Microclimate variability of Antarctic terrestrial ecosystems manipulated by open top chambers: Comparison of selected austral summer seasons within a decade

Vol.9,No.1(2019)

Abstract

Open top chambers (OTCs) were established in the northern part of the James Ross Island, Antarctic Peninsula, as a part of long-term program in January 2007. They were installed in two typical locations differing in vegetation cover. First group was set in a seashore ecosystem dominated by moss carpet supplemented with few lichen species. The other group was located on the top of a volcanic mesa (350 m a.s.l.) with irregular cover of lichens Usnea antarctica and Umbilicaria decussata. Temperature regimes inside and outside OTCs were continuously measured and related to year-round reference meteorological data. For majority of OTC installations, temperature increase caused by OTC was apparent in the period of September-March. Detailed analysis of chamber effect on the increase in air, surface, vegetation, and ground temperatures was done for late austral summer seasons of 2007 and 2008, and 10 years later, the seasons of 2017 and 2018. The OTC-induced temperature increase was more pronounced for mesa than seashore plot. For both locations, OTC-induced increase in temperature was highest for warm days with full sunshine and limited wind speed. On stormy days with overcast sky and high wind speed, the shift in temperature was smaller. Consequences of a long-term manipulation of Antarctic terrestrial ecosystems by OTCs for moss and lichen ecophysiology are discussed.


Keywords:
James Ross Island; microclimate; manipulated environment; chamber effect; austral summer; ground warming; ecophysiology; lichens; moss
References

Aerts, R., Cornelissen, J. H. C. and Dorrepaal, E. (2006): Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology, 182: 65-77.

Ambrožová, K., Láska, K. (2016): The air temperature change on James Ross Island within the context of the Antarctic Peninsula. In: A. Nováček (ed.): Conference Proceedings of Czech Geographical Society, 5–7 September 2016, České Budějovice, Czech Republic. České Budějovice: Jihočeská univerzita. pp 20-25. ISBN: 978-80-7394-619-7.

Ambrožová, K., Láska, K., Hrbáček, F., Kavan, J. and Ondruch, J. (2019): Air temperature and lapse rate variation in the ice-free and glaciated areas of northern James Ross Island, Antarctic Peninsula, during 2013–2016. International Journal of Climatology, 39: 643-657, doi: 10.1002/joc.5832.

Barták, M., Váczi, P., Hájek, J. and Smykla, J. (2007): Low temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria elegans. Polar Biology, 31: 47-51.

Barták, M., Gloser, J. and Hájek, J. (2005): Visualized, photosynthetic characteristics of the lichen Xanthoria elegans related to daily courses of light, temperature and hydration: a field study from Galindez Island, maritime Antarctica. Lichenologist, 37: 433-443.

Barták, M., Láska, K., Prošek, P., Hájek, J. and Váczi, P. (2009): Long-term study on vegetation responses to manipulated warming using open top chambers installed in three contrasting Antarctic habitats. In: M. Barták, J. Hájek, P. Váczi (eds.): Structure and Function of Antarctic Terrestrial Ecosystems. Book of Abstracts and Contributed Papers. Conference, Brno, October 22th-23th, 2009, Masaryk University, Brno, Czech Republic. 1st edition, ISBN 978-80-210-4987-1, pp.48-51.

Bohuslavová, O., Macek, P., Redčenko, O., Láska, K., Nedbalová, L. and Elster, J. (2018): Dispersal of lichens along a successional gradient after deglaciation of volcanic mesas on northern James Ross Island, Antarctic Peninsula. Polar Biology, 41: 2221-2232. doi:10.1007/s00300-018-2357-7.

Bohuslavová, O., Šmilauer, P. and Elster, J. (2012): Usnea lichen community biomass estimation on volcanic mesas, James Ross Island, Antarctica. Polar Biology, 35: 1563-1572.

Bokhorst, S., Convey, P., Huiskes, A. and Aerts, R. (2016): Usnea antarctica, an important Antarctic lichen, is vulnerable to aspects of regional environmental change. Polar Biology, 39 (3): 511-521.

Bokhorst, S., Huiskes, A., Aerts, R., Convey, P., Cooper, E. J., Dalen, L., Erschbamer, B., Gudmundsson, J., Hofgaard, A., Hollister, R. D., Johnstone, J., Jónsdóttir, I. S., Lebouvier, M. , Van de Vijver, B. , Wahren, C. and Dorrepaal, E. (2013): Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth. Global Change Biology, 19: 64-74. doi:10.1111/gcb.12028.

Bokhorst, S., Huiskes, A., Convey, P. and Aerts, R. (2007): Climate change effects on organic matter decomposition rates in ecosystems from the Maritime Antarctic and Falkland Islands. Global Change Biology,13: 2642-2653.

Casanova-Katny, A., Torres-Mellado, G. A. and Eppley, S. M. (2016): Reproductive output of mosses under experimental warming on Fildes Peninsula, King George Island, maritime Antarctica. Revista Chilena de Historia Natural, 89: 13.

Convey, P.,Smith, R. I. L. (2006): Responses of terrestrial Antarctic ecosystems to climate change. In: J.Rozema, R.Aerts, H.Cornelissen (eds.): Plants and Climate Change, 2006, Springer Netherlands, pp. 1-12.

Davies, B. J., Glasser, N. F., Carrivick, J. L., Hambrey, M. J., Smellie, J. L. and Nývlt, D. (2013): Landscape evolution and ice-sheet behaviour in a semi-arid polar environment: James Ross Island, NE Antarctic Peninsula. In: M. J. Hambrey, P. F. Barker, P. J. Barrett, V. Bowman, B. Davies, J. L. Smellie, M. Tranter (eds): Antarctic palaeoenvironments and earth-surface processes, Vol. 381. Geological Society, Special Publications, London, pp 353–395.

Dollery, R., Hodkinson, I. D. and Jónsdóttir, I. S. (2006): Impact of warming and timing of snow melt on soil microarthropod assemblages associated with Dryas-dominated plant communities on Svalbard. Ecography, 29: 111-119.

Engel, Z., Nývlt, D. and Láska, K. (2012): Ice thickness, bed topography and glacier volume changes on James Ross Island, Antarctic Peninsula. Journal of Glaciology, 58: 904-914.

Friedmann, E. I., Sun, H. J. (2005): Communities Adjust their Temperature Optima by Shifting Producer-to-Consumer Ratio, Shown in Lichens as Models: I. Hypothesis. Microbial Ecology, 49: 523-527.

Gjessing, Y., vstedal, D. O.(1989): Microclimates and water budget of algae, lichens and a moss on some nunataks in Queen Maud Land. International Journal of Biometeorology, 33: 272-281.

Hájek, J., Barták, M. and Dubová, J. (2006): Inhibition of photosynthetic processes in foliose lichens induced by temperature and osmotic stress. Biologia Plantarum,50:624-634.

Hennion, F., Huiskes, A. H. L., Robinson, S. and Convey, P. (2006): Physiological Traits of Organisms in a Changing Environment. In: D. M. Bergstrom, P. Convey, A. H. L Huiskes (eds.): Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, 2006, Kluwer Academic Publisher, the Netherlands, pp. 127-157.

Hollister, R. D., Webber, P. J. and Tweedie, C. E. (2005): The response of Alaskan arctic tundra to experimental warming: differences between short- and long-term responses. Global Change Biology, 11: 525-536.

Hollister, R. D., Webber, P. J., Nelson, F. E. and Tweedie, C. E. (2006): Soil thaw and temperature response to air warming varies by plant community: Results from an open-top chamber experiment in Northern Alaska. Arctic, Antarctic and Alpine Research, 38: 206-215.

Hollister, R. D., Webber, P. J. (2000): Biotic validation of small open-top chambers in a tundra ecosystem. Global Change Biology, 6: 835-842.

Hrbáček, F., Láska, K. and Engel, Z. (2016a): Effect of the snow cover on activelayer thermal regime-a case study from James Ross Island, Antarctic Peninsula. Permafrost and Periglacial Processes, 27: 307-315. doi: 10.1002/ppp.1871.

Hrbáček, F., Láska, K., Nývlt, D., Engel, Z. and Oliva, M. (2016b): Active layer thickness variability on James Ross Island, eastern Antarctic Peninsula. In: F. Gunther, A. Morgenstern, (eds.): XI. International Conference on Permafrost Exploring Permafrost in a Future Earth, Potsdam, Germany, Bibliothek Wissenschaftspark Albert Einstein, p. 125 doi: 10.2312/GFZ.LIS. 2016.001.

Hrbáček, F., Vieira, G., Oliva, M., Balks, M., Guglielmin, M., de Pablo, M. Á., Molina, A., Ramos, M., Goyanes, G., Meiklejohn, I., Abramov, A., Demidov, N., Fedorov-Davydov, D., Lupachev, A., Rivkina, E., Láska, K., Kňažková, M., Nývlt, D., Raffi, R., Strelin, J., Sone, T., Fukui, K., Dolgikh, A., Zazovskaya, E., Mergelov, N., Osokin, N. and Miamin, V. (2018): Active layer monitoring in Antarctica: an overview of results from 2006 to 2015. Polar Geography. doi:10.1080/1088937X.2017.1420105.

Huiskes, A. H. L. (2007): Evolution and biodiversity in the Antarctic: The response of life to change. IX SCAR International Biology Symposium. Antarctic Science, 19: 279-281.

Jägerbrand, A. K., Lindblad, K. E. M., Björk, R. G., Alatalo, J. M. and Molau, U. (2006): Bryophyte and lichen diversity under simulated environmental change compared with observed variation in unmanipulated alpine tundra. Biodiversity and Conservation, 15: 4453-4475.

Jonasson, S., Havström, M., Jensen, M. and Callaghan, T. V. (1993): In situ mineralization of nitrogen and phosphorus of arctic soils after perturbations simulating climate change. Oecologia, 95: 179-186.

Kim, D., Park, H. J., Kim, J. H., Youn, U. J., Yang, Y. H., Casanova-Katny, A., Vargas, C. M., Venegas, E. Z., Park, H. and Hong, S. G. (2018): Passive warming effect on soil microbial community and humic substance degradation in maritime Antarctic region. Journal of Basic Microbiology, 58: 513-522. doi: 10.1002/jobm.201700470.

Lange, O. L., Green, T. G. A. and Heber, U. (2001): Hydration-dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance? Journal of Experimental Botany, 522: 2033-2042.

Láska, K., Barták, M., Hájek, J., Prošek, P. and Bohuslavová, O. (2011a): Climatic and ecological characteristics of deglaciated area of James Ross Island, Antarctica, with a special respect to vegetation cover. Czech Polar Reports, 1: 49-62.

Láska, K., Budík, L., Budíková, M. and Prošek, P. (2011b): Method of estimating solar UV radiation in high-latitude locations based on satellite ozone retrieval with an improved algorithm. International Journal of Remote Sensing, 32: 3165-3177.

Mertens, S., Nijs, I., Heuer, M., Kockelbergh, F., Beyens, L., Van Kerckvoorde, A. and Impens, I. (2001): Influence of High Temperature on End-of-Season Tundra CO2 Exchange. Global Change Biology, 4: 226-236.

Nakatsubo, T. (2002): Predicting the impact of climatic warming on the carbon balance of the moss Sanionia uncinata on a maritime Antarctic island. Journal of Plant Research, 115: 99-106.

Nkem, J. N.,Wall, D. H., Virginia, R. A.,Barrett, J. E.,Broos, E. J.,Porazinska, D. L.and Adams, B. J. (2006): Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biology, 29: 346-352.

Nijs, I., Kockelbergh, F., Heuer, M., Beyens, L., Trappeniers, K. and Impens, I. (2000): Climate-Warming Simulation in Tundra: Enhanced Precision and Repeatability with an Improved Infrared-Heating Device. Arctic, Antarctic and Alpine Research, 32: 346-350.

Nybakken, L., Bilger, W., Johanson, U., Björn, L. O., Zielke, M. and Solheim, B. (2004): Epidermal UV-screening in vascular plants from Svalbard. Polar Biology, 27: 383-390.

Prošek, P., Láska, K., Budíková, M. and Milinovsky, G. (2004): The regime of Total and Biological effective Ultraviolet Radiation at Vernadsky station (Argentine Islands, Antarctica) and the Impact of Ozone and Cloudiness in 2002 and 2003. In: D. Drbohlav, J. Kalvoda, V. Voženílek (eds.): Czech Geography at the Dawn of the Millenium, 2004, Palacky University in Olomouc, Olomouc, pp. 211-222.

Rai, H., Nag, P., Upreti, D. K. and Gupta, R. G. (2010): Climate warming studies in alpine habitats of indian Himalaya, using lichen based passive temperature-enhancing system. Nature and Science; 8(12): 104-106.

Rinnan, R., Rousk, J., Yergeau, E., Kowalchuk, G. A. and Baath, E. (2009): Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: Predicting responses to climate warming. Global Change Biology, 15: 2615-2625.

Robinson, C. H., Wookey, P. A., Parsons, A. N., Potter, J. A., Lee, J. A., Callaghan, T. V., Press, M. C. and Welker, J. M. (1995): Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi-desert and a subarctic dwarf shrub heath. Oikos, 74: 503-512.

Sáez, P., Cavieres, L. A., Galmés, J., Gil-Pelegrín, E., Peguero-Pina, J. J., Sancho-Knapik, D., Vivas, M., Sanhueza, C., Ramírez, C. F., Rivera, B. K., Corcuera, L. J. and Bravo, L. A. (2018): In situ warming in the Antarctic: effects on growth and photosynthesis in Antarctic vascular plants. New Phytologist, 218(4):1406-1418. doi: 10.1111/nph.15124.

Sancho, L. G., Pintado, A. and Green, T. G. A. (2019): Antarctic studies show lichens to be excellent biomonitors of climate change. Diversity, 11, 42; doi:10.3390/d11030042.

Schlensog, M., Schroeter, B. (2000): Poikilohydry in antarctic cryptogams and its influence on photosynthetic performance in mesic and xeric habitats. In: W. Davison, C. Howard-Williams, P. Broady (eds.): Antarctic Ecosystems: Models for Wider Ecological Understanding, 2000, Christchurch, New Zealand: Caxton Press, pp. 175-182.

Sierra-Almeida, A., Lohengrin, A., Cavieres, L. A. and Bravo, L. A. (2018): Warmer Temperatures Affect the in situ Freezing Resistance of the Antarctic Vascular Plants. Frontiers in Plant Science, 9: 1456, doi: 10.3389/fpls.2018.01456.

Skvarca, P., De Angelis, H. (2003): Impact assesment of regional climate warming on glaciers and ice shelves of the northerneastern Antarctic Peninsula. In: E. Domack, A. Leventes, A. Burnett, R. Bindschadler, R. Convey, M. Kirby (eds.): Antarctic Peninsula Climate Variability. Historical and Paleoenvironmental Perspectives. Antarctic Research Series, 79: 69-78. Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Carleton, A. M., Jones, P. D, Lagun, V., Reid, P. A. and Iagovkina, S. (2005): Antarctic climate change during the last 50 years. International Journal of Climatology, 25: 279-294. Turner, J., Overland, J. E. and Walsh, J. E. (2007): An Arctic and Antarctic perspective on recent climate change. International Journal of Climatology, 27: 277-293.

van Gestel, N., Natali, S., Andriuzzi, W., Chapin, F. S., Ludwig, S., Moore, J. C., Pressler, Y., Salmon, V., Schuur, T., Simpson, R. and Wall, D. H. (2019): Long-term warming research in high-latitude ecosystems: Responses from polar ecosystems and implications for future climate (Chapter 15). In: J. E. Mohan (ed.): Ecosystem Consequences of Soil Warming: Microbes, Vegetation, Fauna and Soil Biogeochemistry. Elsevier, pp. 441-487.

https://doi.org/10.1016/B978-0-12-813493-1.00016-8

van Lipzig, N. P. M., King, J. C., Lachlan-Cope, T. A. and van den Broeke, M. R. (2004): Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model. Journal of Geophysical Research: Atmospheres, 109: 1-16. doi: 10.1029/2004JD004701.

Yergeau, E., Bokhorst, S., Kang, S., Zhou, J., Greer, C. W., Aerts, R. and Kowalchuk, G. A. (2012): Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. The ISME Journal, 6: 692-702. doi: 10.1038/ismej.2011.124.

Web sources / Other sources

[1] James Ross Island—northern part. In: Topographic Map 1: 25 000, 1st edition, 2009, Praha, Czech Geological Survey. ISBN: 978-80-7075-734-5.,

Metrics

357

Views

49

PDF views