Long-term retainment of some chromosomal inversions in a local population of Belgica antarctica Jacobs (Diptera, Chironomidae)
Vol.11,No.1(2021)
Genome of antarctic endemic Belgica antarctica Jacobs has been sequenced. However, no set of inversion diagnostic markers has ever been assigned for the species. Using the classical method of polytene chromosome squash preparation, we found three heterozygous inversions located on the second (two heterozygous inversions) and third chromosomes (one heterozygous inversion) in the Belgica antarctica population of a cape of Wiencke Island, 500 m to SW from Port Lockroy. The chromosome set and chromosome variability did not differ from those described in the literature (Atchley and Davis 1979). Every salivary gland chromosome had its own markers by which it can be determined. However, we did not find a sex-linked inversion on chromosome III and heterozygous inversion on chromosome I, reported in earlier studies. For the first time, we observed a strong heterochromatin band in chromosome III at the telomere of one arm. Our data show not only the stability of the described inversions in the population but also the usefulness of the squash preparation technique in the studies of genetic variability of Belgica antarctica in present time.
Antarctic midge; salivary gland chromosomes; heterozygous inversion; dark band
Allegrucci, G., Carchini, G., Convey, P. and Sbordoni, V. (2012): Evolutionary geographic relationships among ortocladine chironomid midges from maritime Antarctic and sub-Antarctic islands. Biological Journal of the Linnean Society, 106: 258-274. https://doi.org/10.1111/j.1095-8312.2012.01864.x
Atchley, W., Davis, B. (1979): Chromosomal variability in the Antarctic Insect, Belgica antarctica (Diptera: Chironomidae). Annals of the Entomological Society of America, 72: 246-252. https://doi.org/10.1093/aesa/72.2.246
Bargagli, R. (2005): Antarctic Ecosystems: Environmental Contamination, Climate Change, and Human Impact. Springer, Berlin, Heidelberg, 398 p.
Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E. Jr. and Denlinger, D. L. (2007): Mechanisms to reduce dehydration stress in the Antarctic midge, Belgicaantarctica. Journal of Insect Physiology, 53: 656-667. https://doi.org/10.1016/j.jinsphys.2007.04.006
Contador, T., Gaan, M., Bizama, G., Fuentes-Jaque, G., Morales, L., Rendoll, J., Simes, F., Kennedy, J., Rozzi, R. and Convey, P. (2020): Assessing distribution shifts and ecophysiological characteristics of the only Antarctic winged midge under climate change scenarios.Scientific Reports, 10: 9087. https://doi.org/10.1038/s41598-020-65571-3
Elnitsky, M. A., Hayward, S. A. L., Rinehart,J. P., Denlinger, D. L. and Lee, R. E. (2008): Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. Journal of Experimental Biology, 211: 524-530. https://doi.org/10.1242/jeb.011874
Elnitsky, M. A., Benoit, J. B., Lopez-Martinez, G., Denlinger, D. L. and Lee, R. E. (2009): Osmoregulation and salinity tolerance in the Antarctic midge, Belgica antarctica: seawater exposure confers enhanced tolerance to freezing and dehydration. Journal of Experimental Biology, 212: 2864-2871. https://doi.org/10.1242/jeb.034173
Finch, G., Nandyal, S., Perretta, C.,Nandyal, S., Rosendale, A., Holmes, C., Gantz, J. D., Spacht, D., Bailey, S., Chen, X., Jeannet Oyen, K., Didion, E., Chakraborty, S., Lee, R., Denlinger, D., Matter, S., Attardo, G., Weirauch, M. and Benoit, J.(2020): Multi-level analysis of reproduction in an Antarctic midge identifies female and male accessory gland products that are altered by larval stress and impact progeny viability.Scientific Reports,10: 19791. https://doi.org/10.1101/796797
Hoffmann, A. A., Rieseberg, L. H. (2008): Revisiting the impact of inversions in evolution: From population genetic markers to drivers of adaptive shifts and speciation? Annual Review of Ecology, Evolution, and Systematics, 39: 21-42. https://doi.org/10.1146/annurev.ecolsys.39.110707.173532
Kapun, M., van Schalkwyk, H., McAllister, B., Flatt, T. and Schlötterer, C. (2014): Inference of chromosomal inversion dynamics from Pool-Seq data in natural and laboratory populations of Drosophila melanogaster. Molecular Ecology, 23(7): 1813-1827. https://doi.org/10.1111/mec.12594
Kelley, J., Peyton, J., Fiston-Lavier, A. S., Teets, N. M., Yee, MC., Johnson, J. S., Bustamante, C. D., Lee, R. E. and Denlinger, D. L.(2014): Compact genome of the Antarctic midge is likely an adaptation to an extreme environment.Nature Communications,5:4611. https://doi.org/10.1038/ncomms5611
King, M. (1993): Species Evolution. The Role of chromosome changes. Cambridgte University Press, New York, pp. 1-322.
Kirkpatrick, M. (2010): How and why chromosome inversions evolve. PLOS Biology, 8(9): e1000501. https://doi.org/10.1371/journal.pbio.1000501
Kozeretska, I., Serga, S., Kovalenko, P., Gorobchyshyn, V. and Convey P. (2021): Belgica antarctica (Diptera: Chironomidae): A natural model organism for extreme environments. Insect Science, 0: 1-19. https://doi.org/10.1111/1744-7917.12925
Martin, J. (1962): Inversion polymorphism in an Antarctic species living in a simple environment. The American Naturalist, 96: 317-318. https://doi.org/10.1086/282239
Michailova, P. (1989): The polytene chromosomes and their significance for the systematics of family Chironomidae, Diptera. Acta Zoologica Fennica, 186: 1-107.
Potts, L., Gantz, J. D., Kawarasaki, Y., Philip, B., Gonthier, D., Law, A., Moe, L., Unrine, J., Mcculley, R., Lee, R., Denlinger, D. and Teets, N. (2020): Environmental factors influencing fine-scale distribution of Antarctica’s only endemic insect. Oecologia, 194: 529-539. https://doi.org/10.1007/s00442-020-04714-9
Turner, J., Bindschadler, R., Convey, P., di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D., Mayewski, P. and Summerhayes, C. (2009): Antarctic Climate Change and the Environment - A contribution to the international polar year 2007-2008. SCAR & Scott Polar Research Institute, Cambridge, 526 p.
Usher, M., Edwards, M. (1984): A dipteran fauna south of the Antarctic Circle: Belgica antarctica (Chironomidae) with a description of its larva. Biological Journal of the Linnean Society, 23(1): 19-31. https://doi.org/10.1111/j.1095-8312.1984.tb00803.x
Wellenreuther, M., Bernatchez, L. (2018): Eco-evolutionary genomics of chromosomal inversions. Trends in Ecology and Evolution, 33: 427-440. https://doi.org/10.1016/j.tree.2018.04.002
White, B. J., Hahn, M. W., Pombi, M., Cassone, B. J., Lobo, N. F, Simar, F. and Besansky, N. J. (2007): Localization of candidate regions maintaining a common polymorphic inversion (2La) in Anopheles gambiae. PLOS Genetics, 3(12): e217. https://doi.org/10.1371/journal.pgen.0030217
Yoshida, M., Lee, R. E., Denlinger, D. L. and Goto, S. G. (2021): Expression of aquaporins in response to distinct dehydration stresses that confer stress tolerance in the Antarctic midge Belgica antarctica. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 256: 110928. https://doi.org/10.1016/j.cbpa.2021.110928
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2020 Czech Polar Reports