Oxygen evolution rate in Antarctic filamentous alga Stigeoclonium sp. evaluated by optodes relates to chlorophyll fluorescence parameters (Short Communication)

Vol.8,No.1(2018)

Abstract

Photosynthetic reactions of algal communities, the essential component of primary production in polar regions, are strongly dependent on environmental factors. Among them, availability and amount of light in particular parts of growing season are of major importance. In this paper, the response of the photosynthetic processes of a filamentous fresh-water alga to photosynthetically active radiation (PAR) was studied by two approaches. The simultaneous measurements of the effective quantum yield (FPSII) and oxygen evolution rate (OER) at stepwise increasing photosynthetically active radiation provided data for beneficial correlation analysis of the FPSII to OER relationship in a wide range of PAR. In this study, the culture of filamentous alga Stigeoclonium sp. was analyzed. The linear relationship between FPSII and OER was found for the low PAR (the range of 0 – 200 mmol.m-2.s-1). At high PAR levels (200 – 1000 mmol.m-2.s-1) another linear relationship with different slope was found. The approach combining the fluorometric and oxymetric method might be used for calibration of data in follow up studies and, consequently for evaluation of photosynthetic rates (O2 evolution) from chlorophyll fluorescence data.


Keywords:
effective quantum yield; oxygen evolution rate; Antarctic phototroph photosynthesis
References

Bates, S. S., Cota, G. F. (1986): Fluorescence induction and photosynthetic responses of arctic ice algae to sample treatment and salinity. Journal of Phycology, 22: 421-429. https://doi.org/ 10.1111/j.1529-8817.1986.tb02484.x

Bayer, T., Alba, N. V. (2017): Temperature optima for growth and photosynthetic processes in Trebouxia erici isolated from an Antarctic lichen and cultivated in a temperature gradient. Czech Polar Reports, 7: 34-44. https://doi.org/10.5817/CPR2017-1-4

Beer, S., Axelsson, L. (2004): Limitations in the use of PAM fluorometry for measuring photosynthetic rates of macroalgae at high irradiances. European Journal of Phycology, 39: 1-7. https://doi.org/10.1080/0967026032000157138

Bischoff, H. W., Bold, H. C. (1963): Phycological studies IV. Some soil algae from enchanted rock and related algal species. University of Texas, publ. 6318, 1–95.

Caisová L., Komárek J., Elster J. and Nedbalová L. (2009): Two freshwater filamentous, branched green algae, newly discovered in Antarctica. In: M. Barták, J. Hájek, P. Váczi (eds.): Structure and Function of Antarctic Terrestrial Ecosystems. Book of Abstracts and Contributed papers, Brno, pp. 14-22.

Espinosa-Calderon, A., Torres-Pacheco, I., Padilla-Medina, J.A., Osornio-Rios, A., Romero-Troncoso, R. de J., Villaseor-Mora, C. and Guevara-Gonzalez, R.G. (2011): Description of photosynthesis measurement methods in green plants involving optical techniques, advantages and limitations. African Journal of Agricultural Research, 6: 2638-2647.

Fritsen, C. H., Priscu, J. C. (1998): Cyanobacterial assemblages in permanent ice covers on antarctic lakes: distribution, growth rate, and temperature response of photosynthesis. Journal of Phycology, 34: 587-597. https://doi.org/10.1046/j.1529-8817.1998.340587.x

Figueroa, F. L., Conde-Alvarez, R. and Gómez, I. (2003): Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynthesis Research, 75: 259-275.

Genty, B., Briantais, J.-M., Baker, N. R. (1989): The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, 990: 87-92. https://doi.org/10.1016/S0304-4165(89) 80016-9

Hydes, D. J., Hartman, M. C., Kaiser, J. and Campbell, J. M. (2009): Measurement of dissolved oxygen using optodes in a FerryBox system. Estuarine, Coastal and Shelf Science, 83: 485-490.

Kirk, J. T. O. (2011): Light and photosynthesis in aquatic ecosystems. Cambridge University Press. 649 p.

Komárek, J. (2014): Phenotypic and ecological diversity of freshwater coccoid cyanobacteria from maritime Antarctica and Islands of NW Weddell Sea. II. Czech Polar Report, 4: 17-39. https://doi.org/10.5817/CPR2014-1-3

Litchman, E., Steiner, D. and Bossard, P. (2003): Photosynthetic and growth responses of three freshwater algae to phosphorus limitation and daylength. Freshwater Biology, 48: 2141-2148.

Lizotte, M. P. (2008): Phytoplankton and primary production. In: V. F. Vincent and J. Laybourn-Parry (eds.): Limnology of Arctic and Antarctic Aquatic Ecosystems. Oxford University Press, New York, pp. 157–178.

Marečková, M., Barták, M. (2017): Short-term responses of primary processes in PS II to low temperature are sensitively indicated by fast chlorophyllfluorescence kinetics in Antarctic lichen Dermatocarpon polyphyllizum. Czech Polar Reports, 7: 74-82. https://doi.org/10.5817/ CPR2017-1-8

Masojídek, J., Grobbelaar, J. U., Pechar, L. and Koblížek, M. (2001): Photosystem II electron transport rates and oxygen production in natural waterblooms of freshwater cyanobacteria during a diel cycle. Journal of Plankton Research, 23: 57-66. https://doi.org/10.1093/plankt/ 23.1.57

Necchi, O., Zucchi, M. R. (2001): Photosynthetic performance of freshwater Rhodophyta in response to temperature, irradiance, pH and diurnal rhythm. Phycological Research, 49: 305-318. https://doi.org/10.1046/j.1440-1835.2001.00251.x

Nedbalová, L., Mihál, M., Kvíderová, J., Procházková, L., Řezanka, T. and Elster, J. (2017): Identity, ecology and ecophysiology of planktic green algae dominating in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula). Extremophiles, 21: 187-200. https://doi.org/10.1007/s00792-016-0894-y

Ow, Y. X., Collier, C. J. and Uthicke, S. (2015): Responses of three tropical seagrass species to CO2 enrichment. Marine Biology, 162: 1005-1017. https://doi.org/10.1007/s00227-015-2644-6

Pushparaj, B., Paperi, R., Sili, C., Piccardi, R., Faraloni, C., Ena, A. and Torzillo, G. (2004): Antarctic micro-organisms for bioactive compound production: Isolation and characterization of cyanobacteria. In: P. Luporini & M. Morbidoni (eds.): Proceedings of the Fifth PNRA Meeting on Antarctic Biology, Scientific and Technical Report Series, ISSN 1592-5064, pp. 11-18.

Remias, D., Karsten, U., Lütz, C. and Leya, T. (2010): Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma, 243: 73-86. https://doi.org/10.1007/s00709-010-0123-y

Rubol, S., Freixa, A., Sanchez-Vila, X. and Romaní, A. M. (2018): Linking biofilm spatial structure to real-time microscopic oxygen decay imaging. Biofouling, 34: 200-211. https://doi.org/10.1080/08927014.2017.1423474

Ryan, K. G., Tay, M. L., Martin, A., McMinn, A. and Davy, S. K. (2011): Chlorophyll fluorescence imaging analysis of the responses of Antarctic bottom-ice algae to light and salinity during melting. Journal of Experimental Marine Biology and Ecology, 399: 156-161. https://doi.org/10.1016/j.jembe.2011.01.006

Schuurmans, R. M., van Alphen, P., Schuurmans, J. M., Matthijs, H .C. P. and Hellingwerf, K. J. (2015): Comparison of the photosynthetic yield of cyanobacteria and green algae: Different methods give different answers. PlosOne 10, e0139061. https://doi.org/10.1371/ journal.pone.0139061

Sehnal, L., Váczi, P. and Barták, M. (2014): Effect of temperature and increased concentration of CO2 on growth and photosynthetic activity of polar alga Trebouxia sp. Czech Polar Reports, 4: 47-56. https://doi.org/10.5817/CPR2014-1-5

Skácelová, K., Barták, M., Coufalík, P., Nývlt, D. and Trnková, K. (2013): Biodiversity of freshwater algae and cyanobacteria on deglaciated northern part of James Ross Island, Antarctica. A preliminary study. Czech Polar Reports, 3: 93-106. https://doi.org/10.5817/ CPR2013-2-12

Skácelová, K., Hrbáček, F., Chattová, B., Láska, K. and Barták, M. (2015): Biodiversity of freshwater autotrophs in selected wet places in northern coastal ecosystems of James Ross Island. Czech Polar Reports, 5: 12-26. https://doi.org/10.5817/CPR2015-1-2

Tamburic, B., Guruprasad, S., Radford, D. T., Szabó, M., Lilley, R. M., Larkum, A. W. D., Franklin, J. B., Kramer, D. M., Blackburn, S. I., Raven, J. A., Schliep, M. and Ralph, P. J. (2014). The effect of diel temperature and light cycles on the growth of nannochloropsis oculata in a photobioreactor matrix. PlosOne, 9, e86047. https://doi.org/10.1371/journal.pone. 0086047

Tengberg, A., Hovdenes, J., Andersson, H.J., Brocandel, O., Diaz, R., Hebert, D., Arnerich, T., Huber, C., Körtzinger, A., Khripounoff, A., Rey, F., Rönning, C., Schimanski, J., Sommer, S. and Stangelmayer, A. (2006): Evaluation of a lifetime-based optode to measure oxygen in aquatic systems: Lifetime-based optode to measure oxygen. Limnology and Oceanography: Methods, 4: 7-17. https://doi.org/10.4319/lom.2006.4.7

Thangaraj, G. (2015): Antarctic strain of green filamentous alga Zygnema sp. shows a high resistance to photoinhibition under simulated polar conditions. Czech Polar Reports, 5: 176-184. https://doi.org/10.5817/CPR2015-2-15

van Kooten, O., Snel, J.F.H. (1990): The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25: 147-150. https://doi.org/10.1007/BF00033156

Wellburn, A. R. (1994): The spectral determination of chlorophyll-a and chlorophhyll-b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144: 307-313.

Woelfel, J., Srensen, K., Warkentin, M., Forster, S., Oren, A. and Schumann, R. (2009): Oxygen evolution in a hypersaline crust: in situ photosynthesis quantification by microelectrode profiling and use of planar optode spots in incubation chambers. Aquatic Microbial Ecology, 56: 263-273. https://doi.org/10.3354/ame01326

Woelfel, J., Schoknecht, A., Schaub, I., Enke, N., Schumann, R. and Karsten, U. (2014): Growth and photosynthesis characteristics of three benthic diatoms from the brackish southern Baltic Sea in relation to varying environmental conditions. Phycologia, 53: 639-651. https://doi.org/10.2216/14-019.1

,

Metrics

0

Crossref logo

141

Views

29

PDF views