Permafrost and active layer research on James Ross Island: An overview

Vol.9,No.1(2019)

Abstract

This study summarizes the current state of the active layer and permafrost research on James Ross Island. The analysis of climate parameters covers the reference period 20112017. The mean annual air temperature at the AWS-JGM site was -6.9°C (ranged from -3.9°C to -8.2°C). The mean annual ground temperature at the depth of 5 cm was -5.5°C (ranged from -3.3°C to -6.7°C) and it also reached -5.6°C (ranged from -4.0 to -6.8°C) at the depth of 50 cm. The mean daily ground temperature at the depth of 5 cm correlated moderately up to strongly with the air temperature depending on the season of the year. Analysis of the snow effect on the ground thermal regime confirmed a low insulating effect of snow cover when snow thickness reached up to 50 cm. A thicker snow accumulation, reaching at least 70 cm, can develop around the hyaloclastite breccia boulders where a well pronounced insulation effect on the near-surface ground thermal regime was observed. The effect of lithology on the ground physical properties and the active layer thickness was also investigated. Laboratory analysis of ground thermal properties showed variation in thermal conductivity (0.3 to 0.9 W m-1 K-1). The thickest active layer (89 cm) was observed on the Berry Hill slopes site, where the lowest thawing degree days index (321 to 382°C·day) and the highest value of thermal conductivity (0.9 W m-1 K-1) was observed. The clearest influence of lithological conditions on active layer thickness was observed on the CALM-S grid. The site comprises a sandy Holocene marine terrace and muddy sand of the Whisky Bay Formation. Surveying using a manual probe, ground penetrating radar, and an electromagnetic conductivity meter clearly showed the effect of the lithological boundary on local variability of the active layer thickness.


Keywords:
active layer; ground thermal regime; climate; snow cover; ground physical properties
References

Abu-Hamdeh, N.H., Reeder, R. (2000): Soil thermal conductivity: Effects of density, moisture, salt concentration, and organic matter. Soil Science Society of America Journal, 64: 1285-1290.

Adlam, L. S., Balks, M., Seybold, C. A. and Campbell, D. I. (2010): Temporal and spatial variation in active layer depth in the McMurdo Sound Region, Antarctica. Antarctic Science, 22 (1): 45-52.

Ambrožová, K., Láska, K. (2016): The Air temperature change on James Ross Island within the context of the Antarctic Peninsula. In: A. Nováček (ed.): Sborník příspěvků z Výroční konference ČGS, 5-7 September 2016, České Budějovice, Jihočeská univerzita, České Budějovice, pp. 20–25. (In Czech).

Almeida, I.C.C., Schaefer, C.E.G.R., Michel, R.F.M., Fernandes, R.B.A.,Pereira,T.T.C., de Andrade, A.M., Francelino, M.R., Elpidio,I., Filho, F. and Bockheim, J.G. (2017): Long term active layer monitoring at a warm-based glacier front from maritime Antarctica. Catena, 149(2), 572-581.

Aristarain, A. J., Delmas, R. (1981): First glaciological studies on the James Ross Island Ice Cap, Antarctic Peninsula. Journal of Glaciology, 27(97): 371-379.

Barták, M., Váczi, P., Stachoň, Z. and Kubešová, S. (2015): Vegetation mapping of moss-dominated areas of northern part of James Ross Island (Antarctica) and a suggestion of protective measures. Czech Polar Reports, 5(1): 75-87.

Bibby, J. S. (1966): The Stratigraphy of Part of North-East Graham Land and the James Ross Island Group. British Antarctic Survey Scientific Reports, 53, 37 p.

Bockheim, J. (1995): Permafrost distribution in the Southern Circumpolar Region and its relation to the environment: A review and recommendations for further research. Permafrost and Periglacial Processes, 6: 27-45.

Bockheim, J., Vieira, G., Ramos, M., López-Martínez, J., Serrano, E., Guglielmin, M., Wilhelm, K. and Nieuwendam, A. (2013): Climate warming and permafrost dynamics in the Antarctic Peninsula region. Global and Planetary Change,100: 215-223.

Borzotta, E., Trombotto, D. (2004): Correlation between frozen ground thickness measured in Antarctica and permafrost thickness estimated on the basis of the heat flow obtained from magnetotelluric soundings. Cold Region Science and Technology, 40: 81-96.

Campbell, I. B., Claridge, G. G. C., (2006): Permafrost properties, patterns and processes in the Transantarctic Mountains Region. Permafrost and Periglacial Processes, 17: 215-232.

Cannone, N., Ellis Evans, J.C., Strachan, R. and Guglielmin, M. (2006): Interactions between climate, vegetation and the active layer in soils at two Maritime Antarctic sites. Antarcic Science, 18(3): 323-333.

Cannone, N., Guglielmin, M. (2009): Influence of vegetation on the ground thermal regime in continental Antarctica. Geoderma, 151: 215-223.

Correia, A., Vieira, G. and Ramos, M. (2012): Thermal conductivity and thermal diffusivity of cores from 26 meter deep borehole drilled in Livingston Island, Maritime Antarctic. Geomorphology, 155-156: 7-11.

Davies, B. J., Glasser, N. F., Carrivick, J. L., Hambrey, M. J., Smellie, J. L. and Nývlt, D. (2013): Landscape evolution and ice-sheet behaviour in a semi-arid polar environment: James Ross Island, NE Antarctic Peninsula. In: M. J. Hambrey, P. F. Barker, P. J. Barrett, V. Bowman, B. Davies, J. L. Smellie, M. Tranter (eds.): Antarctic Palaeoenvironments and Earth-Surface Processes. Geological Society, London, Special Publications, 381, pp. 353–395.

De Pablo, M. A., Ramos, M. and Molina, A. (2014): Thermal characterization of the active layer at the Limnopolar Lake CALM-S site on Byers Peninsula (Livingston Island), Antarctica. Solid Earth, 5: 721-739.

De Pablo, M. A., Ramos, M. and Molina, A. (2017): Snow cover evolution, on 2009-2014, at the Limnopolar Lake CALM-S site on Byers Peninsula, Livingston Island, Antarctica. Catena, 149 (2): 538-547.

Ermolin, E., De Angelis, H. and Skvarca, P. (2002): Mapping of permafrost on Vega Island, Antarctic Peninsula, using satellite images and aerial photography. Annals of Glaciology, 34: 184-188.

Ermolin, E., de Angelis, H., Skvarca, P. and Rau, F. (2004): Ground ice in permafrost on Seymour (Marambio) and Vega Islands, Antarctic Peninsula. Annals of Glaciology, 39: 373-378.

Farouki, O. T. (1981): Thermal Properties of Soils. U.S. Army Cold Regions Research and Engineering Laboratory Monograph, 81-1, 136 p. Available: https://apps.dtic.mil/dtic/tr/ fulltext/u2/a111734.pdf.

Fukuda, M., Shimokawa, K., Takahashi, N. and Sone, T., (1992): Permafrost in Seymour Island and James Ross Island, Antarctic Peninsula region. Geografiska Annaler Serie-A, 65(2): 124-131.

Fukui, K., Sone, T., Strelin, J., Torielli, C. and Mori, J. (2007): Ground penetrating radar sounding on an active rock glacier on James Ross Island, Antarctic Peninsula region. Polish Polar Research, 28 (1), 13–22.

Goyanes, G., Vieira, G., Caselli, A., Mora, C., Ramos, M., de Pablo, M.A., Neves, M., Santos, F., Bernardo, I., Gilichinsky, D., Abramov, A., Batista, V., Melo, R., Nieuwendam, A., Ferreira, A. and Oliva, A. (2014): Régimen térmico y variabilidad de la capa activa en Isla Deception, Antartída. Revista de la Asociación Geológica Argentina, 71(1): 112–124.

Guglielmin, M., (2006): Ground surface temperature (GST), active layer, and permafrost monitoring in continental Antarctica. Permafrost and Periglacial Processes, 17: 133-143.

Guglielmin, M., Dalle Fratte, M. and Cannone, N. (2014a): Permafrost warming and vegetation changes in continental Antarctica. Environmental Research Letters, 9, 045001.

Guglielmin, M., Worland, M.R., Baio, F. and Convey, P. (2014b): Permafrost and snow monitoring at Rothera Point (Adelaide Island, Maritime Antarctica): Implications for rock weathering in cryotic conditions. Geomorphology, 225: 47-56.

Hrbáček, F., Láska, K. and Engel, Z. (2016a). Effect of snow cover on the active-layer thermal regime – a case study from James Ross Island, Antarctic Peninsula. Permafrost and Periglacial Processes, 27(3): 307-315.

Hrbáček, F., Oliva, M., Láska, K., Ruiz-Fernandéz, J., de Pablo, M.A., Vieira, G., Ramos, M. and Nývlt, D. (2016b): Active layer thermal regime in two climatically contrasted sites of the Antarctic Peninsula region. Cuadernos de Investigacion Geografica, 42(2): 457-474.

Hrbáček, F., Nývlt, D. and Láska, K. (2017a): Active layer thermal dynamics at two lithologically different sites on James Ross Island, Eastern Antarctic Peninsula. Catena, 149(2): 592-602.

Hrbáček, F., Kňažková, M., Nývlt, D., Láska, K., Mueller, C. W. and Ondruch, J. (2017b): Active layer monitoring at CALM-S site near J.G. Mendel Station, James Ross Island, Eastern Antarctic Peninsula. Science of the Total Environment, 601-602: 987-997.

Hrbáček, F., Vieira, G., Oliva, M., Balks, M., Guglielmin, M., de Pablo, M.A., Molina, A., Ramos, M., Goyanes, G., Meiklejohn, I., Abramov, A., Demidov, N., Fedorov-Davydov, D., Lupachev, A., Rivkina, E., Láska, K., Kňažková, M., Nývlt, D., Raffi, R., Strelin, J., Sone, T., Fukui, K., Dolgikh, A., Zazovskaya, E., Mergelov, N., Osokin, N. and Miamin, V. (2018): Active layer monitoring in Antarctica: an overview of results from 2006 to 2015. Polar Geography, doi: 10.1080/1088937X.2017.1420105

Hunter, L.E., Delaney, A.J., Lawson, D.E. and Davis, L. (2003): Downhole GPR for high-resolution analysis of material properties near Fairbanks, Alaska. In: C. S. Bristow, H. M. Jol (eds.): Ground Penetrating Radar in Sediments. Geological Society, London, Special Publications, pp. 211, 275–285.

Ineson, J. R., Crame, J. A. and Thomson, M. R. A. (1986): Lithostratigraphy of the Cretaceous Strata of West James Ross Island, Antarctica. Cretaceous Research, 7: 141-159.

Kavan, J., Ondruch, J., Nývlt, D., Hrbáček, F., Carrivick, J. L. and Láska, K. (2017): Seasonal hydrological and suspended sediment transport dynamics in proglacial streams, James Ross Island, Antarctica. Geografiska Annaler Serie-A, 97(1): 38-55.

Kňažková, M., Hrbáček, F., Kavan, J. and Nývlt, D. (2020, in press): Effect of hyaloclastite breccia boulders on meso-scale periglacial-aeolian landsystem in semi-arid Antarctic environment, James Ross Island, Antarctic Peninsula. Cuadernos de Investigacion Geografica, 46, http://doi.org/10.18172/cig.3800.

Lacelle, D., Lapalme, C., Davila, A. F., Pollard, W., Marinova, M., Heldmann, J. and McKay, C. P (2016): Solar Radiation and Air and Ground Temperature Relations in the Cold and Hyper-Arid Quartermain Mountains, McMurdo Dry Valleys of Antarctica. Permafrost and Periglacial Processes, 27: 163-176.

Lundqvist, J., Lillieskold, M. and Ostmark, K. (1995): Glacial and periglacial deposits of the Tumbledown Cliffs area, James Ross Island, West Antarctica. Geomorphology, 11: 205-214.

Martin, P. J., Peel, D. A. (1978): The spatial distribution of 10 m temperatures in the Antarctic Peninsula. Journal of Glaciology, 20: 311-317.

Mori, J., Sone, T., Strelin, J.A., Torieli, C. and Fukui, K. (2006): Characteristics of air and ground temperatures and the reconstruction of active layer thickness on the Rink Plateau, James Ross Island, Antarctic Peninsula. Journal of the Japanese Society of Snow and Ice, 68: 287-298. (in Japanese with English abstract).

Mlčoch, B., Nývlt, D. and Mixa, P. (eds.) (2018): James Ross Island. Geological map of the northern part. 1:25 000. Unpublished manuscript, Czech Geological Survey, Praha.

Nývlt, D., Košler, J., Mlčoch, B., Mixa, P., Lisá, L., Bubík, M. and Hendriks, B. W. H., (2011): The Mendel formation: evidence for late Miocene climatic cyclicity at the northern tip of the Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology, 299: 363-384.

Nývlt, D., Braucher, R., Engel, Z., Mlčoch, B. and ASTER TEAM (2014): Timing of the Northern Prince Gustav Ice Stream retreat and the deglaciation of northern James Ross Island, Antarctic Peninsula during the last glacial–interglacial transition. Quaternary Research, 82: 441-449.

Nývlt, D., Nývltová Fišáková, M., Barták, M., Stachoň, Z., Pavel, V., Mlčoch, B. and Láska, K. (2016): Death age, seasonality, taphonomy and colonization of seal carcasses from Ulu Peninsula, James Ross Island, Antarctic Peninsula. Antarctice Science, 28: 3-16.

Oliva, M., Hrbáček, F., Ruiz-Fernandéz, J., de Pablo, M.A., Vieira, G., Ramos, M. and Antoniades, D. (2017): Active layer dynamics in three topographically distinct lake catchments in Byers Peninsula (Livingston Island, Antarctica). Catena, 149(2): 548-559.

Olivero, E. B., Scasso, R. A. and Rinaldi, C. A. (1986): Revision of the Marambio Group, James Ross Island, Antarctica. Instituto Antártico Argentino, Contribución, 331: 1-28.

Rabassa, J., Skvarca, P., Bertani, L. and Mazzoni, E. (1982): Glacier inventory of James Ross and Vega Islands, Antarctic Peninsula. Annals of Glaciology, 3: 260-264.

Ramos, M., Vieira, G., de Pablo, M.A., Molina, A.,Abramov, A. and Goyanes, G. (2017): Recent shallowing of the thaw depth at Crater Lake, Deception Island, Antarctica (2006–2014). Catena, 149(2): 519-528.

Sass, O. (2008): The use of GPR in determining talus thickness and talus structure. In: C. Hauck, C. Kneisel (eds.): Applied Geophysics in Periglacial Environments. Cambridge University Press, Cambridge, pp. 165–171.

Schaefer, C. E. G. R., Pereira, T. T. C., Almeida, I. C. C., Michel, R. F. M., Correa, G. R., Figueiredo, L. P. S. and Ker, J. C. (2017): Penguin activity modify the thermal regime of active layer in Antarctica: A case study from Hope Bay. Catena, 149: 582-591.

Smellie, J. L., Johnson, J. S. and Nelson, A. E., (2013): Geological map of James Ross Island. I. James Ross Island Volcanic Group (1:125 000 scale). BAS GEOMAP 2 Series, Sheet 5, British Antarctic Survey, Cambridge, UK.

Smith, M. W. and Riseborough, D. W. (2002): Climate and the limits of permafrost: A zonal analysis. Permafrost and Periglacial Processes, 13: 1-15.

Stachoň, Z., Russnák, J., Nývlt, D. and Hrbáček, F. (2014): Stabilisation of geodetic points in the surroundings of Johann Gregor Mendel Station, James Ross Island, Antarctica. Czech Polar Reports, 4: 81-90.

Strelin, J. A., Malagnino, E. C. (1992): Geomorfologıa de la Isla James Ross. Geologia de la Isla James Ross. Instituto Antarctico Argentino, Buenos Aires, 7–36.

Strelin, J. A, Sone, T. (1998): Rock glaciers on James Ross Island, Antarctica. Permafrost –Seventh International Conference (Proceedings), 55: 1027-1033.

Van Lipzig, N. P. M., King, J. C., Lachlan-Cope, T. A. and Van Den Broeke, M. R. (2004): Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model. Journal of Geophysical Research, 109, D24106 (doi: 10.1029/2004JD00 4701).

Vieira, G., Bockheim, J., Guglielmin, M., Balks, M., Abramov, A. A., Boelhouwers, J., Cannone,N., Ganzert, L., Gilichinsky, D., Goryachkin, S., López-Martínez, J., Meiklejohn, I., Raffi, R., Ramos, M., Schaefer, C., Serrano, E., Simas, F., Sletten R. and Wagner, D. (2010): Thermal state of permafrost and active-layer monitoring in the Antarctic: advances during the International Polar Year 2007–2008. Permafrost and Periglacial Processes, 21: 182-197.

Zhang, T., Stamnes, K. (1998): Impact of Climatic Factors on the Active Layer and Permafrost at Barrow, Alaska. Permafrost and Periglacial Processes, 9: 229-246.

Zhang, T. (2005): Influence of the seasonal snow cover on the ground thermal regime: An overview. Reviews Geophysics, 43. http://dx.doi.org/10.1029/2004RG000157.



Web sources / Other sources

[1] IUSS Working Group WRB (2014): World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106.

,

Metrics

318

Views

37

PDF views