The effect of shock freezing on physiological properties and consequent growth of Antarctic filamentous (Stigeoclonium sp.) and coccal alga (Diplosphaera chodatii) on agar plates
Vol.9,No.1(2019)
In this study, we investigated the effects of shock freezing on physiological properties and consequent growth of in the Antarctic alga Stigeoclonium sp. and comparative coccal alga Diplosphaera chodatii on agar plates. Culture of algae grown in liquid medium were used to study subzero temperatures on the species resistance to shock freezing. Then, microalgae were frozen in liquid nitrogen and inoculated on BBM agar after thawing. Physiological status of algae was evaluated by chlorophyll fluorescence parameters during 28 days. The results showed that interspecific differences existed in their tolerance to shock freezing, as well as their consequent growth rate on agars. Direct effects of freezing in liquid nitrogen was demonstrated in chlorophyll fluorescence parameters recorded immediately after thawing the samples (in liquid medium). In spite of the fact that majority of cells was destroyed by shock freezing, the potential of photochemical processes in PS II (FV/FM) remained constant in D. chodatii. It may indicate high resistance of the species to freezing/thawing cycles and a capability of the surviving cells, core chlorophylls in PS II respectively, to perform photosynthetic processes related to PS II. Contrastingly, Stigeoclonium sp. showed a shock freezing-dependent decrease in FV/FM. When shock-frozen, thawed and inoculated on agar plates, the culture of D. chodatii, and Stigeoclonium sp. showed cultivation time-dependent increase in chlorophyll fluorescence parameters (FV/FM, FS).
Antarctica; cold stress; cryoresistance; algal cultures; biotechnologies
Barták, M., Váczi, P., Hájek, J. and Smykla, J. (2007): Low-temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria elegans. Polar Biology, 31: 47-51.
Bialosuknia, M.W. (1909): Sur un nouveau genre de pleurococcacées. Bulletin la Société Bot. Geneve, Série 2 1: 101-104. (In French).
Bilger, W., Schreiber, U. (1986): Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves. Photosynthesis Research, 10: 303-308.
Blanc, G., Agarkova, I., Grimwood, J., Kuo, A., Brueggeman, A., Dunigan, D. D., Gurnon, J., Ladunga, I., Lindquist, E., Lucas, S., Pangilinan, J., Proschold, T., Salamov, A., Schmutz, J., Weeks, D., Yamada, T., Lomsadze, A., Borodovsky, M., Claverie, J. M., Grigoriev, I. V. and Van Etten, J. L. (2012): The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biology, 13, doi:10.1186/gb-2012-13-5-r39.
Branco, C. C. Z., Necchi, O., Jr. and Branco, L. H. Z. (2002): Taxonomy and ecological distribution of Chaetophoraceae (Chaetophorales, Chlorophyta) in lotic ecosystems from Sao Paulo State, southeastern Brazil. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes No. 106: 43-75. doi: 10.1127/algol_stud/106/2002/43.
Caisová, L., Komárek, J., Elster, J. and Nedbalová, L. (2009): Two freshwater fillamentous, branched green algae, newly discoverd to Antarctica. In: M. Barták, J. Hájek, P. Váczi (eds.): Structure and Function of Antarctic Terrestrial Ecosystems, Book of Abstracts and Contributed Papers, Conference, Brno, Oct. 22nd-23rd, 2009, Masaryk University Brno, pp. 14-20.
Caisová, L., Marin, B., Sausen, N., Pröschold, T. and Melkonian, M. (2011): Polyphyly of Chaetophora and Stigeoclonium within the Chaetophorales, Chlorophyceae), revealed by sequence comparisons of nuclear-encoded SSU rRNA genes. Journal of Phycology, 47: 164-177.
Chen, Z., He, C. and Hu, H. (2012): Temperature responses of growth, photosynthesis, fatty acid and nitrate reductase in Antarctic and temperate Stichococcus. Extremophiles, 16: 127-133.
Coppins, B. J. (1983): A taxonomic study of the lichen genus Micarea in Europe. Bulletin of British (Natural History), 11: 17-214.
Doering, J. A. (2017): An investigation of the spatial distribution and inference of dispersal method in the semi-aquatic lichenised green alga Diplosphaera chodatii around Payuk Lake, Manitoba. Master Thesis, Faculty of Graduate Studies of the University of Manitoba, Canada. 162 p.
Elster, J., Degma, P., Kováčik, L., Valentová, L. Šramková, K. and Pereira, A.B. (2008): Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the Antarctic, Arctic and Slovakia. Biologia, 63: 843-851.
Flechtner, V. R., Johansen, J. and Clark, W. (1998): Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. Great Basin Naturalist, 58: 95–311.
Flechtner, V. R., Johansen, J. R. and Belnap, J. (2008): The Biological soil crusts of the San Nicolas Island: enigmatic algae from a geographically isolated ecosystem. Western North American Naturalist, 68: 405-436.
Fogliano, V., Andreoli, C., Martello, A., Caiazzo, M., Lobosco, O., Formisano, F., Carlino, P. A., Meca, G., Graziani, G., Rigano, V. D. M., Vona, V., Carfagna, S. and Rigano, C. (2010): Functional ingredients produced by culture of Koliella antarctica. Aquaculture, 299: 115-120.
Fontaine, K. M., Beck, A., Stocker-Wörgötter, E. and Piercey-Normore, M. D. (2012): Photobiont relationships and phylogenetic history of Dermatocarpon luridum var. luridum and related Dermatocarpon species. Plants, 1: 39-60.
Fontaine, K. M., Stocker-Wörgötter, E., Booth, T. and Piercey-Normore, M. D. (2013): Genetic diversity of the lichen-forming alga, Diplosphaera chodatii, in North America and Europe. Lichenologist, 45: 799-813.
Francke, J. A., Simons, J. (1984): Morphology and systematics of Stigeoclonium Kützing (Chaetophorales). In: D. E. G. Irvine, D. M. John (eds.): Systematics of the green algae. Academic Press, London, pp. 363-377.
Hájek, J., Váczi P., Barták M. and Jahnová L. (2012): Interspecific differences in cryoresistance of lichen symbiotic algae of genus Trebouxia assessed by cell viability and chlorophyll fluorescence. Cryobiology, 64: 215-222.
Handa, S., Nakahara, M., Nakano, T., Itskovich, V. B. and Masuda, Y. (2001): Aerial algae from southwestern area of Lake Baikal. Hikobia, 13(3): 463-472.
Haranczyk, H., Casanova-Katny, A., Olech, M. A. and Strzalka, K. (2017): Dehydration and freezing resistance of lichenized fungi. In: V. Shukla, S. Kumar, N. Kumar (ed.): Plant Adaptation Strategies in Changing Environment. Springer Nature Singapore Pte Ltd., pp. 77-102.
Karbovska, V. M., Kostikov, I. Y. (2012): Chlorella sphaerica and its position in the genus Diplosphaera (Chlorophyta, Trebouxiophyceae). Visnyk of Dnipropetrovsk University. Biology. Ecology. 20: 34-42. doi:10.15421/011205. (In Ukrainian).
Komárek, O., Komárek, J. (1999): Diversity of freshwater and terrestrial habitats and their oxyphototroph microflora in the Arctowski Station region, South Shetlands Islands. Polish Polar Research, 20(3): 259-282.
Lichtenthaler, H. K., Babani, F. (2004): Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: G. C. Papageorgiou, Govindjee (ed.): Chlorophyll Fluorescence: a Signature of Photosynthesis. Springer, Dordrecht. pp. 713-736.
Liu, J., Vanormelingen, P. and Vyverman, W. (2016a): Fatty acid profiles of four filamentous green algae under varying culture conditions. Bioresource Technology, 200: 1080-1084.
Liu, J., Danneels, B., Vanormelingen, P. and Vyverman, W. (2016b): Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor Algal Turf Scrubber (ATS). Water Research, 92: 61-68.
Lukešová, A., Hoffmann, L. (1996): Soil algae from acid rain impacted forest areas of the Krušnéhory Mts. 1. Algal communities. Vegetatio, 125: 123-136.
Lyon B. R., Mock T. (2014): Polar Microalgae: New Approaches towards Understanding Adaptations to an Extreme and Changing Environment. Biology, 3: 56-80.
Machová, K., Elster, J. and Adamec, L. (2008): Xanthophyceaen assemblages during winter–spring flood: autecology and ecophysiology of Tribonema fonticolum and T. monochloron. Hydrobiologia, 600: 155-168. https://doi.org/10.1007/s10750-007-9228-5.
Michetti, K. M., Leonardi, P. I. and Caceres, E. J. (2010): A comprehensive study of the life cycle of a South American population of Stigeoclonium tenue Chaetophorales, Chlorophyta). Journal of Phycology, 46: 997-1005.
Morgan-Kiss, R., Ivanov, A. G., Williams, J., Mobashsher, K. and Huner, N. P. A. (2002): Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. Biochimica et Biophysica Acta, 1561: 251-265.
Mrozinkska, T., Olech, M. A. and Massalski, A. (1998): Algae of ponds and a stream on moraines of Ecology Glacier (King George Island, South Shetland Islands, Antarctica). Nova Hedwigia, 67: 169-188.
Orekhova, A., Barták, M. and Hájek, J. (2018): Post rapid freezing growth of Antarctic strain of Heterococcus sp. monitored by cell viability and chlorophyll fluorescence. Cryobiology, 85: 39-46. doi: 10.1016/j.cryobiol.2018.10.004.
Pushparaj, B., Paperi, R., Sili, C., Piccardi, R., Faraloni, C., Ena, A. and Torzillo, G. (2004): Antarctic micro-organisms for bioactive compound production: Isolation and characterization of cyanobacteria. In: P. Luporini, M. Morbidoni (eds.): Proceedings of the 5th PNRA Meeting on Antarctic Biology, Scientific and Technical Report Series, ISSN 1592-5064, pp. 11-18.
Roháček, K. (2002): Chlorophyll Fluorescence Parameters: The Definitions, Photosynthetic Meaning, and Mutual Relationships. Photosynthetica, 40: 13-29.
Řeháková, H. (1968): Lišejníkové řasy z rodu Trebouxia, Diplosphaera a Myrmecia (Flechtenalgen der Gattungen Trebouxia, Diplosphaera und Myrmecia). Ph.D. Thesis, Department of Botany, Charles University, Prague, Czech Republic. (In Czech).
Simons, J., Van Beem, A. P. and De Vries, P. J. R. (1986): Morphology of the prostrate thallus of Stigeoclonium (Chlorophyceae, Chaetophorales) and its taxonomic implications. Phycologia, 25: 210-220.
Skinner, S., Entwisle, T. J. (2004): Non-marine algae of Australia: 5. Macroscopic Chaetophoraceae (Chaetophorales, Chlorophyta). Telopea, 10: 613-633.
Stocker-Wörgötter, E., Türk, R. (1989): The resynthesis of thalli of Dermatocarpon miniatum under laboratory conditions. Symbiosis, 7: 37-50.
Thüs, H., Muggia, L., Pérez-Ortega, S., Favero-Longo, S.E., Joneson, S., O’Brien, H., Nelsen, M.P., Duque-Thüs, R., Grube, M., Friedl, T., Brodie, J., Andrew, C.J., Lücking, R., Lutzoni, F. and Gueidan, C. (2011): Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). European Journal of Phycology, 46: 399-415.
Trnková, K., Barták, M. (2017): Desiccation-induced changes in photochemical processes of photosynthesis and spectral reflectance in Nostoc commune (Cyanobacteria, Nostocales) colonies from polar regions. Phycological research, 65: 44-50.
Váczi, P. (2018): Oxygen evolution rate in Antarctic filamentous alga Stigeoclonium sp. evaluated by optodes relates to chlorophyll fluorescence parameters. Czech Polar Reports, 8: 143-150.
Yahr, R., Vilgalys, R. and DePriest, P. T. (2006): Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytologist, 171: 847-860.
Zhang, T., Wei, J. (2011): Survival analyses of symbionts isolated from Endocarpon pusillum Hedwig to desiccation and starvation stress. Science China Life Sciences, 54: 480-489.,
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2020 Czech Polar Reports