial and glacial conditions of Antarctica. Global and Planetary Change, 118: 25-41. https://doi.org/10.1016/j.gloplacha.2014.03.010

Huang, X., Jokat, W. (2016): Middle Miocene to present sediment transport and deposits in the Southeastern Weddell Sea, Antarctica. Global and Planetary Change, 139: 211-225. https://doi.org/10.1016/j.gloplacha.2016.03.002

Johnson, J., Everest, J., Leat, P., Golledge, N., Rood, D. and Stuart, F. (2012): The deglacial history of NW Alexander Island, Antarctica, from surface exposure dating. Quaternary Research, 77(2): 273-280. https://doi.org/10.1016/j.yqres.2011.11.012

Johnson, A., Fahnestock, M. and Hock, R. (2020): Evaluation of passive microwave melt detection methods on Antarctic T Peninsula ice shelves using time series of Sentinel-1 SAR. Remote Sensing of Environment, 250: 112044. https://doi.org/10.1016/j.rse.2020.112044

Jordan, T. A., Ferraccioli, F., Ross, N., Corr H. F. J., Leat, P. T., Bingham, R. G., Rippin, D. M., le Brocq, A. and Siegert, M. J. (2013): Inland extent of the Weddell Sea Rift imaged by new aerogeophysical data. Tectonophysics, 585: 137-160. http://dx.doi.org/10.1016/j.tecto.2012.09.010

Jordan, T. A., Ferraccioli, F. and Leat, P. T. (2017): New geophysical compilations link crustal block motion to Jurassic extension and strike-slip faulting in the Weddell Sea Rift System of West Antarctica. Gondwana Research, 42: 29-48. http://dx.doi.org/10.1016/j.gr.2016.09.009

Klaučo, M., Gregorová, B., Stankov, U., Marković, V. and Lemenkova, P. (2013a): Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Open Geosciences, 5(1): 28-42. https://doi.org/10.2478/s13533-012-0120-0

Klaučo, M., Gregorová, B., Stankov, U., Marković, V. and Lemenkova, P. (2013b): Interpretation of Landscape Values, Typology and Quality Using Methods of Spatial Metrics for Ecological Planning. Environmental and Climate Technologies, October 14, 2013. Riga, Latvia. https://doi.org/10.13140/RG.2.2.23026.96963

Klaučo, M., Gregorová, B., Stankov, U., Marković, V. and Lemenkova, P. (2014): Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia. Ecology and Environmental Protection, March 19–20, 2014. Minsk, Belarus, 85–90. https://doi.org/10.6084/m9.figshare.7434200

Klaučo, M., Gregorová, B., Koleda, P., Stankov, U., Marković, V. and Lemenkova, P. (2017): Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal, 2(16): 449-458. https://doi.org/10.30638/eemj.2017.045

Kloser, R., Bax, N., Ryan, T., Williams, A. and Barker, B. (2001): Remote sensing of seabed types in the Australian South East Fishery; development and application of normal incident acoustic techniques and associated ‘ground truthing’. Marine and Freshwater Research, 52: 475-489. https://doi.org/10.1071/MF99181

Kuhn, G., Hass, C., Kober, M., Petitat, M., Feigl, T., Hillenbrand, C. D., Kruger, S., Forwick, M., Gauger, S. and Lemenkova, P. (2006): The response of quaternary climatic

cycles in the South-East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet. In: K. Gohl (ed): Expeditionsprogramm Nr. 75 ANT XXIII/4, AWI. https://doi.org/10.13140/RG.2.2.11468.87687

Ladroit, Y., Escobar-Flores, P. C., Schimel A. C. G. and O’Driscoll, R. L. (2020): ESP3: An open-source software for the quantitative processing of hydro-acoustic data. SoftwareX 12: 100581. https://doi.org/10.1016/j.softx.2020.100581

Lawver, L. A., Gahagan, L. M. (2003): Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology, 198 (1–2): 11-37. https://doi.org/10.1016/S0031-0182(03)00392-4

Leat, P. T., Flowerdew, M. J., Riley, T. R., Whitehouse, M. J., Scarrow, J. H. and Millar, I. L. (2009): Zircon U-Pb dating of Mesozoic volcanic and tectonic events in north-west Palmer Land and south-west Graham Land, Antarctica. Antarctic Science, 21(6): 633-641. https://doi.org/10.1017/S0954102009990320

Leat, P. T., Jordan, T. A., Flowerdew, M. J., Riley, T. R., Ferraccioli, F. and Whitehouse, M. J. (2018): Jurassic high heat production granites associated with the Weddell Sea rift system, Antarctica. Tectonophysics, 722: 249-264. https://doi.org/10.1016/j.tecto.2017.11.011

Lemenkov, V., Lemenkova, P. (2021a): Using TeX markup language for 3D and 2D geological plotting. Foundations of Computing and Decision Sciences, 46(3): 43-69. https://doi.org/10.2478/fcds-2021-0004

Lemenkov, V., Lemenkova, P. (2021b): Measuring equivalent cohesion ceq of the frozen soils by compression strength using kriolab equipment. Civil and Environmental Engineering Reports, 31(2): 63-84. https://doi.org/10.2478/ceer-2021-0020

Lemenkova, P. (2011): Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. M.Sc. Thesis. Netherlands: University of Twente. 158 p. https://doi.org/10.13140/RG.2.2.16945.22881

Lemenkova, P. (2019a): Statistical Analysis of the mariana trench geomorphology using R programming language. Geodesy and Cartography, 45(2): 57-84. https://doi.org/10.3846/gac.2019.3785

Lemenkova, P. (2019b): Testing linear regressions by StatsModel Library of Python for oceanological data interpretation. Aquatic Sciences and Engineering, 34: 51-60. https://doi.org/10.26650/ASE2019547010

Lemenkova, P. (2019c): GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica, 14(2): 39-48. https://doi.org/10.21163/GT_2019.142.04

Lemenkova, P. (2019d): Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review, 51(4): 181-194. https://doi.org/10.2478/pcr-2019-0015

Lemenkova, P. (2019e): AWK and GNU octave programming languages integrated with generic mapping tools for geomorphological analysis. GeoScience Engineering, 65(4): 1-22. https://doi.org/10.35180/gse-2019-0020

Lemenkova, P. (2020a): GEBCO Gridded Bathymetric Datasets for Mapping Japan Trench Geomorphology by Means of GMT Scripting Toolset. Geodesy and Cartography, 46(3): 98-112. https://doi.org/10.3846/gac.2020.11524

Lemenkova, P. (2020b): Fractal surfaces of synthetical DEM generated by GRASS GIS module r.surf.fractal from ETOPO1 raster grid. Journal of Geodesy and Geoinformation, 7(1): 86-102. https://doi.org/10.9733/JGG.2020R0006.E

Lemenkova, P. (2020c): The geomorphology of the Makran Trench in the context of the geological and geophysical settings of the Arabian Sea. Geology, Geophysics and Environment, 46(3): 205-222. https://doi.org/10.7494/geol.2020.46.3.205

Lemenkova, P. (2020d): R Libraries {dendextend} and {magrittr} and Clustering Package scipy.cluster of Python For Modelling Diagrams of Dendrogram Trees. Carpathian Journal of Electronic and Computer Engineering, 13(1): 5-12. https://doi.org/10.2478/cjece-2020-0002

Lemenkova, P. (2020e): Integration of geospatial data for mapping variation of sediment thickness in the North Sea. Scientific Annals of the Danube Delta Institute, 25: 129-138. https://doi.org/10.7427/DDI.25.14

Lemenkova, P. (2021a): Geodynamic setting of Scotia Sea and its effects on geomorphology of South Sandwich Trench, Southern Ocean. Polish Polar Research, 42(1): 1-23. https://doi.org/10.24425/ppr.2021.136510

Lemenkova, P. (2021b): The visualization of geophysical and geomorphologic data from the area of Weddell Sea by the Generic Mapping Tools. Studia Quaternaria, 38(1): 19-32. https://doi.org/10.24425/sq.2020.133759

Lemenkova, P., Promper, C. and Glade, T. (2012): Economic assessment of landslide risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. In: E. Eberhardt, C. Froese, A. K. Turner and S. Leroueil, (eds.): Protecting Society through Improved Understanding. 11th International Symposium on Landslides & the 2nd North American Symposium on Landslides & Engineered Slopes (NASL), June 2–8, 2012. Canada, Banff: pp. 279–285. https://doi.org/10.6084/m9.figshare.7434230

Lindeque, A., Gohl, K., Wobbe, F. and Uenzelmann-Neben, G. (2016): Preglacial to glacial sediment thickness grids for the Southern Pacific Margin of West Antarctica. Geochemistry Geophysics Geosystems, 17(10): 4276-4285. https://doi.org/10.1002/2016GC006401

Lindeque, A., Martos, Y. M., Gohl, K. and Maldonado, A. (2013): Deep-sea pre-glacial to glacial sedimentation in the Weddell Sea and southern Scotia Sea from a cross-basin seismic transect. Marine Geology 336: 61-83. https://doi.org/10.1016/j.margeo.2012.11.004

Lythe, M., Vaughan, D. G. and BEDMAP Consortium (2000): BEDMAP – Bed topography of the Antarctic, BAS Misc., 9 Edn., SCAR/BAS, Cambridge.

Lythe, M., Vaughan, D. G. and The BEDMAP Consortium (2001): BEDMAP: A new ice thickness and subglacial topographic model of Antarctica. Journal of Geophysical Research, 106: 11335-11352.

Motta, M., de Castro Neto, M. and Sarmento, P. (2021): A mixed approach for urban flood prediction using Machine Learning and GIS. International Journal of Disaster Risk Reduction, 56: 102154. https://doi.org/10.1016/j.ijdrr.2021.102154

Neteler, M. (2000): GRASS-Handbuch, Geosynthesis 11. University of Hannover. Der praktische Leitfaden zum Geographischen Informationssystem GRASS

Neteler, M., Beaudette, D. E., Cavallini, P., Lami, L. and Cepicky, J. (2008): GRASS GIS. Chapter 9. In: G. B. Hall, M. G. Leahy (eds.): Open Source Approaches in Spatial Data Handling. Advances in Geographic Information Science. Springer-Verlag Berlin Heidelberg.

Riley, T. R., Jordan, T. A., Leat, P. T., Curtis, M. L. and Millar, I. L. (2020): Magmatism of the Weddell Sea rift system in Antarctica: Implications for the age and mechanism of rifting and early stage Gondwana breakup. Gondwana Research, 79: 185-196. https://doi.org/10.1016/j.gr.2019.09.014

Rogenhagen, J., Jokat, W. (2000): The sedimentary structure in the western Weddell Sea. Marine Geology, 168(1–4): 45-60. https://doi.org/10.1016/S0025-3227(00)00048-7

Rosenheim, B. E., Day, M. B., Domack, E., Schrum, H., Benthien, A. and Hayes, J. M. (2008): Antarctic sediment chronology by programmed-temperature pyrolysis: Methodology and data treatment. Geochemistry, Geophysics, Geosystems, 9: Q04005, https://doi.org/10.1029/2007GC001816

Sandwell, D. T., Smith, W. H. F. (2005): Retracking ERS-1 altimeter waveforms for optimal gravity field recovery. Geophysical Journal International, 163(1): 79-89. https://doi.org/10.1111/j.1365-246X.2005.02724.x

Sandwell, D. T., Smith, W. H. F. (2009): Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate. Journal of Geophysical Research, 114(B1): B01411. https://doi.org/10.1029/2008JB006008

Sandwell, D. T., Müller, R. D., Smith W. H. F., Garcia E. and Francis R. (2014): New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205): 65-67. https://doi.org/10.1126/science.1258213

Schenke, H. W., Lemenkova, P. (2008): Zur frage der meeresboden-kartographie: Die nutzung von autotrace digitizer für die vektorisierung der bathymetrischen daten in der Petschora-See. Hydrographische Nachrichten, 81: 16-21. https://doi.org/10.6084/m9.figshare.7435538

Smith, W. H. F., Sandwell, D. T. (1995): Marine gravity field from declassified Geosat and ERS-1 altimetry. EOS Transactions AGU, 76: F156.

Storey, B. C., Vaughan, A. P. M. and Riley, T. R. (2013): The links between large igneous provinces, continental break-up and environmental change: evidence reviewed from Antarctica. Earth and Environmental Science. Transactions of the Royal Society of Edinburgh, 104: 1-14. https://doi.org/10.1017/S175569101300011X

Straume, E. O., Gaina, C., Medvedev S., Hochmuth, K., Gohl, K., Whittaker, J. M., Abdul Fattah, R., Doornenbal, J. C. and Hopper, J. R. (2019): GlobSed: updated total sediment thickness in the World's Oceans. Geochemistry, Geophysics, Geosystems, 20(4): 1756-1772. https://doi.org/10.1029/2018GC008115

Suetova, I. A., Ushakova, L. A. and Lemenkova, P. (2005): Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, 4: 138-142. https://doi.org/10.6084/m9.figshare.7435535

Takeda, A., Cox, S. and Payne, A. J. (2002): Parallel numerical modelling of the Antarctic Ice Sheet. Computers & Geosciences, 28(6): 723-734. https://doi.org/10.1016/S0098-3004(01)00106-6

Tedesco, M. (2009): Assessment and development of snowmelt retrieval algorithms over Antarctica from k-band spaceborne brightness temperature (1979–2008). Remote Sensing of Environment, 113: 979-997. https://doi.org/10.1016/j.rse.2009.01.009

Tigchelaar, M., Timmermann, A., Pollard, D., Friedrich, T. and Heinemann, M. (2018): Local insolation changes enhance Antarctic interglacials: Insights from an 800,000-year ice sheet simulation with transient climate forcing. Earth and Planetary Science Letters, 495: 69-78. https://doi.org/10.1016/j.epsl.2018.05.004

Vaughan, A. P. M., Leat, P. T., Dean, A. A. and Millar, I. L. (2012): Crustal thickening along the West Antarctic Gondwana margin during mid-Cretaceous deformation of the Triassic intra-oceanic Dyer Arc. Lithos, 142–143: 130-147. https://doi.org/10.1016/j.lithos.2012.03.008

Walther, B. A., Huettmann, F. (2021): Palearctic passerine migrant declines in African wintering grounds in the Anthropocene (1970–1990 and near future): A conservation assessment using publicly available GIS predictors and machine learning. Science of The Total Environment, 777: 146093. https://doi.org/10.1016/j.scitotenv.2021.146093

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F. and Tian, D. (2019): The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20: 5556-5564. https://doi.org/10.1029/2019GC008515

Williams, R. (1987): Evolution in cartography: Data intelligence. Cartography, 16(2): 141-146. https://doi.org/10.1080/00690805.1987.10438364

Wobbe, F., Lindeque, A. and Gohl, K. (2014): Total sediment thickness grid of the Southern Pacific Ocean off West Antarctica, links to NetCDF files. Pangea, https://doi.org/10.1594/PANGAEA.835589

Web sources / Other sources

[1] British Antarctic Survey

https://www.bas.ac.uk/ [access: 12.06.2021]

[2] GRASS Development Team (2018): Geographic Resources Analysis Support System (GRASS GIS) Software. Open Source Geospatial Foundation, USA. https://grass.osgeo.org [access: 05.12.2020].

[3] Geospatial Data Abstraction Library

https://gdal.org/ [access: 12.06.2021]

Metrics

web of science logo


450

Views

98

PDF views