Unmanned Aerial Vehicle – Efficient mapping tool available for recent research in polar regions

Vol.5,No.2(2015)

Abstract

Unmanned Aerial Vehicles (UAV) have technical capabilities to extended usage in various fields ofscience. The existing UAVs are to be relatively easily accessible in the near future. It is possible to equip them with different sensors but there are still some usage limitations. This paper focuses ondemonstrating UAVs usage for research in polar regions. The research in polar regions is very specific and, due to harsh climate, limits the field work with UAVs. The options and limitations are presented in a case study performed in the Nordenskiöldbreen area, Svalbard Archipelago. In the end some derived products suitable for further analysis are presented.


Keywords:
UAV; mapping; spatial analysis; Svalbard; 3D; visual images; thermal images
References

Adams, S. M., Friedland, C. J. (2013): A Survey of Unmanned Aerial Vehicle (UAV) Usage for Imagery Collection in Disaster Research and Management, 8 p., (https://blume.stanford.edu/ sites/default/files/RS_Adams_Survey_paper_0.pdf.)

Berman, E. S. F., Fladeland, M., Liem, J., Kolyer, R. and Gupta, M. (2012): Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle. Sensors and Actuators, B: Chemical, 169: 128-135.

Chou, T.-Y., Yeh, M-L., Chen, Y-Ch. and Chen, Y-H. (2010): Disaster monitoring and management by the Unmanned Aerial Vehicle technology. In: ISPRS TC VII Symposium – 100 Years ISPRS Advancing Remote Sensing Science. Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, Vienna, 137-142 pp. ISSN 1682-1777.

Dobrovolný, P. (1998): Remote Sensing of the Earth: Digital Image Processing (Dálkový průzkum Země: digitální zpracování obrazu). 1. edition. Masaryk university, Brno, Czech Republic, 208 p. ISBN 80-210-1812-7 (In Czech).

Eisenbeiss, H. (2004): A mini unmanned aerial vehicle (UAV): System overview and image acquisition, 7 p., (http://www.isprs.org/proceedings/xxxvi/5-w1/papers/11.pdf.)

Hagen, J., Liestl, O., Roland, E. and Jorgensen, T. (1993): Glacier atlas of Svalbard and Jan Mayen. Norsk Polarinstitutt Meddelelser, 129, 141 pp.

Kakaes, K., Greenwood, F., Lippincott, M., Dosemagen, S., Meier, P. and Wich, S. (2015): Drones and aerial observation: New Technologies For Property Rights, Human Rights, And Global Development A Primer, New America, (http://www.newamerica.org)

Kattenborn, T., Sperlich, M., Bataua, K. and Koch, B. (2014): Automatic Single Palm Tree Detection in Plantations Using UAV-based Photogrammeric Point Clouds. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, pp. 139-144.

Láska, K., Chládová, Z., Ambrožová, K. and Husák, J. (2013): Cloudiness and weather variation in central Svalbard in July 2013 as related to atmospheric circulation. Czech Polar Reports, 3: 184-195.

Láska, K., Witoszová, D. and Prošek, P. (2012): Weather patterns of the coastal zone of Petuniabukta (Central Spitsbergen) in the period 2008–2010. Polish Polar Research, 33: 297-318.

Lucieer, A., De Jong, S. M. and Turner, D. (2014): Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 38: 97-116, (http://ppg.sagepub.com/content/38/1/97.full.pdf +html).

Mayer, S., Jonassen, M. O., Sandvik, A. and Reuder, J. (2012): Profiling the Arctic Stable Boundary Layer in Advent Valley, Svalbard: Measurements and Simulations. Boundary-Layer Meteorology, 143: 507-526.

Miřijovský, J. (2013): Unmanned aerial systems - data collection and utilisation in photogrammetry (Bezpilotní systémy – sběr dat a využití ve fotogrammetrii). 1. edition. UP Publishing, Olomouc, Czech Republic, 169 p. ISBN 978-80-244-3923-5 (In Czech).

Mora, C., Vieira, G., Pina, P., Lousada, M. and Christiansen, H. H. (2015): Land Cover Classification Using High-Resolution Aerial Photography in Adventdalen, Svalbard. Geografiska Annaler, Series A: Physical Geography, 97: 473-488.

Plassen, L., Vorren, T. and Forwick, M. (2004): Integrated acoustic and coring investigation of glacigenic deposits in Spitsbergen fjords. Polar Research, 23: 89-110.

Rachlewicz, G., Szczuciński, W. and Ewertowski, M. (2007): Post-“Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen, Svalbard. Polish Polar Research, 28: 159-186.

Reuder, J., Brisset, P., Jonassen, M., Müller, M. and Mayer, S. (2009): The Small Unmanned Meteorological Observer SUMO: A new tool for atmospheric boundary layer research. Meteorologische Zeitschrift, 18: 141-147.

Rippin, D. M., Pomfret, A. and King, N. (2015): High resolution mapping of supra-glacial drainage pathways reveals link between micro-channel drainage density, surface roughness and surface reflectance. Earth Surface Processes and Landforms, 40: 1279-1290.

Stacke, V., Mida, P., Lehejček, J., Tóthová, G. and Nývlt, D. (2013): Recent landscape changes in terminoglacial area of the Nordenskiöldbreen, central Spitsbergen, Svalbard. Czech Polar Reports, 3: 3-6.

Stuchlík, R. (2015): UAV data and its utilization in crisis management. Masaryk university, Brno, 92p.

Van Pelt, W. J. J., Oerlemans, J., Reijmer, C. H., Pohjola, V. A., Pettersson, R. and Van Angelen, J. H. (2012): Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model. The Cryosphere, 6: 641-659.

Vinšová, P., Pinseel, E., Kohler, T. J., Van De Vijver, B., Žárský, J. D., Kavan, J. and Kopalová, K. (2015): Diatoms in cryoconite holes and adjacent proglacial freshwater sediments, Nordenskiöld glacier (Spitsbergen, High Arctic). Czech Polar Reports, 5: 112-133.

Web sources

Ackerman, E. [on-line]: Japan Earthquake: Global Hawk UAV May Be Able to Peek Inside Damaged Reactors. IEEE Spectrum, (http://spectrum.ieee.org/automaton/robotics/military-robots/global-hawk-uav-may-be-able-to-peek-inside-damaged-reactors.)

UpVision [on-line]: News, (http://www.upvision.cz/) ,

Metrics

461

Views

48

PDF views