Open top chamber microclimate may limit photosynthetic processes in Antarctic lichen: Case study from King George Island, Antarctica
Vol.9,No.1(2019)
Long-term manipulated warming experiments using the open top chamber (OTC) approach tend to mimick the future climate and predict the changes in photosynthesis and production of vegetation under globally changed climate. In Antarctica, several long-term experiments are carried out recently. Here we report to the lichens grown in OTCs installed at the Fildes Peninsula (King George Island). The field study compares primary photochemical processes of photosynthesis in Antarctic lichen Placopsis antarctica grown for one year in OTC and compared to outside plot (control). We measured effective quantum yield of photosystem II (ΦPSII) of green algae part of thallus in 10 min. interval for 12 days. We examined the responses of diurnal ΦPSII to PAR in relation to environmental factors through continuous 12-d-long monitoring of chlorophyll fluorescence parameters ΦPSII in particular. Daily courses of ΦPSII and photosynthetic electron transport rate (ETR) to photosynthetically active radiation (PAR) and hydration state of thallus have been assumed to reflect changes in physiological status of P. antarctica in changing Antarctic environment. The data indicate that OTC microenvironment may lead to partial limitation of photosynthetic processes in P. antarctica during austral summer season. The limitation is caused by accelerated dehydration of thallus in OTC compared to the outside generally colder control plot, and thus shortened physiologically active period of lichens in OTC.
monitoring fluorometer; cyanolichens; Antarctic tundra; Placopsis antarctica; electron transport rate; chlorophyll fluorescence; long-term exposition
Baker, N. R. (2008): Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59: 89-113.
Barták, M., Hájek, J., Morkusová, J., Skácelová, K. and Košuthová, A. (2018): Dehydration induced changes in spectral reflectance indices and chlorophyll fluorescence of Antarctic lichens with different thallus color, and intrathalline photobiont. Acta Physiologiae Plantarum, 40: (Publication No. 177). https://doi.org/10.1007/s11738-018-2751-3.
Barták M., Váczi P. and Hájek J. (2012): Photosynthetic activity in three vascular species of Spitsbergen vegetation during summer season in response to microclimate. Polish Polar Research, 33(4): 443-462.
Barták, M., Trnková, K., Hansen, E. S., Hazdrová, J., Skácelová, K., Hájek, J. and Forbelská, M. (2015): Effect of dehydration on spectral reflectance and photosynthetic efficiency in Umbilicaria arctica and U. hyperborea. Biologia Plantarum, 59: 357-365.
Barták, M., Váczi, P. (2014): Long-term fluorometric measurements of photosynthetic processes in Antarctic moss Bryum sp. during austral summer season. Czech Polar Reports, 4: 63-72.
Barták, M. (2014): Lichen photosynthesis. Scaling from the cellular to the organism level. In: M. F. Hohmann-Marriott (ed.): The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration. Dordrecht, Springer, pp. 379-400.
Barták, M., Gloser, J. and Hájek, J. (2005): Visualized photosynthetic characteristics of the lichen Xanthoria elegans related to daily courses of light, temperature and hydration: a field study from Galindez Island, maritime Antarctica. Lichenologist, 37: 433-443.
Barták, M., Pláteníková, E. Carerras, H., Hájek, J., Mateos, A. C. and Marečková, M. (2018): Effect of UV-B radiation on the content of UV-B absorbing compounds and photosynthetic parameters in Parmotrema austrosinense from two contrasting habitats. Plant Biology (Stuttg), 20: 808-816.
Beck, A., Bechteler, J., Casanova-Katny, A. and Dzhilyanova, I. (2019) The pioneer lichen Placopsis in maritime Antarctica: Genetic diversity of their mycobionts and green algal symbionts, and their correlation with deglaciation time. Symbiosis, pp. 1-24, https://doi.org/ 10.1007/s13199-019-00624-4.
Belshe, F., Durako, M. J. and Blum, J.E. (2008): Diurnal light curves and landscape-scale variation in photosynthetic characteristics of Thalassia testudinum in Florida Bay. Aquatic Botany, 89: 16-22.
Bokhorst, S., Huiskes, A., Convey, P. and Aerts, R. (2007): The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the Maritime Antarctic. BMC Ecology, 7: 15.
Bokhorst, S., Huiskes, A. H. L., Convey, P., Sinclair, B. J., Lebouvier, M., Van de Vijver, B. and Wall, D. H. (2011): Microclimate impacts of passive warming methods in Antarctica: implications for climate change studies. Polar Biology, 34(10): 1421-1435, https://doi.org/ 10.1007/s00300-011-0997-y.
Casanova-Katny, A., Pizarro, M., Caballero, M. M., Cordero, R. and Zúiga, G. E. (2015): Non-structural carbohydrate content in cryptogamic Antarctic species after two years of passive warming on the Fildes Peninsula. Czech Polar Reports, 5: 88-98.
Casanova-Katny, A., Torres-Mellado, G. A. and Eppley, S. M. (2016): Reproductive output of mosses under experimental warming on Fildes Peninsula, King George Island, maritime Antarctica. Revista Chilena de Historia Natural, 89: 13.
Durako, M. J. (2012): Using PAM fluorometry for landscape-level assessment of Thalassia testudinum: Can diurnal variation in photochemical efficiency be used as an ecoindicator of seagrass health? Ecological Indicators, 18: 243-251.
Figueroa, F. L., Conde-Álvarez, R., Bonomi Barufi, J., Celis-Plá, P. S. M., Flores, P., Malta, E. J., Stengel, D. B., Meyerhoff, O. and Pérez-Ruzafa, A. (2014): Continuous monitoring of in vivo chlorophyll a fluorescence in Ulva rigida (Chlorophyta) submitted to different CO2, nutrient and temperature regimes. Aquatic Biology, 22: 195-212.
Galloway, D. J., Lewis-Smith, R. and Quilhot, W. (2005): A new species of Placopsis (Agyriaceae: Ascomycota) from Antarctica. The Lichenologist, 37(4): 321-327.
Gauslaa, Y., Solhaug, K. A. and Longinotti, S. (2017): Functional traits prolonging photosynthetically active periods in epiphytic cephalolichens during desiccation. Environmental and Experimental Botany, 141: 83-91.
Genty, B., Briantais, J. M. and Baker, N. R. (1989): The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, 990: 87-92. https://doi.org/10.1016/S0304-4165(89) 80016-9.
Green, T. G. A., Schroeter, B., Kappen, L., Seppelt, R. D. and Maseyk, K. (1998): An assessment of the relationship between chlorophyll fluorescence and CO2 gas exchange from field measurements on a moss and lichen. Planta, 206: 611-618.
Green, T. G. A., Schlensog, M., Sancho, L. G., Winkler, B., Broom, F. D. and Schroeter, B. (2002): The photobiont determines the pattern of photosynthetic activity within a single lichen thallus containing cyanobacterial and green algal sectors (photosymbiodeme). Oecologia, 130: 191-198.
Hovenden, M. Seppelt, R. D. (1995): Utility of modulated fluorescence in measuring photosynthetic activity of Antarctic plants: Field and laboratory studies. Functional Plant Biology, 22: 321-330.
Kim, D., Park H. J., Kim, J. H., Youn, U. J., Yang, Y. H., Casanova-Katny, A., Vargas, C. M., Venegas, E. Z., Park, H. and Hong, S. G. (2018): Passive warming effect on soil microbial community and humic substance degradation in maritime Antarctic region. Journal of Basic Microbiology, 58: 513-522.
Kolari, P., Chan, T., Porcar-Castell, A., Bäck, J., Nikinmaa, E., and Juurola, E. (2014): Field and controlled environment measurements show strong seasonal acclimation in photosynthesis and respiration potential in boreal Scots pine. Frontiers in Plant Science, 5: 717.
Krall, J. P., Edwards, G. E. (1992): Relationship between photosystem II activity and CO2 fixation in leaves. Physiologia Plantarum, 86: 180-187.
Kranner, I., Beckett, R., Hochman, A. and Nash, T. H. (2008): Desiccation-tolerance in lichens: A Review. The Bryologist, 111: 576-593.
Lakatos, M., Rascher, U. and Büdel, B. (2006): Functional characteristics of corticolous lichens in the understory of a tropical lowland rain forest. New Phytologist, 172: 679-695.
Leisner, J. M. R, Green, T. G. A. and Lange, O. L. (1997): Photobiont activity of a temperate crustose lichen: Long-term chlorophyll fluorescence and CO2 exchange measurements in the field. Symbiosis, 23(2): 165-182.
Marion, G. M., Henry, G. H. R., Freckman, D.W., Johnstone, J., Jones, G., Jones, M. H., Lévesque, E., Molau, U., Mlgaard, P., Parsons, A.N., Svoboda, J. and Virginia, R. A. (1997): Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology, 3: 20-32.
Marshall, H. J., Geider, R. J. and Flynn, K. J. (2000): A mechanistic model of photoinhibition. New Phytologist, 145: 347-359.
Nimis, P. L., Scheidegger, Ch. and Wolseley, P. A. (2002): Monitoring with lichens–monitoring lichens. The Bryologist, 105: 408.
Olech, M. (2010): Responses of Antarctic tundra ecosystem to climate change and human activity. Papers on Global Change IGBP, 1(17): 43-52.
Pannewitz, S., Green, T. G. A., Maysek, K., Schlensog, M., Seppelt, R., Sancho, L. G., Türk, R. and Schroeter, B. (2005): Photosynthetic responses of three common mosses from continental Antarctica. Antarctic Science, 17: 341-352.
Pardow, A., Hartard, B. and Lakatos, M. (2010): Morphological, photosynthetic and water relations traits underpin the contrasting success of two tropical lichen groups at the interior and edge of forest fragments. AoB Plants. 2010: plq004.
Porcar-Castell, A., Pfuendel, E., Korhonen, J. F. J. and Juurola, E. (2008): A new monitoring PAM fluorometer (MONI-PAM) to study the short-and long-term acclimation of photosystem II in field conditions. Photosynthesis Research, 96: 173-179.
Raggio, J., Green, T. G. A., Crittenden, P. D., Pintado, A., Vivas, M., Pérez-Ortega, S., De los Ríos, A. and Sancho, L. G. (2012): Comparative ecophysiology of three Placopsis species, pioneer lichens in recently exposed Chilean glacial forelands. Symbiosis, 56: 55-66. doi: 10.1007/s13199-012-0159-1.
Raggio, J., Pintado, A., Vivas, M., Sancho, L. G., Büdel, B., Colesie, C., Weber, B., Schroeter, B. and Green, T. G. A. (2014): Continuous chlorophyll fluorescence, gas exchange and microclimate monitoring in a natural soil crust habitat in Tabernas badlands, Almería, Spain: Progressing towards a model to understand productivity. Biodiversity and Conservation, 23: 1809-1826.
Rai, A. N. (1990): Cyanobacterial‐fungal symbioses: the cyanolichens In: A. N. Rai (ed.): CRC Handbook of Symbiotic Cyanobacteria. CRC Press, Boca Raton, Florida. pp. 9-41.
Ritchie, R. J., Runcie, J. W. (2014): A portable reflectance-absorptance-transmittance meter for photosynthetic work on vascular plant leaves. Photosynthetica, 52: 614-626.
Ritchie, R. J. (2014): Photosynthesis in an Encrusting Lichen (Dirinaria picta (Sw.) Schaer. ex Clem., Physiaceae) and its Symbiont, Trebouxia sp., Using Pulse Amplitude Modulation Fluorometry. International Journal of Plant Science, 175: 450-466.
Rosenqvist, E., van Kooten, O. (2003): Chlorophyll fluorescence: A general description and nomenclature. In: J. R. DeEll, P. M. A. Toivonen (eds): Practical Applications of Chlorophyll Fluorescence in Plant Biology, pp. 31-77. https://doi.org/10.1007/978-1-4615-0415-3_2.
Sehnal, L., Barták, M. and Váczi, P. (2014): Diurnal changes in photosynthetic activity of the biological soil crust and lichen: Effects of abiotic factors (Petuniabukta, Svalbard). Czech Polar Reports, 4: 158-167.
Shortlidge, E. E., Eppley, S. M., Kohler, H., Rosenstiel, T. N., Zúiga, G. E. and Casanova-Katny, A. (2017): Passive warming reduces stress and shifts reproductive effort in the Antarctic moss, Polytrichastrum alpinum. Annals of Botany, 119: 27-38.
Schlensog, M., Green, T. G. A. and Schroeter, B. (2013): Life form and water source interact to determine active time and environment in cryptogams: An example from the maritime Antarctic. Oecologia, 173: 59-72.
Schreiber, U. (2004): Pulse-Amplitude (PAM) fluorometry and saturation pulse method. In: G. Papageorgiou and Govindjee (eds.): Chlorophyll fluorescence: A signature of photosynthesis. Springer, Dordrecht, The Netherlands. pp. 279-319.
Schroeter, B. (1994): In situ photosynthetic differentiation of the green algal and the cyanobacterial photobiont in the crustose lichen Placopsis contortuplicata. Oecologia, 98: 212-220.
Schroeter, B., Green, T. G. A., Pannewitz, S., Schlensog, M., and Sancho, L. G. (2011): Summer variability, winter dormancy: lichen activity over 3 years at Botany Bay, 77°S latitude, continental Antarctica. Polar Biology, 34: 13-22.
Schroeter, B., Green, T. G. A., Pintado, A., Türk, R. and Sancho, L. G. (2017): Summer activity patterns for mosses and lichens in Maritime Antarctica. Antarctic Science, 29(6): 517-530. doi: 10.1017/S095410201700027X.
Schroeter, B., Sancho, L. G. and Valladares, F. (1999): In situ comparison of daily photosynthetic activity patterns of saxicolous lichens and mosses in Sierra de Guadarrama, Central Spain. The Bryologist, 102 (4): 623-633. doi: 10.2307/3244252.
Spielman, A. A., Pereria A. B. (2012): Lichens on the Maritime Antarctica (A small field guide for some common species). GLALIA, Revista Electrónica del Grupo LatinoAmericano de Liquenólogos, 4: 1-28.
Stanton, D. E., Merlin, M., Bryant, G. and Ball, M. C. (2013) Water redistribution determines photosynthetic responses to warming and drying in two polar mosses. Functional Plant Biology, 41: 178-186.
Stemke, J. A., Santiago, L. S. (2011): Consequences of light absorptance in calculating electron transport rate of desert and succulent plants. Photosynthetica, 49: 195-200.
Sundberg, B., Campbell, D. and Palmqvist, K. (1997): Predicting CO2 gain and photosynthetic light acclimation from fluorescence yield and quenching in cyano-lichens. Planta, 201(2): 138-145.
Yang, S.-J., Sun, M., Zhang, Y.-J. and Cao, K.-F. (2014): Strong leaf morphological, anatomical, and physiological responses of a subtropical woody bamboo (Sinarundinaria nitida) to contrasting light environments. Plant Ecology, 215: 97-109.
Zha, T.-S., Wu, Y. J., Jia, X., Zhang, M. Y., Bai, Y. J., Liu, P., Ma, J. Y., Bourque, Ch. P.-A. and Peltola, H. (2017): Diurnal response of effective quantum yield of PS II photochemistry to irradiance as an indicator of photosynthetic acclimation to stressed environments revealed in a xerophytic species. Ecological Indicators, 74: 191-197.,
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2020 Czech Polar Reports