Pigment composition, glutathione and tocopherols in green algal and cyanobacterial lichens and their response to different light treatments

Vol.8,No.2(2018)

Abstract

This study investigated photosynthetic pigments chlorophyll a and b, carotenoids (including xanthophyll cycle pigments) and antioxidants glutathione and tocopherols contents in chloro- (Lobaria pulmonaria, Lasallia pustulata) and cyanolichens (Lobaria scrobiculata, Peltigera canina) from different habitats and of different geographical origin. Lichen thalli were treated with various levels of irradiance (from 100 to 1500 mmol m-2 s-1) for various time periods (from 20 min. to 5 h). The extent of increase of zeaxanthin content after different light treatments differed among chlorolichens, clearly distinguishing the species from light and shade habitats. Irrespective of light treatment, β-carotene content was always higher in cyanobacterial species than in green algal species. Highest canthaxanthin concentration, as well as β-carotene concentration, was found in L. scrobiculata from shade habitat. The content of total glutathione was the same in the same species from different collection sites. On the contrary, contents of a-tocopherol differed in the same species from different collection sites.


Keywords:
excess light stress; antioxidants; photoprotection; zeaxanthin
References

Barták, M., Solhaug, K. A., Vráblíková, H. and Gauslaa, I. (2006): Curling during desiccation protects the foliose lichen Lobaria pulmonaria against photoinhibition. Oecologia, 149: 553-560.

Balarinová, K., Barták, M., Hazdrová, J., Hájek, J. and Jílková, J. (2014): Changes in photosynthesis, pigment composition and glutathione contents in two Antarctic lichens during a light stress and recovery. Photosynthetica, 52: 538-547.

Calatayud, A., Deltoro, V. I., Barreno, E. and del Valle-Tascon, S. (1997): Changes in in vivo chlorophyll fluorescence quenching in lichen thalli as a function of water content and suggestion of zeaxanthin-associated photoprotection. Physiologia Plantarum, 101: 93-102.

Dall’Osto, L., Lico, C., Alric, J., Giuliano, G., Havaux M. and Bassi, R. (2006): Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biology, 6: 32.

Demmig-Adams, B. (1990): Carotenoids and photoprotection in plants. A role for the xanthophyll zeaxanthin. Biochimica et Biophysica Acta, 1020: 1-24.

Fryer, M. J. (1992): The antioxidant effects of thylakoid vitamin-E (alpha-tocopherol). Plant, Cell & Environment, 15: 381-392.

Garcia-Plazaola, J. I., Becerril, J. M., Hernandez, A., Niinemets, U. and Kollist, H. (2004): Acclimation of antioxidant pools to the light environment in a natural forest canopy. New Phytologist, 163: 87-97.

Gauslaa, Y., Solhaug, K. A. (2001): Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia, 126: 462-471.

Havaux, M., Niyogi, K. K. (1999): The violoxanthin cycle protects from photoxidative damage by more than one mechanism. Proceedings of the National Academy of Sciences of the United States of America, 96: 8762-8767.

Kirilovsky, D. (2007): Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynthesis Research, 93: 7-16.

Knox, J. P., Dodge, A. D. (1985): Singlet oxygen and plants. Phytochemistry, 24: 889-896.

Kranner, I. (1998): Determination of glutathione, glutathione disulphide and two related enzymes, glutathione reductase and glucose-6-phosphate dehydrogenase, in fungal and plant cells. In: A. Varma (ed.): Mycorrhizal Manual. Germany: Springer-Verlag, pp. 227-241.

Kranner, I., Zorn, M., Turk, B., Wornik, S., Beckett, R. R. and Batic, F. (2003): Biochemical traits of lichens differing in relative desiccation tolerance. New Phytologist, 160(1): 167-176.

Kobayashi, N., DellaPenna, D. (2008): Tocopherol metabolism, oxidation and recycling under high light stress in Arabidopsis. The Plant Journal, 55(4): 607-618.

Lange, O. L., Leisner, J. M. R. and Bilger, W. (1999): Chlorophyll fluorescence characteristics of the cyanobacterial lichen Peltigera rufescens under field conditions II. Diel and annual distribution of metabolic activity and possible mechanisms to avoid photoinhibition. Flora, 194: 413-30.

Leisner, J. M. R., Bilger, W., Czygan, F. C. and Lange, O. L. (1994): Light exposure and the composition of lipophilous carotenoids in cyanobacterial lichens. Journal of Plant Physiology, 143: 514-519.

Masojídek, J., Torzillo, G., Koblížek, M., Kopecký, J., Bernardini, P., Sacchi, A. and Komenda, J. (1999): Photoadaptation of two members of the Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: changes in chlorophyll fluorescence quenching and the xanthophyll cycle. Planta, 209: 126-135.

Müller-Moulé, P., Havaux, M. and Niyogi, K. K. (2003): Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. Plant Physiology, 133: 748-760.

Niyogi, K. K., Bjorkman, O. and Grossman, A. R. (1997): The roles of specific xanthopylls in photoprotection. Proceedings of the National Academy of Sciences of the United States of America, 94: 14162-14167.

Piccotto M., Tretiach M. (2010): Photosynthesis in chlorolichens: the influence of the habitat light regime. Journal of Plant Research, 123(6): 763-775.

Pfeifhofer, H. W., Willfurth, R., Zorn M. and Kranner, I. (2002): Analysis of chlorophylls, carotenoids, and tocopherols in lichens. In: I. Kranner, R. Beckett, A. Varma (eds.): Protocols In Lichenology: Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring. Germany: Springer-Verlag, pp. 363-378.

Schagerl, M., Müller, B. (2006): Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria. Journal of Plant Physiology, 163: 709-716.

Solhaug K. A., Gauslaa, Y. (1996): Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia, 108: 412-418.

Solhaug, K. A., Gauslaa, Y. (2001): Acetone rinsing - A method for testing ecological and physiological roles of secondary compounds in living lichens. Symbiosis, 30: 301-315.

Štepigová, J., Vráblíková, H., Lang, J., Večeřová, K. and Barták, M. (2007): Glutathione and zeaxanthin formation during hight light stress in foliose lichens. Plant and Soil Environment, 53: 340-344.

Tausz, M. (2001): The role of glutathione in plant response and adaptation to natural stress. In: D. Grill, M. Tausz, L. J. de Kok (eds.): Significance of glutathione to plant adaptation to the environment. The Netherlands: Kluwer Academic Publishers, pp. 101-122.

Tausz, M., Šircelj, H. and Grill, D. (2004): The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? Journal of Experimental Botany, 55: 1955-1962.

Trebst, A., Depka, B. and Hollander-Czytko, H. (2002): A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Letters, 516: 156-160.

Vráblíková, H., Barták, M. and Wonisch, A. (2005): Changes in glutathione and xanthophyll cycle pigments in the high light-stressed lichens Umbilicaria antarctica and Lasallia pustulata. Journal of Photochemistry and Photobiology B: Biology, 79: 35-41.,

Metrics

234

Views

66

PDF views