UV-B absorbing and bioactive secondary compounds in lichens Xanthoria elegans and Xanthoria parietina: A review
Vol.10,No.2(2020)
Secondary metabolites are the bioactive compounds of plants which are synthesized during primary metabolism, have no role in the development process but are needed for defense and other special purposes. These secondary metabolites, such as flavonoids, terpenes, alkaloids, anthraquinones and carotenoids, are found in Xanthoria genus lichens. These lichens are known as lichenized fungi in the family Teloschistaceae, which grows on rock and produce bioactive compounds. A lot of secondary compounds in plants are induced by UV (100-400 nm) spectra. The present review showcases the present identified bioactive compounds in Xanthoria elegans and Xanthoria parietina lichens, which are stimulated by different amounts of UV-B light (280-320 nm), as well as the biochemistry of the UV-B absorbingcompounds.
UV-B; Xanthoria parietina; Xanthoria elegans; parietin; phenolic compounds; carotenoids; anthraquinone
Al-Amoody, A.A., Yayman, D., Kaan, T., Özkok, E.A., Özkan, A., Özen, E. and Cobanoglu Özyigitoglu, G. (2020): Role of lichen secondary metabolites and pigments in UV-screening phenomenon in lichens. Acta Biologica Turcica, 33: 35-48. (In Turkish).
Brechner, M. L., Albright, L. D. and Weston, L. (2011): Effects of UV-B on secondary metabolites of St. John’s wort (Hypericum perforatum L.) grown in controlled environments. Photochemistry and Photobiology, 87(3): 680-684. https://doi.org/10.1111/j.1751-1097.2011. 00904.x
Brunauer, G., Hager, A., Grube, M., Türk, R. and Stocker-Wörgötter, E. (2007): Alterations in secondary metabolism of aposymbiotically grown mycobionts of Xanthoria elegans and cultured resynthesis stages. Plant Physiology and Biochemistry, 45(2): 146-151. https://doi.org/ 10.1016/j.plaphy.2007.01.00 4
Burkin, A. A., Kononenko, G. P. (2015): Metabolites of toxigenic fungi in lichens of genera Nephroma, Peltigera, Umbilicaria, and Xanthoria. Biology Bulletin of the Russian Academy of Sciences, 42(6): 486-492. https://doi.org/10.1134/S1062359015060023
Cleary, M. (2019): Chapter 1_2. Journal of Chemical Information and Modeling, 53(9): 1689-1699. https://doi.org/10.1017/CBO978110741532 4.004
Dembitsky, V. M. (1992). Lipids of lichens. Progress in Lipid Research, 31(4): 373-397. https://doi.org/10.1016/0163- 7827(92)90002-Z
Dias, D. A., Urban, S. (2009): Natural Product Communications Phytochemical Investigation of the Australian Lichens, pp. 3–8.
Dou, H., Niu, G. and Gu, M. (2019): Pre-harvest UV-B radiation and photosynthetic photon flux density interactively affect plant photosynthesis, growth, and secondary metabolites accumulation in basil (Ocimum basilicum) plants. Agronomy, 9(8). https://doi.org/10.3390/ agronomy9080434
Elkhateeb, W. A., Daba, G. M. (2019): Lichens, an alternative drugs for modern diseases. International Journal of Research in Pharmacy and Biosciences, 6(10): 5-9.
Estêvao, D. M. M. (2015): Production of UV-B screens and changes in photosynthetic efficiency in Antarctic Nostoc commune colonies and a lichen Xanthoria elegans depend on a dose and duration of UV-B stress. Czech Polar Reports, 5(1): 55-68. https://doi.org/10.5817/CPR2015-1-6
Gauslaa, Y., Ustvedt, E. M. (2003): Is parietin a UV-B or a blue-light screening pigment in the lichen Xanthoria parietina? Photochemical and Photobiological Sciences, 2(4): 424-432. https://doi.org/10.1039/b212532c
Glatt, H., Baasanjav-Gerber, C., Schumacher, F., Monien, B. H., Schreiner, M., Frank, H., Seidel, A. and Engst, W. (2011): 1-Methoxy-3-indolylmethyl glucosinolate; A potent genotoxicant in bacterial and mammalian cells: Mechanisms of bioactivation. Chemico-Biological Interactions, 192(1–2): 81-86. https://doi.org/10.1016/j.cbi.2010.09.009
Goga, M., Elečko, J., Marcinčinová, M., Ručová, D., Bačkorová, M. and Bačkor, M. (2020): Lichen Metabolites: An Overview of Some Secondary Metabolites and Their Biological Potential. In: JM. Mérillon, K. Ramawat (eds): Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-96397-6_57
Gu, X. -D., Sun, M. -Y., Zhang, L., Fu, H. -W., Cui, L., Chen, R. -Z., Zhang, D.-W. and Tian, J. -K. (2010): UV-B induced changes in the secondary metabolites of Morus alba L. leaves. Molecules, 15(5): 2980-2993. https://doi.org/10.3390/molecules15052980
Jordan, B. R. (2017): UV-B radiation and plant life: Molecular biology to ecology. 192 p., ISBN 9781780648590
Kováčik, J., Klejdus, B., Štork, F. and Malčovská, S. (2011): Sensitivity of Xanthoria parietina to UV-A: Role of metabolic modulators. Journal of Photochemistry and Photobiology B: Biology, 103(3): 243-250. https://doi.org/10.1016/j.jphotobiol.2011.0 4.002
Mewes, H., Richter, M. (2002): Supplementary ultraviolet-B radiation induces a rapid reversal of the diadinoxanthin cycle in the strong light- exposed diatom Phaeodactylum tricornutum. Plant Physiology, 130(3): 1527-1535. https://doi.org/10.1104/pp.006775
Mewis, I., Schreiner, M., Nguyen, C. N., Krumbein, A., Ulrichs, C., Lohse, M. and Zrenner, R. (2012): UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts: Induced signaling overlaps with defense response to biotic stressors. Plant and Cell Physiology, 53(9): 1546-1560. https://doi.org/10.1093/pcp/pcs096
Mosadegh, H., Trivellini, A., Ferrante, A., Lucchesini, M., Vernieri, P. and Mensuali, A. (2018): Applications of UV-B lighting to enhance phenolic accumulation of sweet basil. Scientia Horticulturae, 229(November 2017): 107-116. https://doi.org/10.1016/j.scienta.2017. 10.04 3
Murtagh, G. J., Dyer, P. S., Furneaux, P. A. and Crittenden, P. D. (2002): Molecular and physiological diversity in the bipolar lichen-forming fungus Xanthoria elegans. Mycological Research, 106(11): 1277-1286. https://doi.org/10.1017/S095375620200661 5
Nybakken, L., Solhaug, K. A., Bilger, W. and Gauslaa, Y. (2004): The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia, 140(2): 211-216. https://doi.org/10.1007/s00442-004-1583-6
Schreiner, M., Mewis, I., Huyskens-Keil, S., Jansen, M. A. K., Zrenner, R., Winkler, J. B., O’Brien, N. and Krumbein, A. (2012): UV-B-Induced Secondary Plant Metabolites - Potential Benefits for Plant and Human Health. Critical Reviews in Plant Sciences, 31(3): 229-240. https://doi.org/10.1080/07352689.2012.664979
Solhaug, K. A., Gauslaa, Y. (2004): Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen Xanthoria parietina. Plant, Cell and Environment, 27(2), 167-176. https://doi.org/10.1111/j.1365- 3040.2003.01129.x
Stocker-Wörgötter, E., Cordeiro, L. M. C. and Iacomini, M. (2013): Accumulation of potential pharmaceutically relevant lichen metabolites in lichens and cultured lichen symbionts. Studies in Natural Products Chemistry (Vol. 39). https://doi.org/10.1016/B978-0-444-62615- 8.00010-2
Takshak, S., Agrawal, S. B. (2019): Defense potential of secondary metabolites in medicinal plants under UV-B stress. Journal of Photochemistry and Photobiology B: Biology, 193: 51-88. https://doi.org/10.1016/j.jphotobiol.2019.0 2.002
Wellmann, E. (1983): UV radiation in photomorphogenesis. In: W. Shropshire, H. Mohr (eds): Photomorphogenesis. Encyclopedia of Plant Physiology (New Series), vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68918-5_29
Yavaş, İ., Ünay, A., Ali, S. and Abbas, Z. (2020): Turkish Journal of Agriculture-Food Science and Technology UV-B Radiations and Secondary Metabolites. Turkish Journal of Agriculture-Food Science and Technology, 8(1): 147-157. https://doi.org/10.24925/turjaf.v8i1.147-157.2878
Zambare, V. P., Christopher, L. P. (2012): Biopharmaceutical potential of lichens. Pharmaceutical Biology, 50(6): 778-798. https://doi.org/10.3109/13880209.2011.633 089
Zu, Y. gang, Pang, H. H., Yu, J. H., Li, D. W., Wei, X. X., Gao, Y. X. and Tong, L. (2010): Responses in the morphology, physiology and biochemistry of Taxus chinensis var. mairei grown under supplementary UV-B radiation. Journal of Photochemistry and Photobiology B: Biology, 98(2): 152-158. https://doi.org/10.1016/j.jphotobiol.2009.1 2.001
Copyright © 2021 Czech Polar Reports