First evidence of high-molecular-weight bacteriocin (tailocin) produced by Antarctic Pseudomonas spp.

Vol.8,No.2(2018)

Abstract

Cold-adapted soil ecosystems represent dynamic communities varying in a structure, microbial abundance and metabolic activity. To antagonize competitors, soil bacteria produce a variety of inhibitory agents. We tested production of antimicrobials in Pseudomonas spp. isolated in James Ross Island, Antarctica, and performed transmission electron microscopic analyses of selected high-molecular-weight bacteriocin particles. The dimensions of R-tailocins produced by Pseudomonas sp. P2422 were 168 ± 2.0nm (length) and 16 ± 0.8nm (width) thus representing one of the largest tailocins secreted by Pseudomonas spp. To our knowledge, this is the first evidence of tailocin production by bacteria originated from polar regions.


Keywords:
pyocin; tailocin; phage tail-like particle; antimicrobial agents; James Ross Island
References

Bakkal, S., Robinson, S. M., Ordonez, C. L., Waltz, D. A. and Riley, M. A. (2010): Role of bacteriocins in mediating interactions of bacterial isolates taken from cystic fibrosis patients. Microbiology, 156: 2058-2067.

Cascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubs, R., Postle, K., Riley, M., Slatin, S. and Cavard, D. (2007): Colicin biology. Microbiology and Molecular Biology Reviews, 71: 158-229.

Dorosky, R .J., Yu, J. M., Pierson, L. S. and Pierson, E. A. (2017): Pseudomonas chlororaphis produces two distinct R-tailocins that contribute to bacterial competition in biofilms and on roots. Applied and Environmental Microbiology, 83, 15.

Dorosky, R. J., Pierson, L. S. and Pierson, E. A. (2018): Pseudomonas chlororaphis produces multiple R-tailocin particles that broaden the killing spectrum and contribute to persistence in rhizosphere communities. Applied and Environmental Microbiology (Epub ahead of print).

Dyke, J., Berk, R. S. (1974): Growth inhibition and pyocin receptor properties of endotoxin from Pseudomonas aeruginosa. Proceedings of the Society for Experimental Biology and Medicine, 145: 1405-1408.

Fernandez, M., Godino, A., Príncipe, A., Morales, G. M. and Fischer, S. (2017): Effect of a Pseudomonas fluorescens tailocin against phytopathogenic Xanthomonas observed by atomic force microscopy. Journal of Biotechnology, 256: 13-20.

Fischer, S., Godino, A., Quesada, J. M., Cordero, P., Jofré, E., Mori, G. and Espinosa-Urgel, M. (2012): Characterization of a phage-like pyocin from the plant growth-promoting rhizobacterium Pseudomonas fluorescens SF4c. Microbiology, 158: 1493-1503.

Gebhart, D., Lok, S., Clare, S., Tomas, M., Stares, M., Scholl, D., Donskey, C. J., Lawley, T. D. and Govoni, G. R. (2015): A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity. MBio. 6, 2.

Ghequire, M.G.K., De Mot, R. (2014): Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiology Reviews, 38: 523-568.

Ghequire, M.G.K., De Mot, R. (2015): The tailocin tale: peeling off phage tails. Trends in Microbiology, 23: 587-590.

Ghequire, M. G. K., Dillen, Y., Lambrichts, I., Proost, P., Wattiez, R. and De Mot, R. (2015): Different ancestries of R tailocins in rhizospheric Pseudomonas isolates. Genome Biology and Evolution, 7: 2810-2828.

Ito, S., Kageyama, M. (1970): Relationship between pyocins and a bacterciophage in Pseudomonas aeruginosa. The Journal of General and Applied Microbiology, 16: 231-240.

Kerr, B., Riley, M. A., Feldman, M. W. and Bohannan, B. J. M. (2002): Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature, 418: 171-174.

Mavrodi, D. V., Loper, J. E., Paulsen, I. T. and Thomashow, L. S. (2009): Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiology, 9, 8.

Micenková, L., Štaudová, B., Bosák, J., Mikalová, L., Littnerová, S., Vrba, M., Ševčíková, A., Woznicová, V. and Šmajs, D. (2014): Bacteriocin-encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains. BMC Microbiology, 14, 109.

Michel-Briand, Y., Baysse, C. (2002): The pyocins of Pseudomonas aeruginosa. Biochimie, 84: 499-510.

Nakayama, K., Takashima, K., Ishihara, H., Shinomiya, T., Kageyama, M., Kanaya, S., Ohnishi, M., Murata, T., Mori, H. and Hayashi, T. (2000): The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Molecular Microbiology, 38: 213-231.

O’Connor, E. M., Shand, R. F. (2002): Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. Journal of Industrial Microbiology and Biotechnology, 28: 23-31.

Príncipe, A., Fernandez, M., Torasso, M., Godino, A. and Fischer, S. (2018): Effectiveness of tailocins produced by Pseudomonas fluorescens SF4c in controlling the bacterial-spot disease in tomatoes caused by Xanthomonas vesicatoria. Microbiological Research, 212–213: 94-102.

Riley, M. A., Gordon, D. M. (1999): The ecological role of bacteriocins in bacterial competition. Trends in Microbiology, 7: 129-133.

Riley, M. A., Wertz, J. E. (2002): Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie, 84: 357-364.

Rybakova, D., Radjainia, M., Turner, A., Sen, A., Mitra, A. K. and Hurst, M. R. H. (2013): Role of antifeeding prophage (Afp) protein Afp16 in terminating the length of the Afp tailocin and stabilizing its sheath. Molecular Microbiology, 89: 702-714.

Rybakova, D., Schramm, P., Mitra, A. K. and Hurst, M. R. H. (2015): Afp14 is involved in regulating the length of Anti-feeding prophage (Afp). Molecular Microbiology, 96: 815-826.

Sambrook, J., Russell, D.W. [eds] (2001): Molecular Cloning: A Laboratory Manual. vol.1, 3rd ed. Cold Spring Harbor Laboratory Press, New York, United States, 2100 p.

Sánchez, L. A., Gómez, F. F. and Delgado, O. D. (2009): Cold-adapted microorganisms as a source of new antimicrobials. Extremophiles, 13: 111-120.

Schneider, C. A., Rasband, W. S. and Eliceiri, K. W. (2012): NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9: 671-675.

Scholl, D., Cooley, M., Williams, S.R., Gebhart, D., Martin, D., Bates, A. and Mandrell, R. (2009): An engineered R-type pyocin is a highly specific and sensitive bactericidal agent for the food-borne pathogen Escherichia coli O157:H7. Antimicrobial Agents and Chemotherapy, 53: 3074-3080.

Smit, J.A., Hugo, N. and de Klerk, H.C. (1969): A receptor for a Proteus vulgaris bacteriocin. The Journal of General Virology, 5: 33-37.

Tagg, J. R., Dajani, A. S. and Wannamaker, L. W. (1976): Bacteriocins of gram-positive bacteria. Bacteriological Reviews, 40: 722-756.

Terauds, A., Lee, J. R. (2016): Antarctic biogeography revisited: updating the Antarctic Conservation Biogeographic Regions. Diversity and Distributions, 22: 836-840.

,

Metrics

182

Views

143

PDF views