Cryoconite holes on frozen lakes as source of interesting extremophilic and extremotolerant organisms

Vol.5,No.2(2015)

Abstract

The key thought of this short communication is biodiversity evaluation of the photo-autotrophic inhabitants of lake cryoconite holes and point out their potencial as extremo-tolerant or even extremophilic organisms that deserve attention. Cyanobacterial diversity of these environments was investigated in cryoconites holes of 2 permanently and 1 sea-sonally ice-covered lakes at James Ross Island. Twelve species from different taxonomic groups, both coccal and filamentous (with and without heterocytes) cyanobacteria, were determined using a light microscope and morphological features of autorophic microorganisms. The results suggested relatively high diversity in such extreme environments and also indicated potential of lake cryoconites to serve as a reservoir of organism that can have special protection properties.


Keywords:
cryoconite holes; cyanobacteria; extreme environment; diversity; adaptation
References

Adams, E. E., Priscu, J. C., Fritsen, C. H., Smith, S. R. and Brackman, S. L. (1998): Permanent ice covers of the McMurdo Dry Valley Lakes, Antarctica: bubble formation and metamorphism. American Geophysical Union, pp. 281-295.

Anagnostidis, K., Komárek, J. (1985): Modern approach to the classification system of cyanophytes. 1-Introduction. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 291-302.

Anagnostidis, K., Komárek, J. (1988): Modern approach to the classification system of cyanophytes. 3-Oscillatoriales. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 50-53: 327-472.

Anesio, A. M., Mindl, B., Laybourn-Parry, J., Hodson, A. J. and Sattler, B. (2007): Viral dynamics in cryoconite holes on a high Arctic glacier (Svalbard). Journal of Geophysical Research: Biogeosciences (2005–2012), 112(G4).

Anesio, A. M., Hodson, A. J., Fritz, A., Psenner, R. and Sattler, B. (2009): High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biology, 15: 955-960.

Bartlett, D. H. (1999): Microbial adaptations to the psychrosphere/piezosphere. Journal of Molecular Microbiology and Biotechnology, 1: 93-100.

Bertilsson, S., Burgin, A., Carey, C. C., Fey, S. B., Grossart, H. P., Grubisic, L. M., Jones, I. D., Kirillin, G., Lennon, J. T., Shade, A. and Smyth, R. L. (2013): The under-ice microbiome of seasonally frozen lakes. Limnology and Oceanography, 58: 1998-2012.

Christner, B. C., Kvitko II, B. H. and Reeve, J. N. (2003): Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles, 7: 177-183.

Cooley, J. W., Howitt, C. A. and Vermaas, W. F. (2000): Succinate:quinol oxidoreductases in the cyanobacterium Synechocystis sp. strain PCC 6803: Presence and function in metabolism and electron transport. Journal of Bacteriology, 182: 714-722.

Edwards, A., Anesio, A. M., Rassner, S. M., Sattler, B., Hubbard, B., Perkins, W. T., Young, M. and Griffith, G. W. (2011): Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard.The ISME Journal, 5: 150-160.

Gerdel, R.W., Drouet, F. (1960): The cryoconite of the Thule area, Greenland. Transactions of the American Microscopian Society, 79: 256-272.

Glazer, A. N. (1994): Adaptive variations in phycobilisome structure. In: J. Barber (ed.): Advances in molecular cell biology, vol. 10. JAI Press, London, United Kingdom, pp. 119-149.

Green, B. R., Durnford, D. G.(1996): The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 47: 685-714.

Foreman, C. M., Sattler, B., Mikucki, J. A., Porazinska, D. L. and Priscu, J. C. (2007): Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. Journal of Geophysical Research: Biogeosciences (2005–2012), 112(G4).

Hazel, J. R., Williams, E. E. (1990): The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Progress in Lipid Research, 29: 167-227.

Hodson, A. J., Mumford, P. N., Kohler, J. and Wynn, P. M. (2005): The High Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochemistry, 72: 233-256.

Howard-Williams, C. and Hawes, I. (2007): Ecological processes in Antarctic inland waters: interactions between physical processes and the nitrogen cycle. Antarctic Science, 19: 205-217.

Hrbáček, F., Láska, K. and Engel, Z. (2015): Effect of snow cover on the active-layer thermal regime – A Case Study from James Ross Island, Antarctic Peninsula. Permafrost and Periglacial Processes, doi: 10.1002/ppp.1871.

Komárek, J., Anagnostidis, K. (1989): Modern approach to the classification system of Cyanophytes 4-Nostocales. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 56: 247-345.

Komárek, J. (2007): Phenotype diversity of the cyanobacterial genus Leptolyngbya in the maritime Antarctic. Polish Polar Research, 28: 211-231.

Komárek, J., Elster, J. and Komárek, O. (2008): Diversity of the cyanobacterial microflora of the northern part of James Ross Island, NW Weddell Sea, Antarctica. Polar Biology, 31: 853-865.

Láska, K., Barták, M., Hájek, J., Prošek, P. and Bohuslavová, O. (2011): Climatic and ecological characteristics of deglaciated area of James Ross Island, Antarctica, with a special respect to vegetation cover. Czech Polar Reports, 1: 49-62.

Li, Y., Gao, K. (2007): Photosynthetic physiology and growth as a function of colony size in the cyanobacterium Nostoc sphaeroides. European Journal of Phycology, 39: 9-15. doi:10.1080/ 0967026032000157147.

Morgan-Kiss, R. M., Priscu, J. C., Pocock, T., Gudynaite-Savitch, L. and Huner, N. P. (2006): Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews, 70: 222-252.

Mueller, D. R., Vincent, W. F., Pollard, W. H. and Fritsen, C. H. (2001): Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats.Nova Hedwigia Beiheft, 123: 173-198.

Mueller, D. R., Pollard, W. H. (2004): Gradient analysis of cryoconite ecosystems from two polar glaciers.Polar Biology,27: 66-74.

Porazinska, D. L., Fountain, A. G., Nylen, T. H., Tranter, M., Virginia, R. A. and Wall, D. H. (2004): The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arctic, Antarctic, and Alpine Research, 36: 84-91.

Priscu, J. C., Fritsen, C. H., Adams, E. E., Giovannoni, S. J., Paerl, H. W., McKay, C. P., Doran, P.T. , Gordon D. A. , Lanoil, B. D. and Pinckney, J. L. (1998): Perennial Antarctic lake ice: an oasis for life in a polar desert. Science, 280: 2095-2098.

Sato, N. (1995): A family of cold-regulated RNA-binding protein genes in the cyanobacterium Anabaena variabilis M3. Nucleic Acids Research, 23: 2161-2167.

Sattler, B., Storrie-Lombardi, M. C., Foreman, C. M., Tilg, M. and Psenner, R. (2010): Laser-induced fluorescence emission (LIFE) from Lake Fryxell (Antarctica) cryoconites. Annals of Glaciology, 51: 145-152.

Säwström, C., Mumford, P., Marshall, W., Hodson, A. and Laybourn-Parry, J. (2002): The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79 N). Polar Biology, 25: 591-596.

Sidler, W. A. (1994): Phycobilisome and phycobiliprotein structures. In: D. A. Bryant (ed.): Advances in photosynthesis, vol. 1: The molecular biology of cyanobacteria. Kluwer Aca-demic, Dordrecht, The Netherlands, pp. 139-216

Skácelová, K., Barták, M. (2014): Gradient of algal and cyanobacterial assemblages in a temporary lake with melting water at Solorina Valley, James Ross Island, Antarctica. Czech Polar Reports, 4: 185-192.

Speirs, J. C., McGowan, H. A., Steinhoff, D. F. and Bromwich, D. H. (2013): Regional climate variability driven by foehn winds in the McMurdo Dry Valleys, Antarctica.International Journal of Climatology, 33: 945-958.

Stibal, M., Šabacká, M. and Kaštovská, K. (2006): Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microbial Ecology, 52: 644-654.

Strunecký, O., Elster, J. and Komárek, J. (2012): Molecular clock evidence for survival of Antarctic cyanobacteria (Oscillatoriales, Phormidium autumnale) from Paleozoic times. FEMS Microbiology Ecology, 82: 482-490.

Russell, N. J., Harrisson, P., Johnston, I. A., Jaenicke, R., Zuber, M., Franks, F. and Wynn-Williams, D. (1990): Cold adaptation of microorganisms [and discussion]. Philosophical Transactions of the Royal Society B: Biological Sciences, 326: 595-611.

Russell, N. J. (2000): Toward a molecular understanding of cold activity of enzymes from psychrophiles.Extremophiles, 4: 83-90.

Takeuchi, N., Kohshima, S. and Seko, K. (2001): Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arctic Antarctic and Alpine Research, 33: 115-122.

Takeuchi, N. (2002): Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite. Annals of Glaciology, 34: 409-414.

Vonnahme, T. R., Devetter, M., Žárský, J. D., Šabacká, M. and Elster, J. (2015): Controls on microalgal community structures in cryoconite holes upon high Arctic glaciers, Svalbard.Biogeosciences Discussions, 12: 11751-11795.

Other sources

Czech Geological Survey. 2009. James Ross Island - northern part. Topographic map 1 : 25 000. First edition. Praha, Czech Geological Survey. ISBN 978-80-7075-734-5.,

Metrics

179

Views

33

PDF views