The effect of upper cortex absence on spectral reflectance indices in Antarctic lichens during thallus dehydration
Vol.8,No.1(2018)
In maritime Antarctica, lichens and mosses represent dominant autotrophs forming community structure of vegetation oases. In our study, we selected 4 most common lichen species (Xanthoria elegans, Rhizoplaca melanophthalma, Leptogium puberulum, Physconia muscigena) and monospecific colony of Nostoc commune typical for James Ross Island (Antarctica) for detailed physiological experiments. We investigated their spectral characteristics in response to hydration status of their thalli. In samples desiccating from fully wet (RWC, relative water content of 100%) to dry state (RWC = 0), photochemical reflectance index (PRI), and normalized difference vegetation index (NDVI) were evaluated for control thalli and those with removed upper cortex. In this way, the effect of presence/absence of the upper cortex on PRI, NDVI was studied. PRI showed either no change or species-specific an increase/decrease with dehydration. Removal of the upper cortex caused both PRI decrease (N. commune, P. muscigena) and increase (R. melanophthalma, L. puberulum). Removal of the upper cortex led to increase in NDVI in all species, typically within the RWC range of 20-100%. Species-specific differences of hydration-response curves of PRI and NDVI are discussed as well as the role of the absence of the upper cortex in the evaluation of spectral characteristics in desiccating lichens.
PRI; NDVI; cyanolichens; chlorolichens; Nostoc commune
Ager, C. M., Milton, N. M. (1987): Spectral reflectance of lichens and their effects on the reflectance of rock substrates. Geophysics, 52: 898-906.
Atala, C., Schneider, C., Bravo, G., Quilodrán, M. and Vargas, R. (2015): Anatomical, physiological and chemical differences between populations of Pseudocyphellaria flavicans (Hook. f. & Taylor) Vain. from Chile. Gayana Botanica, 72: 21-26.
Barták, M., Trnková, K., Hansen, E. S., Hazdrová, J., Skácelová, K., Hájek, J. and Forbelská, M. (2015a): Effect of dehydration on spectral reflectance and photosynthetic efficiency in Umbilicaria arctica and U. hyperborea. Biologia Plantarum, 59 (2): 357–65.
Barták, M., Váczi, P., Stachoň, Z. and Kubešová, S. (2015b): Vegetation mapping of moss-dominated areas of northern part of James Ross Island (Antarctica) and a suggestion of protective measures. Czech Polar Reports, 5 (1): 75-87.
Barták, M., Hájek, J., Amarillo, A. C., Hazdrová, J. and Carreras, H. (2016): Changes in spectral reflectance of selected Antarctic and South American lichens caused by dehydration and artificially-induced absence of secondary compounds. Czech Polar Reports, 6(2): 221-230.
Barták, M., Hájek, J., Morkusová, J., Skácelová, K. and Košuthová, A. (2018): Dehydration-induced changes in spectral reflectance indices and chlorophyll fluorescence of Antarctic lichens with different thallus color, and intrathalline photobiont. Acta Physiologiae Plantarum, 40: 177. https://doi.org/10.1007/s11738-018-2751-3.
Bechtel, R., Rivard, B. and Sánchez-Azofeifa, A. (2002): Spectral properties of foliose and crustose lichens based on laboratory experiments. Remote Sensing of Environment, 82: 389-396.
Beckett, R. P., Kranner, I. and Minibayeva, F.V. (2008) : Stress physiology and the symbiosis. In: T. H. Nash III (ed.): Lichen Biology, Second Edition. Cambridge University Press, Cambridge, UK, pp. 134-151.
Büdel, B. (1990): Anatomical adaptations to the semiarid/arid environment in the lichen genus Peltula. Bibliotheca Lichenologica, 8: 47-61.
Deng, Z., Hu, Q., Lu, F., Liu, G. and Hu, Z. (2008): Colony development and physiological characterization of the edible blue-green alga, Nostoc sphaeroides (Nostocaceae, Cyanophyta). Progress in Natural Science, 18: 1475-1483.
Gaya, E. (2009): Taxonomical Revision of the Caloplaca saxicola Group (Teloschistaceae, Lichen-forming Ascomycota). Bibliotheca Lichenologica, 101: 1-191.
Gamon, J.A., Field, C.B., Bilger, W., Björkman, O., Fredeen, A. and Peuelas, J. (1990): Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia, 85: 1-7.
Gamon, J. A., Serrano, L. and Surfus, J. S. (1997): The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types and nutrient levels. Oecologia, 112: 492-501.
Garty, J., Weissman, L., Tamir, O., Beer, S., Cohen, Y., Karnieli, A. and Orlovsky, L.: (2000): Comparison of five physiological parameters to assess the vitality of the lichen Ramalina lacera exposed to air pollution. Physiologia Plantarum, 109: 410-418.
Jupa, R., Hájek, J., Hazdrová, J. and Barták, M. (2012): Interspecific differences in photosynthetic efficiency and spectral reflectance in two Umbilicaria species from Svalbard during controlled desiccation. Czech Polar Reports, 2 (1): 31-41.
Kleefeld, A., Gypser, S., Herppich, W. B., Bader, G. and Veste, M. (2018): Identification of spatial pattern of photosynthesis hotspots in moss- and lichen-dominated biological soil crusts by combining chlorophyll fluorescence imaging and multispectral BNDVI images. Pedobiologia, 68: 1-11.
Le Pogam, P., Legouin, B., Geairon, A., Rogniaux, H., Lohézic-Le Dévéhat, F., Obermayer, W., Boustie, J. and Le Lamer, A.-C. (2016): Spatial mapping of lichen specialized metabolites using LDI-MSI: chemical ecology issues for Ophioparma ventosa. Scientific Reports, 6, Article number: 37807 (2016).
Marcinkowska-Ochtyra, A., Zagajewski, B., Raczko, E., Ochtyra, A. and Jarocińska, A. (2018): Classification of High-Mountain Vegetation Communities within a Diverse Giant Mountains Ecosystem Using Airborne APEX Hyperspectral Imagery. Remote Sensing, 10 (4): 570 (21p).
Meeßen, J., Sánchez, F. J., Brandt, A., Balzer, E. M., de la Torre, R., Sancho, L. G., de Vera, J. P. and Ott, S. (2013): Extremotolerance and Resistance of Lichens: Comparative Studies on Five Species Used in Astrobiological Research I. Morphological and Anatomical Characteristics. Origins of Life and Evolution of Biospheres, 43 (3): 283-303.
Morison, M., Cloutis, E. and Mann, P. (2014): Spectral unmixing of multiple lichen species and underlying substrate. International Journal of Remote Sensing, 35 (2): 478-492.
Neta, T., Cheng, Q., Bello, R. L. and Hu, B. (2010): Lichens and mosses moisture content assessment through high‐spectral resolution remote sensing technology: a case study of the Hudson Bay Lowlands, Canada. Hydrological Processes, 24: 1617-1628.
Petzold, D. E., Goward, S. N. (1988): Reflectance spectra of subarctic lichens. Remote Sensing of Environment, 24: 481-492.
Rankovic, B. (2015): Lichen Secondary Metabolites Bioactive Properties and Pharmaceutical Potential. Springer Cham Heidelberg New York Dordrecht London. 179 p.
Regan, S., Matwichuk, L., Cloutis, E., Goltz, D. and Mann, P. (2016): Potential signatures of heavy metal complexes in lichen reflectance spectra. International Journal of Remote Sensing, 37 (11): 2621-2640.
Sand-Jensen, K. (2014): Ecophysiology of gelatinous Nostoc colonies: unprecedented slow growth and survival in resource-poor and harsh environments. Annals of Botany, 114: 17-33.
Singh, R., Ranjan, S., Nayaka, S., Pathre, U. V. and Shirke, P. A. (2013): Functional characteristics of a fruticose type of lichen, Stereocaulon foliosum Nyl. in response to light and water stress. Acta Physiologiae Plantarum, 35 (5): 1605-1615.
Van der Veen, C. J., Csatho, B. M. (2005): Spectral Characteristics of Greenland Lichens. Géographie physique et Quaternaire, 59 (1): 63-73.
Walker, D. A., Carlson, S., Frost, J. J., Matyshak, G. V., Leibman, M. E., Orekhov, P., Khomutov, A., Khitun, O., Zhurbenko, M., Afonina, O. and Barbour, E. M. (2011): 2010 Expedition to Krenkel station, Hayes Island, Franz Josef Land, Russia. Alaska Geobotany Center, Institute of Arctic Biology, University of Alaska Fairbanks, 63 p.
Zhang, J., Rivard, B. and Sánchez-Azofeifa, A. (2005): Spectral unmixing of normalized reflectance data for the deconvolution of lichen and rock mixtures. Remote Sensing of Environment, 95 (1): 57-66.
Other sources/ Web sources:
[1] Consortium of North American Lichen Herbaria web page (http://lichenportal.org/portal/)
[2] The lichen herbarium, University of Oslo (http://nhm2.uio.no/lav/web/index.html)
,This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2020 Czech Polar Reports