Implementing an object-based multi-index protocol for mapping surface glacier facies from Chandra-Bhaga basin, Himalaya

Vol.9,No.2(2019)

Abstract

Surface glacier facies are superficial expressions of a glacier that are distinguishable based on differing spectral and structural characteristics according to their age and inter-mixed impurities. Increasing bodies of literature suggest that the varying properties of surface glacier facies differentially influence the melt of the glacier, thus affecting the mass balance. Incorporating these variations into distributed mass balance modelling can improve the perceived accuracy of these models. However, detecting and subsequently mapping these facies with a high degree of accuracy is a necessary precursor to such complex modelling. The variations in the reflectance spectra of various glacier facies permit multiband imagery to exploit band ratios for their effective extraction. However, coarse and medium spatial resolution multispectral imagery can delimit the efficacy of band ratioing by muddling the minor spatial and spectral variations of a glacier. Very high-resolution imagery, on the other hand, creates distortions in the conventionally obtained information extracted through pixel-based classification. Therefore, robust and adaptable methods coupled with higher resolution data products are necessary to effectively map glacier facies. This study endeavours to identify and isolate glacier facies on two unnamed glaciers in the Chandra-Bhaga basin, Himalayas, using an established object-based multi-index protocol. Exploiting the very high resolution offered by WorldView-2 and its eight spectral bands, this study implements customized spectral index ratios via an object-based environment. Pixel-based supervised classification is also performed using three popular classifiers to comparatively gauge the classification accuracies. The object-based multi-index protocol delivered the highest overall accuracy of 86.67%. The Minimum Distance classifier yielded the lowest overall accuracy of 62.50%, whereas, the Mahalanobis Distance and Maximum Likelihood classifiers yielded overall accuracies of 77.50% and 70.84% respectively. The results outline the superiority of the object-based method for extraction of glacier facies. Forthcoming studies must refine the indices and test their applicability in wide ranging scenarios.


Keywords:
g lacier facies; band ratios; object-based classification; customized spectral indices
References
<div class="WordSection1"> <p class="msolistparagraph0" style="text-align: justify; text-indent: -11.35pt; line-height: normal; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span lang="EN-IN" style="font-size: 9.0pt; font-family: 'Times New Roman',serif; font-variant: small-caps; color: black; background: white"> Ali, I., Shukla, A.</span><span lang="EN-IN" style="font-size: 9.0pt; font-family: 'Times New Roman',serif; color: black; background: white"> and <span style="font-variant:small-caps">Romshoo, S.</span> (2017): Assessing linkages between spatial facies changes and dimensional variations of glaciers in the upper Indus Basin, western Himalaya. <i>Geomorphology</i>, 284: 115-129.</span></p> <p class="MsoNormalCxSpFirst" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Alifu, H., Johnson, B.</span><span style="font-size: 9.0pt"> and <span style="font-variant:small-caps">Tateishi, R.</span> (2016): Delineation of Debris Covered Glaciers Based on a Combination of Geomorphometric Parameters and a TIR/NIR/SWIR Band Ratio. <i>IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing</i>, 9: 781-792.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Bamber, J. L., Payne, A. J.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Houghton J.</span> (2004): Introduction and background. <i>In</i>: J. L. Bamber, A. J. Payne (eds.): Mass Balance of the Cryosphere: Observations and Modelling of Contemporary and Future Changes, Cambridge University Press: Cambridge, pp. 1–8. </span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Benson, C.</span><span style="font-size:9.0pt"> (1962):Stratigraphic studies in the snow and firn of the Greenland ice sheet, Cold Regions Research and Engineering Lab Hanover, No. RR70.NH. </span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt"> https://apps.dtic.mil/docs/citations/AD0288219 (accessed on 3 January 2018)</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Bhambri, R., Bolch, T.</span><span style="font-size: 9.0pt"> and <span style="font-variant:small-caps">Chaujar, R.</span> (2011): Mapping of debris covered glaciers in the Garhwal Himalayas using ASTER DEMs and thermal data. <i>International Journal of Remote Sensing</i>, 32: 8095-8119.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Bhardwaj, A., Joshi, P., Snehmani, Sam, L., Singh, M., Singh, S</span><span style="font-size:9.0pt">. and <span style="font-variant: small-caps">Kumar, R.</span> (2015): Applicability of LANDSAT 8 data for characterizing glacier facies and supraglacial debris. <i> International Journal of Applied Earth Observation and Geoinformation</i>, 38: 51-64.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Braun, M., Schuler, T. V., Hock, R., Brown, I</span><span style="font-size:9.0pt">. and <span style="font-variant:small-caps">Jackson, M.</span> (2007): Comparison of remote sensing derived glacier facies maps with distributed mass balance modelling at Engabreen, northern Norway. <i> Proceeding Reports of the International Association of Hydrological Sciences</i>, 318: 126-134.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Congalton, R., Green, K.</span><span style="font-size: 9.0pt"> (2009): Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. CRC Press, Boca Raton, FL, USA. 57 p.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Cracknell, A.P., Hayes, L.</span><span style="font-size:9.0pt"> (1991): Introduction to remote sensing. Taylor & Francis, New York. pp. 222-224. </span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size: 9pt"><span style="font-variant: small-caps"> Dozier, J., Schneider, S. R. </span>and <span style="font-variant: small-caps">McGinnis, D. F.</span> (1981): Effect of grain size and snowpack water equivalence on visible and near infrared satellite observations of snow. Water Resources Research, 17(4):1213-1221.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Gao, B. C., Montes, M. J., Davis, C. O.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Goetz, A. F.</span> (2009): Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. <i>Remote Sensing of Environment</i>, 113: S17-S24.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Gao, Y., Mas, J. F.</span><span style="font-size:9.0pt"> (2008): A comparison of the performance of pixel-based and object-based classifications over images with various spatial resolutions. <i> Online Journal of Earth Sciences</i>, 2(1): 27-35.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Gore, A., Mani, S., Shekhar, C.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Ganju, A.</span> (2017): Glacier surface characteristics derivation and monitoring using Hyperspectral datasets: A case study of Gepang Gath glacier, Western Himalaya. <i>Geocarto International</i>, 34: 23-42.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Guo, Y., Zeng, F.</span><span style="font-size:9.0pt"> (2012): Atmospheric correction comparison of SPOT-5 image based on model FLAASH and model QUAC. <i>International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences</i>, 39(7): 21-23.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Hall, D., Chang, A.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Siddalingaiah, H.</span> (1988): Reflectances of glaciers as calculated using Landsat-5 Thematic Mapper data. <i>Remote Sensing of Environment</i>, 25(3): 311-321. doi: https://doi.org/10.1016/0034-4257(88)90107-1</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Heiskanen, J., Kajuutti, K., Jackson, M., Elvehy, H.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Pellikka, P.</span> (2002): Assessment of glaciological parameters using LANDSAT satellite data in Svartisen, northern Norway. <i>In</i>: <i> Proceedings of EARSeL-LISSIG-Workshop Observing our Cryosphere from Space</i>, Vol. 35.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Jawak, S. D., Luis, A. J.</span><span style="font-size:9.0pt"> (2011): Applications of WorldView-2 satellite data for extraction of polar spatial information and DEM of Larsemann Hills, East Antarctica. <i>In</i>: <i>International Conference on Fuzzy Systems and Neural Computing</i>, 3: 148-151.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Jawak, S. D., Luis, A. J.</span><span style="font-size:9.0pt"> (2013): Very high-resolution satellite data for improved land cover extraction of Larsemann Hills, Eastern Antarctica. <i>Journal of Applied Remote Sensing</i>, 7: 73460-73460.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Jawak, S. D., Luis, A. J.</span><span style="font-size:9.0pt"> (2014): A Semiautomatic Extraction of Antarctic Lake Features Using Worldview-2 Imagery. <i>Photogrammetric Engineering & Remote Sensing</i>, 80: 939-952.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Jawak, S. D., Luis, A. J.</span><span style="font-size:9.0pt"> (2016): Geospatial mapping of Antarctic coastal oasis using geographic object-based image analysis and high-resolution satellite imagery. <i>In</i>: <i>Proceedings of the International Society for Optics and Photonics, SPIE Asia-Pacific Remote Sensing</i>, 98801Q–98801Q, doi:10.1117/12.2222767</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Jawak, S. D., Wankhede, S. F.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Luis, A. J.</span> (2017): Prospective of high-resolution WorldView-2 satellite data for geospatial surface facies mapping of an alpine glacier. <i>In</i>: <i>Proceedings of the Asian Conference on Remote Sensing</i>, New Delhi, India. Available online: https://a-a-r-s.org/proceeding/ACRS2017/ID_5_749/177.pdf (accessed on 02 February 2018).</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Jawak, S. D., Wankhede, S. F.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Luis, A. J.</span> (2018a): Exploration of glacier surface facies mapping techniques using very high resolution Worldview-2 Satellite Data. <i> Proceedings</i>, 2 (7): 339. doi: https://doi.org/10.3390/ecrs-2-05152</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Jawak, S. D., Wankhede, S. F.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Luis, A. J.</span> (2018b): Comparison of pixel and object-based classification techniques for glacier facies extraction. <i>In</i>: <i>Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences</i>, XLII-5: 543-548, Available Online: https://doi.org/ 10.5194/isprs-archives-XLII-5-543-2018</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Jensen, J. R.</span><span style="font-size:9.0pt"> (2015): Introductory digital image processing: a remote sensing perspective. Prentice Hall Press, Upper Saddle River, NJ, USA, 2005, 557-580 pp.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Keshri, A., Shukla, A.</span><span style="font-size: 9.0pt"> and <span style="font-variant:small-caps">Gupta, R.</span> (2009): ASTER ratio indices for supraglacial terrain mapping. <i>International Journal of Remote Sensing</i>, 30: 519-524.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Khan, A., Naz, B.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Bowling, L.</span> (2015): Separating snow, clean and debris covered ice in the Upper Indus Basin, Hindukush-Karakoram-Himalayas, using LANDSAT images between 1998 and 2002. <i>Journal of Hydrology</i>, 521: 46-64.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Kruse, F. A.</span><span style="font-size:9.0pt"> (2004): Comparison of ATREM, ACORN, and FLAASH atmospheric corrections using low-altitude AVIRIS data of Boulder, CO. <i>In</i>: <i>Summaries of 13<sup>th</sup> JPL Airborne Geoscience Workshop</i>, Jet Propulsion Lab, Pasadena, CA.</span></div> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Kulkarni, A., Rathore, B.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Singh, S. K.</span> (2010): Distribution of seasonal snow cover in central and western Himalaya. <i> Annals of Glaciology</i>, 51: 123-128.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Laben, C. A., Brower, B. V.</span><span style="font-size:9.0pt"> (2000): Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. Eastman Kodak Company, U.S. Patent 6,011,875.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Li, M., Zang, S., Zhang, B., Li, S.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Wu, C.</span> (2014): A review of remote sensing image classification techniques: The role of spatio-contextual information. <i>European Journal of Remote Sensing</i>, 47(1): 389-411.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Lillesand, T. M., Kiefer, R. W.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Chipman, J. W.</span> (2004): Remote sensing and image interpretation. John Wiley & Sons, NJ, USA.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Paterson, W. S. B.</span><span style="font-size:9.0pt"> (1994): The Physics of Glaciers, 3<sup>rd </sup>edn. Pergamon, Oxford.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Paul, F., Hendriks, J.</span><span style="font-size: 9.0pt"> (2010): Optical remote sensing of glacier extent. Remote Sensing of Glaciers: Techniques for Topographic, Spatial and Thematic Mapping of Glaciers. Taylor & Francis Group, Boca Raton, 137-152 pp.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Pope, A., Rees, G.</span><span style="font-size:9.0pt"> (2014): Using in situ spectra to explore LANDSAT classification of glacier surfaces. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 27: 42-52.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Pope, E., Willis, I., Pope, A., Miles, E., Arnold, N</span><span style="font-size:9.0pt">. and <span style="font-variant:small-caps">Rees, W.</span> (2016): Contrasting snow and ice albedos derived from MODIS, LANDSAT ETM+ and airborne data from Langjökull, Iceland. <i>Remote Sensing of Environment</i>, 175: 183-195.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Racoviteanu, A., Williams, M.</span><span style="font-size:9.0pt"> (2012): Decision tree and texture analysis for mapping debris-covered glaciers in the Kangchenjunga area, Eastern Himalaya. <i>Remote Sensing</i>, 4: 3078-3109.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Rastner, P., Bolch, T., Notarnicola, C.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Paul, F.</span> (2014): A comparison of pixel- and object-based glacier classification with optical satellite images. <i>IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,</i> 7: 853-862.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; text-autospace: none; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt;font-variant:small-caps">Raup, B. H., Racoviteanu, A., Khalsa, S. J. S., Helm, C., Armstrong, R.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Arnaud, Y</span>. (2007): The GLIMS geospatial glacier database: A new tool for studying glacier change. <i>Global and Planetary Change</i>, 56: 101-110. doi:10.1016/j.gloplacha.2006.07.018</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Robson, B., Nuth, C., Dahl, S., Hölbling, D., Strozzi, T.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Nielsen, P.</span> (2015): Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. <i>Remote Sensing of Environment</i>, 170: 372-387.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Shukla, A., Ali, I.</span><span style="font-size:9.0pt"> (2016): A hierarchical knowledge-based classification for glacier terrain mapping: A case study from Kolahoi Glacier, Kashmir Himalaya. <i> Annals of Glaciology</i>, 57: 1-10.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Shukla, A., Arora, M.</span><span style="font-size: 9.0pt"> and <span style="font-variant:small-caps">Gupta, R.</span> (2010): Synergistic approach for mapping debris-covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters. <i> Remote Sensing of Environment</i>, 114: 1378-1387.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Shukla, A., Arora, M.</span><span style="font-size: 9.0pt"> and <span style="font-variant:small-caps">Gupta, R.</span> (2010): Synergistic approach for mapping debris-covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters. <i> Remote Sensing of Environment</i>, 114: 1378-1387.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Sidjak, R. W.</span><span style="font-size:9.0pt"> (1999): Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using LANDSAT TM and digital elevation data. <i>International Journal of Remote Sensing</i>, 20: 273-284.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Tachikawa, T., Hato, M., Kaku, M.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Iwasaki, A.</span> (2011): Characteristics of ASTER GDEM version 2. In: <i>Proceedings of the IEEE international geoscience and remote sensing symposium</i>, Vancouver, Canada, 24-29 July: 3657-3660</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Tsai, Y.-L.S., Dietz, A., Oppelt, N.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Kuenzer, C.</span> (2019): Wet and dry snow detection using Sentinel-1 SAR data for mountainous areas with a machine learning technique. <i>Remote Sens</i>ing, 11: 895. </span><span lang="EN-US" style="font-size: 9.0pt">https://doi.org/10.3390/rs11080895</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Wei, W., Chen, X.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Ma, A.</span> (2005): Object-oriented information extraction and application in high-resolution remote sensing image. <i>In</i>: <i>Proceedings of the IEEE Geoscience and Remote Sensing Symposium</i>, Seoul, Korea, 29 July, 6: 3803-3806.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Winsvold, S.H., Kääb, A.</span><span style="font-size: 9.0pt"> and <span style="font-variant:small-caps">Nuth, C.</span> (2016): Regional glacier mapping using optical satellite data time series. <i> IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing</i>, 9(8): 3698-3711.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Witharana, C., Civco, D. L.</span><span style="font-size:9.0pt"> (2014): Optimizing multi-resolution segmentation scale using empirical methods: Exploring the sensitivity of the supervised discrepancy measure Euclidean distance 2 (ED2). <i>ISPRS Journal of Photogrammetry and Remote Sensing</i>, 87: 108-121.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt; font-variant:small-caps">Yousuf, B., Shukla, A., Arora, M. K.</span><span style="font-size:9.0pt"> and <span style="font-variant:small-caps">Jasrotia, A. S.</span> (2019): Glacier facies characterization using optical satellite data: Impacts of radiometric resolution, seasonality, and surface morphology. <i>Progress in Physical Geography: Earth and Environment</i>, 43: 473-495.</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size:9.0pt"> </span> <span lang="EN-US" style="font-size: 9.0pt">https://doi.org/10.1177/0309133319840770</span></p> <p class="MsoNormalCxSpMiddle" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span style="font-size: 9.0pt; font-variant: small-caps; color: #222222; background: white"> Zhang, J., Jia, L., Menenti, M.</span><span style="font-size: 9.0pt; color: #222222; background: white"> and <span style="font-variant:small-caps">Hu, G.</span> (2019): Glacier facies mapping using a machine-learning algorithm: The parlung Zangbo basin case study. <i>Remote Sensing</i>, 11: 452. </span> <span lang="EN-US" style="font-size: 9.0pt; color: black; background: white"> https://doi.org/10.3390/rs11040452.</span><span class="MsoHyperlink"></span></p> <p class="MsoNormal" style="margin-top: 0; margin-bottom: 0; margin-right:0"> <span lang="EN-US" style="font-family: Calibri,sans-serif"></span></p> <p class="AB-Nadpisodstavce" style="text-indent: -11.4pt; margin-left: 11.4pt; margin-top: 0; margin-bottom: 0"> <span lang="EN-GB"></span></p> <p class="MsoNormal" style="text-align: justify; margin-top: 0; margin-bottom: 0; margin-right:0"> <b><span style="font-size:11.0pt">Web sources / Other sources</span></b></p> <p class="MsoNormal" style="text-align: justify; margin-top: 0; margin-bottom: 0; margin-right:0"> <b><span style="font-size:10.0pt"></span></b></p> <p class="MsoNormalCxSpLast" style="text-align: justify; text-indent: -11.35pt; margin-left: 11.35pt; margin-top: 0; margin-bottom: 0"> <span lang="EN-GB" style="font-size: 9.0pt">[1] </span> <span style="font-size:9.0pt">Definiens Developer 7. (2007): Reference Book; Definiens AG: Munich, Germany. 21 p.</span>
Metrics

358

Views

37

PDF views