Structure and function of biological soil crusts from Antarctica with a special respect to their microtopography and UV-B sensitivity

Vol.9,No.2(2019)

Abstract

Although an extensive professional literature exists on biological soil crusts (BSCs), especially on the species composition of hetero- and autotrophs forming the micro-biological comunity, micromorphological information on BSCs is extremely scarce. In our study, we focused on microstructure of the BSCs from the James Ross Island (Antarctica). We combined the approach of digital microscopy to study surface roughness of the BSCs with taxonomy of BSC-forming autotrophs and chlorophyll fluorescence study focused on the photosynthetic functioning of BSCs when exposed to controlled UV-B stress. Microprofiling of BSCs resulted in the finding that the examined BSCs might be classified as fine-grained surface with roughness characteristics: Ra (37.9 μm) and Rz (136.9 μm). The BSCs were rich in microautotrophs, both algae and cyanobacteria, however, Microcoleus sp. was found dominating species. It formed multifilament ropes on and inside the BSCs. Under UV-B stress, Microcoleus- and Nostoc-dominated BSC parts showed similar sensitivity and acclimatory response so long-term UV-B treatment, however, Microcoleus seemed to be slightly more sensitive to UV-B. Microcoleus-dominated parts of BSCs showed less pronounced acclimation to UV-B treatment than Nostoc-dominated parts. It was reflected in lower values of maximum (FV/FM) and effective (FPSII) quantum yields recorded after 6 d exposition.


Keywords:
surface roughness; 3-D digital microscopy; cyanobacteria; ecophysiology; UV-B
References
<p class="msolistparagraph0CxSpFirst" style="text-align: justify; text-indent: -11.35pt; line-height: normal; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-family:"Times New Roman",serif;font-variant:small-caps"> Barták, M., Hájek, J.</span><span style="font-size:9.0pt;font-family:"Times New Roman",serif"> and <span style="font-variant:small-caps">Gloser, J.</span> (2000): Heterogeneity of chlorophyll fluorescence over thalli of several foliose macrolichens exposed to adverse environmental factors: Interspecific differences as related to thallus hydration and high irradiance. <i> Photosynthetica</i>, 38(4): 531-537.</span></p> <p class="msolistparagraph0CxSpLast" style="text-align: justify; text-indent: -11.35pt; line-height: normal; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-family:"Times New Roman",serif;font-variant:small-caps"> Belnap, J., Lange, O. L. </span> <span style="font-size:9.0pt;font-family:"Times New Roman",serif"> (Eds.) (2001): Biological soil crusts: Structure, function, and management. <i>Ecological Studies</i>, Springer, 506 p.</span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Büdel, B., Vivas, M.</span><span style="font-size:9.0pt"> and <span style="font-variant: small-caps">Lange, O. L.</span> (2013): Lichen dominated biological soil crusts (BSCs) occur over large areas in the Sonoran Desert of the southwestern USA and northwest Mexico. <i>Ecological Processes</i>, 2: 6.</span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Bullard, J. E., Ockelford, A., Strong, C.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Aubalt, H.</span> (2018): Effects of cyanobacterial soil crusts on surface roughness and splash erosion. <i>Journal of Geophysical Research: Biogeosciences</i>, 123(12): 3697-3712. doi: 10.1029/2018JG004726.</span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Colesie, C., Gommeaux, M., Green, T. G. A.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Büdel, B.</span> (2014): Biological soil crusts in continental Antarctica: Garwood Valley, southern Victoria Land, and Diamond Hill, Darwin Mountains region. <i> Antarctic Science</i>, 26: 115-123. </span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Colesie, C., Green, T. G. A., Raggio, J. </span><span style="font-size:9.0pt">and<span style="font-variant:small-caps"> Büdel, B.</span> (2016): Summer activity patterns of Antarctic and High Alpine lichendominated biological soil crusts – Similar but different? <i>Arctic, Antarctic, and Alpine Research</i>, 48(3): 449-460.</span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Colesie, C., Williams, L</span><span style="font-size:9.0pt">. and <span style="font-variant: small-caps">Büdel, B.</span> (2017): Water relations in the soil crust lichen <i> Psora decipiens </i>are optimized via anatomical variability. <i> Lichenologist</i>, 49: 483-492.</span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Čapková, K., Hauer, T., Řeháková, K.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Doležal, J.</span> (2016): Some like it high! Phylogenetic diversity of high-elevation cyanobacterial community from biological soil crusts of Western Himalaya. <i>Microbial Ecology</i>, 71(1): 113-123.</span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Garcia-Pichel, F., Wojciechowski, M. F</span><span style="font-size:9.0pt">. (2009): The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. <i> PLoS ONE</i>, https://doi.org/10.1371/journal.pone.0007801. </span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Green, T. G. A., Pintado, A., Raggio, J</span><span style="font-size:9.0pt">. and <span style="font-variant:small-caps">Sancho, L.</span> (2018): The lifestyle of lichens in soil crusts. <i>The Lichenologist</i>, 50(3), 397-410. doi:10.1017/S0024282918000130</span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Hájek, J., Váczi, P.</span><span style="font-size:9.0pt"> and <span style="font-variant: small-caps">Barták, M.</span> (2009): Photosynthetic electron transport at low temperatures in the green algal foliose lichens <i>Lasallia pustulata</i> and <i>Umbilicaria hirsuta</i> affected by manipulated levels of ribitol. <i>Photosynthetica</i>, 47: 199-205.</span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Hui, R., Li, X.R., Zhao, R.M., Liu, L., Gao, Y</span><span style="font-size:9.0pt">. and <span style="font-variant:small-caps">Wei, Y.</span> (2015): UV-B radiation suppresses chlorophyll fluorescence, photosynthetic pigment and antioxidant systems of two key species in soil crusts from the Tengger Desert, China. <i>Journal of Arid Environments</i>, 113: 6-15.</span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Hui, R., Zhao, R. M., Liu, L. C., Li, Y. X., Yang, H. T., Wang, Y. L., Xie, M.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Wang, X. Q.</span> (2018): Changes in winter snow depth affects photosynthesis and physiological characteristics of biological soil crusts in the Tengger Desert. <i> Photosynthetica</i>, 56: 1304-1312.</span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Kleefeld, A., Gypser, S., Herppich, W. B., Bader, G.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Veste, M.</span> (2018): Identification of spatial pattern of photosynthesis hotspots in moss- and lichen-dominated biological soil crusts by combining chlorophyll fluorescence imaging and multispectral BNDVI images. <i>Pedobiologia</i>, 68: 1-11.</span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Jung, P., Briegel-Williams, L., Simon, A., Thyssen, A.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Büdel, B.</span> (2018): Uncovering biological soil crusts: carbon content and structure of intact Arctic, Antarctic and alpine biological soil crusts. <i> Biogeosciences</i>, 15: 1149-1160.</span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Ohad, I., Raanan, H., Keren, N., Tchernov, D.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Kaplan, A.</span> (2010): Light-induced changes within photosystem II protects <i>Microcoleus</i> sp. in biological desert sand crusts against excess light. <i>PLoS ONE</i>, 5(6): e11000.</span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Pushkareva, E., Pessi, I. S., Wilmotte, A.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Elster, J.</span> (2017): Cyanobacterial community composition in Arctic soil crusts at different stages of development. <i>FEMS Microbiology</i> <i>Ecology</i>, 91(12): 143.</span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Sehnal, L., Barták, M.</span><span style="font-size:9.0pt"> and <span style="font-variant: small-caps">Váczi, P.</span> (2014): Diurnal changes in photosynthetic activity of the biological soil crust and lichen: Effects of abiotic factors (Petuniabukta, Svalbard). <i>Czech Polar Reports</i>, 2: 158-167. </span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Strunecký, O., Elster, J.</span><span style="font-size:9.0pt"> and <span style="font-variant: small-caps">Komárek, J.</span> (2012): Molecular clock evidence for survival of Antarctic cyanobacteria (Oscillatoriales, Phormidium autumnale) from Paleozoic times. <i>FEMS Microbiology Ecology</i>, 82: 482-490. </span> </p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Ünal, D., Uyanikgil, Y.</span><span style="font-size:9.0pt"> (2011): UV-B induces cell death in the lichen <i>Physcia semipinnata</i> (JF Gmel). <i> Turkish Journal of Botany</i>, 35: 137-144.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Wu, L., Lei, Y., Lan, S.</span><span style="font-size: 9.0pt"> and <span style="font-variant:small-caps">Hu, C.</span> (2017): Photosynthetic recovery and acclimation to excess light intensity in the rehydrated lichen soil crusts. <i>PLoS ONE</i>, 12: e0172537.</span></p> <p class="MsoNormal" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-right: 0; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Yamano, H., Chen, J., Zhang, Y.</span><span style="font-size:9.0pt"> and <span style="font-variant: small-caps">Tamura, M.</span> (2006): Relating photosynthesis of biological soil crusts with reflectance: Preliminary assessment based on a hydration experiment. <i>International Journal of Remote Sensing</i>, 27(23-24): 5393-5399.</span>
Metrics

0

Crossref logo

0


250

Views

21

PDF views