Short-term responses of primary processes in PS II to low temperature are sensitively indicated by fast chlorophyll fluorescence kinetics in Antarctic lichen Dermatocarpon polyphyllizum

Vol.7,No.1(2017)

Abstract

In this study, we investigated the effects of low temperature on the fast chlorophyll fluo-rescence transient (OJIP) and OJIP-derived parameters in chlorolichen Dermatocarpon polyphyllizum expossed to a gradually decreasing temperature (22°C, 18°C, 14°C, 12°C, 10°C, 7°C and 4°C). The segments of lichen thalli were exposed to a certain temperature either in dark- and light-adapted state for 10 minutes in order to evaluate the effects on chlorophyll fluorescence parameters. The initial photochemical phase of the transient (O-J) due to reduction of the primary quinone acceptor (QA) was found temperature dependent. The K-step was apparent for the samples measured at the temperature above 12°C, but not below 10oC in light-adapted lichen thalli. With the thallus temperature decrease, majority of the chlorophyll fluorescence parameters derived from OJIP (ET0/RC, Psi_0, and DI0/RC) showed no change in light-adapted samples but a decrease in dark-adapted samples. The effects of dark- / light-adaptation of the lichen samples on the OJIP and OJIP-derived parameters was attributed to the differences in production/utilization of high-energy products of primary photochemical processes of photosynthesis in dark- and light-adapted state, respectively. The other parameters (ABS/RC, TR0/RC) showed a decrease with thallus temperature decrease both in light- and dark-adapted samples. The results suggest that fast chlorophyll fluorescence trasient is an useful tool to investigate temperature-dependent changes in photosystem II in chlorolichens, their photobionts, respectively.


Keywords:
c hlorophyll fluorescence; fast kinetics; OJIP; K-step; James Ross Island; temperature stress
References

Balarinová, K., Barták, M., Hazdrová, J., Hájek, J. and Jílková J. (2014): Changes in photosynthesis, pigment composition and glutathione contents in two Antarctic lichens during a light stress and recovery. Photosynthetica, 52: 538-547.

Barták, M., Trnková, K., Hansen, E.S., Hazdrová, J., Skácelová, K., Hájek, J. and Forbelská, M. (2015b): Effect of dehydration on spectral reflectance and photosynthetic efficiency in Umbilicaria arctica and U. hyperborea. Biologia Plantarum, 59 (2): 357-365.

Barták, M., Váczi, P., Stachoň, Z. and Kubešová, S. (2015a): Vegetation mapping of moss-dominated areas of northern part of James Ross Island (Antarctica) and a suggestion of protective measures. Czech Polar Reports, 5: 75-87.

Brestič, M., Živčák, M. (2013): PSII fluorescence techniques for measurement of drought and high temperature stress signal in plants: protocols and applications. In: G. R. Rout, A. B. Das (eds.): Molecular stress physiology of plants. Springer Dordrecht, pp. 87-131.

Brestič, M., Živčák, M., Olšovská, K. and Repková, J. (2013): Involvement of chlorophyll a fluorescence analyses for identification of sensitiveness of the photosynthetic apparatus to high temperature in selected wheat genotypes. Photosynthesis: Research for Food, Fuel and Future, 15th International Conference on Photosynthesis, pp. 510-513, doi: 10.1007/978-3-642-32034-7_108.

Fontaine, K.M., Beck, A., Stocker-Wörgötter, E. and Piercey-Normore, M. D. (2012): Photobiont relationships and phylogenetic history of Dermatocarpon luridum var. luridum and related Dermatocarpon species. Plants, 1: 39-60.

Guissé, B., Srivastava, A. and Strasser, R. J. (1995): The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat-stressed leaves. Archives des Sciences Genéve, 48: 147-160.

Hájek, J., Barták, M. and Gloser, J. (2001): Effects of thallus temperature and hydration on photosynthetic parameters of Cetraria islandica from contrasting habitats. Photosynthetica, 39: 427-435.

He, Y., Zhu, Z., Yang, J., Ni, X. and Zhu, B. (2009): Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes aktivity. Environmental and Experimental Botany, 66: 270-278.

Hendrickson, L., Ball, M. C., Osmond, C. B., Furbank, R. T. and Chow, W. S. (2003): Assessment of photoprotection mechanisms of grapevines at low temperature. Functional Plant Biology, 30: 631-642.

Chen, S., Yang, J., Zhang, M., Strasser, R. J. and Qiang, S. (2016): Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P. Environmental and Experimental Botany, 122: 126-140.

Ilík, P., Schansker, G., Kotabová, E., Váczi, P., Strasser, R. J. and Barták, M. (2006): A dip in the chlorophyll fluorescence induction at 0.2–2 s in Trebouxia-possessing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. Biochimica et Biophysica Acta, 1757: 12-20.

Martinazzo, E. G., Ramm, A., and Macarin, M. A. (2012): The chlorophyll a fluorescence as an indicator of the temperature stress in the leaves of Prunus persica. Brazilian Journal of Plant Physiology, 24: 237-246.

Mathur, S., Jajoo, A., Mehta, P. and Bharti, S. (2011): Analysis of elevated temperature-induced inhibition of photosystem II by using chlorophyllafluorescence induction kinetics in wheat leaves (Triticum aestivum).Plant Biology, 13: 1-6.

Medina, M.G., Avalos-Chacon, R. (2015): Physiological performance of a foliose macrolichen Umbilicaria antarctica as affected by supplemental UV-B treatment. Czech Polar Reports, 5 (2): 222-229.

Mishra, A., Hájek, J., Tuháčková, T., Barták, M. and Mishra, K. B. (2015): Features of chlorophyll fluorescence transients can be used to investigate low temperature induced effects on photosystem II of algal lichens from polar regions. Czech Polar Reports, 5 (1): 99-111.

Nash, H. T., Ryan, D. B., Diederich, P., Gries, C. and Bungartz, F. (2004): Lichen flora of the Greater Sonoran Desert Region Vol. 2. – Lichens Unlimited, Arizona State University, Tempe, Arizona, 742 p.

Oukarroum, A., Madidi , S.E., Schansker , G. and Strasser, R.J. (2007): Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environmental and Experimental Botany, 60: 438-446.

Oukarroum, A., Strasser, R. J. and Schansker, G. (2012): Heat stress and the photosynthetic electron transport chain of the lichen Parmelina tiliacea (Hoffm.) Ach. in the dry and the wet state: differences and similarities with the heat stress response of higher plants. Photosynthesis Research, 111: 303-314.

Řeháková, H. (1968): Lišejníkové řasy z rodu Trebouxia, Diplosphaera a Myrmecia. Kand. Dis., Diplomová práce. Univerzita Karlova v Praze, Fakulta Přírodovědecká.

Schansker, G., Tóth, S. Z., and Strasser, R. J. (2006): Dark-recovery of the Chlafluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochim Biophys Acta, 1757: 787-797.

Schansker, G., Yuan, Y., and Strasser, R. J. (2008): Chlafluorescence and 820nm transmission changes occurring during a dark-to-light transition in pine needles and pea leaves: a comparison. In: J. F. Allen, B. Osmond, J. H. Golbeck, E. Gantt (eds.): Photosynthesis. Energy from the sun. Springer, Dordrecht, pp. 951-955.

Smethurst, Ch. F., Garnett, T. and Shabala, S. (2005): Nutritional and chlorophyll fluores-cence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant and Soil, 270: 31-45.

Srivastava, A., Strasser, R. J. (1996): Stress and stress management of land plants during a regular day. Journal of Plant Physiology, 148: 445-455.

Stirbet, A., Govindjee (2012): Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynthesis Research, 113: 15-61.

Stirbet, A., Riznichenko, G. Yu., Rubin, A. B. and Govindjee (2014): Modeling chlorophyll a fluorescence transient: relation to photosynthesis. Biochemistry (Moscow), 79 (4): 291-323.

Strasser, R.J., Srivastava, A. and Govindjee (1995): Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochemistry and Photobiology, 61(1): 32-42.

Strasser, R.J., Srivastava, A. and Tsimilli-Michael, M. (2000): The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: M. Yunus, U. Pathre, P. Mohanty (eds.): Probing Photosynthesis: Mechanism, Regulation and Adaptation Taylor and Francis, UK, Chapter 25, pp. 445-483.

Thüs, H., Muggia, L., Pérez-Ortega, S., Favero-Longo, S. E., Joneson, S., O’Brien, H., Nelsen, M. P., Duque-Thüs, R., Grube, M., Friedl, T., Brodie, J., Andrew, C. J., Lücking, R., Lutzoni, F. and Gueidan, C. (2011): Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). European Journal of Phycology, 46: 399-415.

Xue, W., Li, X. Y., Lin, L. S., Wang, Y. J. and Li, L. (2011): Effects of elevated temperature on photosynthesis in desert plant Alhagi sparsifolia S. Photosynthetica, 49 (3): 435-447.

Yamane, Y., Kashino, Y., Koike, H. and Satoh, K. (1997): Increases in the fluorescence Fo level and reversible inhibition of Photosystem II reaction center by high temperature treatments in higher plants. Photosynthesis Research, 52: 57-64.

Yang, Y., Yan, CH.-Q., Cao, B.-H., Xu, H.-X., Chen, J.-P. and Jiang, D.-A. (2007): Some photosynthetic responses to salinity resistance are transferred into the somatic hybrid descendants from the wild soybean Glycine cyrtoloba ACC547. Physiologia Plantarum, 129: 658-669.

Żurek, G., Rybka, K., Pogrzeba, M., Krzyżak, J. and Prokopiuk, K. (2014): Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses. PLOS ONE, 9 (3): e91475.,

Metrics

276

Views

49

PDF views