Microfungi, algae and cyanobacteria in soils polluted with fluorine (Kola Peninsula, Russia)

Vol.10,No.1(2020)

Abstract

The analysis of algal-mycological complexes in Albic Podzolic soils affected by emissions of the Kandalaksha Aluminum Smelter (KAS) was carried out. The number and biomass of microscopic fungi in the maximum fluorine-polluted zone (fluorine-content >1000 mg/kg) more than 2 times lower than in distanced areas and amounted to 17.3 thousants colony-forming units/g and 1.33 mg/g respectively. Altogether, 31 species of soil fungi were isolated. The species Penicillium trzebinskii and P. miczynskii dominated the zone of maximum pollution. P. glabrum, P. spinulosum, and Memnoniella echinata prevailed in the zones of moderate pollution and background. The part of opportunistic fungi in contaminated soil increased in comparison with the background soil. The reduction of dark-colored fungi biomass in contaminated soil was noted. In total, 56 species of eukaryotic algae and 7 species of cyanobacteria were found. Among green algae, the species from families Chlorophyceae and Trebouxiophyceae dominated in all plots. In the zones of maximum and strong contamination, 53 algae species were found including xanthophytes, which were absent in unpolluted areas. The number of viable cells in the litter of the maximum contaminated soils varied from 100 thousand to 1.5 million in 1 g of absolutely dry soil. The species composition of algae and cyanobacteria in these soils showed the characteristic features of the Arctic biological soil crusts.


Keywords:
fluorine, Kandalaksha aluminum smelter, soil contamination, biodiversity, fungi, algae, cyanobacteria
References

Andreeva, V. M. (1998): Soil and Aerophilic Green Algae. Moscow, Nauka, 351 p. (In Russian).

Armstrong, W. D., Singer, L. (1980): Fluoride: tissue distribution Intracellular fluoride concentration. Proceedings of the Society for Experimental Biology and Medicine, 164: 500-506. https://doi.org/10.3181/00379727-164-40904

Arnesen, A. K. M., Krogstad, T. (1998): Sorption and desorption of fluoride in soil polluted from the aluminum smelter at Ardal in Western Norway. Water, Air, and Soil Pollution, 103(1–4): 357-373. https://doi.org/10.1023/A:1004900415952

Barber, M., Tabereaux, A.T. (2014): The end of an era for Sderberg Technology in North and South America. In: J. Grandfield (ed.): Light Metals. Springer-Verlag, New York, pp. 809–814.
https://doi.org/10.1002/9781118888438.ch136

Berseneva, O. A, Salavarova, V. P, Pristavka, A.A. and Milentyev, V. A. (2010): Specific structure of soil mycocenoses in grey forest soils of the Pribaikalye subject to influence of emissions of Irkutsk aluminium plant. Vestnik Rossiiskogo Universiteta Druzhby Narodov. Seriya: Ekologiya I Bezopasnost' Zhiznedeyatel'nosti [RUDN Journal of Ecology and Life Safety], (1): 24-29. (In Russian).

Berseneva, O. A. (2015): Characteristic of the prokaryotic community isolated from gray forest soils located on the territories adjacent to the IrkAZ-RUSAL OJSC. Vestnik Mariiskogo Gosudarstvennogo Universiteta, Seriya Sel'skokhozyaistvennye nauki. Ekonomicheskie nauki [Bulletin of Mari State University. Chapter "Agriculture. Economics"],(4): 19-24. (In Russian).

Bhatnagar, M., Bhatnagar, A. (2000): Algal and cyanobacterial responses to fluoride. Fluoride, 33(2): 55-65.

Camargo, J. A. (2003): Fluoride toxicity to aquatic organisms: A review. Chemosphere, 50: 251-264. https://doi.org/10.1016/S0045-6535(02)00498-8

Chaschin, V. (2007): The occurrence of fluorosis among pot room workers. Paper presented at the 3rd International Conference on Environmental, Health and Safety Aspects Related to Production of Aluminum. Loen, Norway, 63 p.

Demidenko, G. A., Zhbankichov, D. O. (2014): The water-soluble fluorine influence on soil pollution in the zone of aluminum plant industrial emissions. Vestnik Krasnoiarskogo Gosudarstvennogo Agrarnogo Universiteta [Bulletin of KrasSAU], (5): 116-119. (In Russian).

Domracheva, L. I., Dabah, E. V., Kondakova, L. V. and Varaksina, A. I. (2006): Algo-mycological and phytotoxic complexes in chemical soil pollution. Paper presented at the XIII All-Russian School Ecology and Soils, Pushchino, Russia. pp. 88-99.

Domsch, K. H., Gams, W. and Anderson. T. H. (2007): Compendium of Soil Fungi, 2nd ed. IHW–Verlag,Eching. 672 p.

Egorova, L. N. (1986): Soil Fungi of the Far East. Leningrad: Nauka. 192 p. (In Russian).

Ettl, H., Gartner, G. (2014): Syllabus der Boden-, Luft- und Flechtenalgen. Berlin: Springer-Verlag. 773 p. https://doi.org/10.1007/978-3-642-39462-1

Evdokimova, G. A., Korneikova, M. V. and Mozgova, N. P. (2013): Changes in the properties of soils and soil biota in the impact zone of the aerotechnogenic emissions from the Kandalaksha Aluminum Smelter. Eurasian Soil Science, 46(10): 1042-1048. https://doi.org/10.1134/S1064229313100025

Evdokimova, G. A., Mozgova, N. P. (1996): Microflora of tundra soils in the Kola Peninsula. Eurasian Soil Science, 28(12): 188-203.

Evdokimova, G. A., Mozgova, N. P. and Shtina, E. A. (1997): Soil pollution by fluorine and evaluation of the soil microflora status in the area of influence of an aluminum plant. Eurasian Soil Science, 30(7): 796-803.

Evdokimova, G.A., Zenkova, I.V. and Mozgova, N. P. (2005): Soil and Soil Biota under Conditions of the Fluorine Contamination. Apatity: Kola Science Centre.155 p. (In Russian).

Gaisina, L. A., Fazlutdinova, A. I. and Kabirov, R. R. (2008): Modern Methods of Isolation and Cultivation of Algae. Ufa: Bashkir State Pedagogical University. 152 p. (In Russian).

Garcia-Gil, J.C., Kobza, J., Soler-Rovira, P. and Javoreková, S. (2013): Soil microbial and enzyme activities response to pollution near an aluminium smelter. Clean – Soil, Air, Water, 41(5): 485-492. https://doi.org/10.1002/clen.201200099

Ghosh, M., Banerjee, P. S. and Ray, H. S. (2014): Environmental pollution due to gaseous emissions during non-ferrous extraction processes. Russian Journal of Non-Ferrous Metals, 55(3): 263-269. https://doi.org/10.3103/S1067821214030055

Gibbs, G. W., Labreche, F. (2014): Cancer risks in aluminum reduction plant workers. Journal of Occupational and Environmental Medicine, 56: 40-59. https://doi.org/10.1097/JOM.0000000000000003

Gutknecht, J., Walter, A. (1981): Hydrofluoric and nitric acid transport through lipid bilayer membranes. Biochimica et Biophysica Acta, 644: 153-156. https://doi.org/10.1016/0005-2736(81)90071-7

Kehr, J. C., Dittmann, E. (2015): Biosynthesis and function of extracellular glycans in cyanobacteria. Life, 5(1): 164-180. https://doi.org/10.3390/life5010164

Kirillova, N. N., Pomazkina, L. V. (2014): Influence of level of pollution by fluorides of aluminum production on degradation of gray forest soils of the Baikal region. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya [Proceedings of Universities. Applied Chemistry and Biotechnology], 5(10): 82-87.

Klich, M. A. (2002): Identification of common Aspergillus species. CBS Fungal Biodiversity Centre, Utrecht, Netherlands, 116 p.

Komárek, J. (2013) Cyanoprokaryota: 3rd Part: Heterocystous Genera. In: B. Büdel, G. Gärtner, L. Krienitz and M. Schagerl (Eds.): Süßwasserflora von Mitteleuropa, Bd. 19 (3), Springer Spektrum, Berlin, Heidelberg, 1-1130 p. https://doi.org/10.1007/978-3-8274-2737-3

Komárek, J., Anagnostidis, K. (2005): Cyanoprokaryota. 2. Teil: Oscillatoriales. In: B. Büdel, G. Gärtner, L. Krienitz and M. Schagerl (Eds.): Süßwasserflora von Mitteleuropa, Bd. 19 (2), Elsevier GmbH, München, 759 p.

Komárek, J., Anagnostidis, K. (1998): Cyanoprokaryota 1. Teil: Chroococcales. In: H. Ettl, G. Gärtner, H. Heynig, D. Mollenhauer (Eds): Süsswasserflora von Mitteleuropa 19/1, Gustav Fischer, Jena-Stuttgart-Lübeck-Ulm, 548 p.

Kondrat’eva, N. V., Kovalenko, O. V. (1975): Brief Guide for Identification of Toxic Blue-Green Algae. Kiev: Naukova Dumka [Scientific Thought Publishing House]. 64 p. (In Russian).

Kongerud, J. (2007): Hydrogen fluoride and health effects. Book of abstracts of the 3rd international conference on environmental, health and safety aspects related to the production of aluminium. Loen, Norway, pp. 44-45.

Kotai, J. (1972): Instructions for the preparation of modified nutrient solution Z8 for algae. Norwegian Institute for Water Research, Blindern, Oslo:11/69. 5 p.

Kozlova, A. A., Lopatovskaya, O. G., Granina, N. I., Chipanina, E. V., Kuchmenko, E. V. and Bobrov, A. N. (2011): Fluoride contamination of gray forest soils from Irkutsk Aluminum Smelter (IrkAZ). Izvestiya Irkutskogo Gosudarstvennogo Universiteta, Seriya: Biologiya. Ecologiya, 4(1): 87-94 (In Russian).

Kurakov, A. V. (2001): Manual for Isolation and Characterization of the Complexes of Micromycetes in Terrestrial Ecosystems. Moscow: MAKS Press. 92 p. (In Russian).

Larsen, S., Widdowson, A. (1971): Soil fluorine. Journal of Soil Science, 22: 210-221. https://doi.org/10.1111/j.1365-2389.1971.tb01608.x

Leslie, R., Parbery, D. G. (1972): Growth of Verticillium lecanii on medium containing sodium fluoride. Transactions of the British Mycological Society, 58(2): 351-352. https://doi.org/10.1016/S0007-1536(72)80171-2

Lomovatskaya, L. A., Rykun, O. V., Simakova, A. A., Sokolova, M. G., Romanenko, A. S. and Pomazkina, L. V. (2014): Effect of high doses of fluoride in the soil on the activity of adenylyl cyclase signaling system of plants. Izvestiya Irkutskogo Gosudarstvennogo Universiteta, Seriya: Biologiya. Ecologiya. [The Bulletin of Irkutsk State University». Series «Biology. Ecology»], (7): 11-19 (In Russian).

Mirchink, T. G. (1988): Soil Mycology. Moscow, Moscow State University, 208 p. (In Russian).

Nichol, B. E., Budd, K., Palmer, G. R. and MacArthur, J. D. (1987): The mechanisms of fluoride toxicity and fluoride resistance in Synechococcusleopoliensis (Cyanophyceae). Journal of Phycology, 23(4): 535-541. https://doi.org/10.1111/j.1529-8817.1987.tb04202.x

Nikonov, V. V., Koptsik, G. N. (1999): Acid Rains and Forest Soils. Apatity: Kola Scientific Center, Russian Academy of Sciences, 320p. (In Russian).

Novakovskii, A. B. (2004): Possibilities and Principles of Use of GRAPHS Software Module. Syktyvkar: Komi Scientific Center, Ural Branch, Russian Academy of Sciences, 31 p. (In Russian).

Olsen, R.A., Hovland, J. (1985): Fungal Flora and Activity in Norway Spruce Needle Litter: Report. As: Agricultural University of Norway, 41 p.

Pomazkina, L. V., Kotova, L. G., Zorina, S. Yu., Rybakova, A. V. and Tikhonov, A. Yu. (2008): Carbon dioxide emission as affected by the properties of arable soils polluted with fluorides. Eurasian Soil Science, 41(2): 202-209. https://doi.org/10.1134/S1064229308020117

Pushkareva, E., Johansen, J. R. and Elster, J. (2016): A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts. Polar Biology, 39(12): 2227-2240. https://doi.org/10.1007/s00300-016-1902-5

Raper, B., Thom, C. (1968): A Manual of the Penicillia. London, Hafner, 875 p.

Redkina, V. V., Korneykova, M. V. and Shalygina, R. R. (2020): Microorganisms of the Technogenic Landscapes: The Case of Nepheline-Containing Sands, the Murmansk Region. Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature. Springer, Cham, pp. 561-579. https://doi.org/10.1007/978-3-030-21614-6_30

Seifert, K., Morgan-Jones, G., Gams, W. and Kendrick, B. (2011): The Genera of Hyphomycetes, CBS Biodiversity Series No. 9. Utrecht, Netherlands: CBS-KNAW Fungal Biodiversity Centre, 997 p.

Shtina, E. A., Gollerbakh, M. M. (1976): Ecology of Soil Algae. Moscow: Nauka, 143 p. (In Russian).

Sokolova, L. G., Zorina, S. Yu.(2015): The study of field crops potential for phytoremediation of soils contaminated with fluorides of aluminum smelter. Izvestiya Vuzov. Prikladnaya KhimiyaiBiotekhnologiya [Proceedingsof Universities. Applied Chemistry and Biotechnology], 3(14): 61-68. (In Russian).

Sokolova, L. G., Zvyagintseva, E. N., Zorina, S. Yu., Kovaleva, N. N. and Pomazkina, L. V. (2011): Temporal Changes in the properties of fluoride polluted plowed gray forest soils and potentialities of their self-purification. Uspekhi Sovremennoĭ Biologii,131(6): 606-612. (In Russian).

Stevens, D. P., McLaughlin, M. J. and Alston, A. M. (1998): Phytotoxicity of hydrogen fluoride and fluoroborate and their uptake from solution culture by Lycopersicon esculentum and Avena sativa. Plant Soil, 200: 175-184. https://doi.org/10.1023/A:1004321602847

Stevens, D. P., McLaughlin, M. J., Randall, P. J. and Keerthisinghe,G. (2000): Effect of fluoride supply on fluoride concentrations in five pasture species: Levels required to reach phytotoxic or potentially zootoxic concentrations in plant tissue. Plant Soil, 227(1–2): 223-233. https://doi.org/10.1023/A:1026523031815

Taiwo, B. (2007): The incidence of asthma among aluminum production workers. Paper presented at the 3rd International Conference on Environmental, Health and Safety Aspects Related to Production of Aluminum, 10–13 September, Loen, Norway. p. 41.

Tandelov, Yu. P. (2012): Fluoride in the Soil-Plant System. Krasnoyarsk: Russian Academy of Agricultural Sciences, 146 p. (In Russian).

Treshow, M. (1965): Response of some pathogenic fungi to sodium fluoride. Mycologia, 57(2): 216-221. https://doi.org/10.1080/00275514.1965.12018204

Web sources / Other sources

[1] List of aluminum smelters. Wikipedia. https://en.wikipedia.org/w/index.php?title=List_of_aluminium_smelters&oldid=859653159

[2] CABI databases (Species Fungorum database)
http://www.speciesfungorum.org

[3] AlgaeBase
http://www.algaebase.org

Metrics