Surface mass balance of Davies Dome and Whisky Glacier on James Ross Island, north-eastern Antarctic Peninsula, based on different volume-mass conversion approaches

Vol.9,No.1(2019)

Abstract

This study presents surface mass balance of two small glaciers on James Ross Island calculated using constant and zonally-variable conversion factors. The density of 500 and 900 kg·m–3 adopted for snow in the accumulation area and ice in the ablation area, respectively, provides lower mass balance values that better fit to the glaciological records from glaciers on Vega Island and South Shetland Islands. The difference between the cumulative surface mass balance values based on constant (1.23 ± 0.44 m w.e.) and zonally-variable density (0.57 ± 0.67 m w.e.) is higher for Whisky Glacier where a total mass gain was observed over the period 2009–2015. The cumulative surface mass balance values are 0.46 ± 0.36 and 0.11 ± 0.37 m w.e. for Davies Dome, which experienced lower mass gain over the same period. The conversion approach does not affect much the spatial distribution of surface mass balance on glaciers, equilibrium line altitude and accumulation-area ratio. The pattern of the surface mass balance is almost identical in the ablation zone and very similar in the accumulation zone, where the constant conversion factor yields higher surface mass balance values. The equilibrium line altitude and accumulation-area ratio determined for the investigated glaciers differ by less than 2m and 0.01, respectively. The annual changes of equilibrium line altitude and the mean values determined over the period 2009–2015 for Whisky Glacier (311 ± 16 m a.s.l.) and Davies Dome (393 ± 18 m a.s.l.) coincide with the values reported from Bahía del Diablo Glacier on Vega Island but differ from the glaciological records on South Shetland Islands.


Keywords:
glacier mass balance; constant conversion; zonally-variable conversion; Antarctica
References

Allen, R. J., Siegert, M. J. and Payne, T. (2008): Reconstructing glacier-based climates of LGM Europe and Russia – Part 1: Numerical modelling and validation methods. Climate of the Past, 4: 235-248.

Ambrožová, K., Láska, K., Hrbáček, F., Kavan, J. and Ondruch, J. (2019): Air temperature variability and altitudinal dependence in the ice-free and glaciated areas of northern James Ross Island, Antarctic Peninsula. International Journal of Climatology, 39: 643-657.

Blindow, N., Suckro, S. K., Rückamp, M., Braun, M., Schindler, M., Breuer, B., Sauber, H., Simes, J. C. and Lange, M. A. (2010): Geometry and thermal regime of the King George Island ice cap, Antarctica, from GPR and GPS. Annnals of Glaciology, 51: 103-109.

Braun, M., Saurer, H., Vogt, S., Simes, J. and Gossman, H. (2001): The influence of large-scale atmospheric circulation on the surface energy balance of the King George Island ice cap. International Journal of Climatology, 21: 21-36.

Breuer, B., Lange, M. and Blindow, N. (2006): Sensitivity studies on model modifications to assess the dynamics of a temperate ice cap, such as that on King George Island, Antarctica. Journal of Glaciology, 52: 235-247.

Chinn, T. J. H., Dillon, A. (1987): Observations on a debris-covered polar glacier ‘Whisky Glacier’, James Ross Island, Antarctic Peninsula, Antarctica. Journal of Glaciology, 33: 300-310.

Engel, Z., Láska, K., Nývlt, D. and Stachoň, Z. (2018): Surface mass balance of small glaciers on James Ross Island, north-eastern Antarctic Peninsula, during 2009–2015. Journal of Glaciology, 64: 349-361.

Grosvenor, D. P., King, J. C., Choularton, T. W. and Lachlan-Cope, T. (2014): Downslope föhn winds over the Antarctic Peninsula and their effect on the Larsen ice shelves. Atmospheric Chemistry and Physics, 14: 9481-9509.

Huss, M. (2013): Density assumptions for converting geodetic glacier volume change to mass change. The Cryosphere, 7: 877–887.

Huss, M., Bauder, A. and Funk, M. (2009): Homogenization of longterm mass-balance time series. Annals of Glaciology, 50: 198-206.

Jonsell, U. Y., Navarro, F. J., Baón, M., Lapazaran, J. J. and Otero, J. (2012): Sensitivity of a distributed temperature-radiation index melt model based on AWS observations and surface energy balance fluxes, Hurd Peninsula glaciers, Livingston Island, Antarctica. The Cryosphere, 6: 539-552.

King, J. C., Turner, J., Marshall, G. J., Connolley, W. M. and Lachlan-Cope, T. A. (2003): Antarctic Peninsula climate variability and its causes as revealed by instrumental records. In: E. Domack, A. Leventer, A. Burnett, R. Bindschadler, P. Convey and M. Kirby (eds.): Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives, American Geophysical Union, Washington, pp. 17–30.

Kňažková, M., Hrbáček, F., Nývlt, D. and Kavan, J. (2019, in press): Effect of hyaloclastite breccia boulders on meso-scale periglacial-aeolian landsystem in semi-arid Antarctic environment, James Ross Island, Antarctic Peninsula. Cuadernos de Investigacion Geografica.

Marinsek, S., Ermolin, E. (2015): 10 year mass balance by glaciological and geodetic methods of Glaciar Bahía del Diablo, Vega Island, Antarctic Peninsula. Annals of Glaciology, 56: 141-145.

Marshall, G. J., Orr, A., van Lipzig, N. and King, J. C. (2006): The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures. Journal of Climate, 19: 5388-5404.

Mavlyudov, B. R. (2016): Bellingshausen Ice Dome, Antarctic. In: V. M. Kotlyakov (ed.): Problems of geography, Geography of Polar Regions, v. 142, Codex, Moscow, pp. 629–648. (In Russian).

Müller, H., Kappenberger, G. (1991): Claridenfirn-Messungen 1914–1984. Zürcher Geogra-fische Schriften, 40.

Navarro, F. J., Jonsell, U. Y., Corcuera, M. I. and Martín-Espaol, A. (2013): Decelerated mass loss of Hurd and Johnsons Glaciers, Livingston Island, Antarctic Peninsula. Journal of Glaciology, 59: 115-128.

Oliva, M., Navarro, F., Hrbáček, F., Hernandéz, A., Nývlt, D., Perreira,P., Ruiz-Fernadéz, J. and Trigo, R. (2017): Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Science of the Total Environment, 580: 210-223.

Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J. O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., Molg, N., Paul, F., Radic, V., Rastner, P., Raup, B., Rich, J. and Sharp, M. (2014): The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journal of Glaciology, 60: 537-552.

Rabassa, J., Skvarca, P., Bertani, L. and Mazzoni, E. (1982): Glacier inventory of James Ross and Vega Islands, Antarctic Peninsula. Annals of Glaciology, 3: 260-264.

Rückamp, M., Braun, M., Suckro, S. and Blindow, N. (2011): Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global and Planetary Change, 79: 99-109.

Rye, C. J., Willis, I. C., Arnold, N. S. and Kohler, J. (2012): On the need for automated multiobjective optimization and uncertainty estimation of glacier mass balance models. Journal of Geophysical Research, 117: F02005.

van Lipzig, N. P. M., King, J. C., Lachlan-Cope, T. A. and van den Broeke, M. R. (2004): Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model. Journal of Geophysical Research, 109: D24106.


Web sources / Other sources

[1] Czech Geological Survey (2009) James Ross Island – Northern Part. Topographic map, 1 : 25 000. CGS, Praha.

[2] WGMS (2017): Fluctuations of Glaciers Database. World Glacier Monitoring Service, Zürich (doi: 10.5904/wgms-fog-2017-06).,

Metrics

291

Views

31

PDF views