Dwarf tundra shrubs growth as a proxy for late Holocene climate change

Vol.5,No.2(2015)

Abstract

The Arctic is the most sensitive zone to climate changes and the impacts are reflected in local ecosystems. In order to extract information of the past from proxy archives the detailed knowledge of such archive is crucial. The paper summarizes modern approaches of tundra dwarf shrub research for the purposes of paleoclimatology. Dwarf tundra shrubs as still relatively untapped archive are believed to contain valuable proxy data in their annual growth increments. Field sampling, and laboratory work are reviewed in detail. Constraints of dwarf tundra shrub research are discussed as well. The relationship between climate and growth is addressed to find a link between them depending on location and species. Majority of investigations found the strongest relationship between summer temperatures and ring widths, although exceptions are not rare. Dwarf tundra shrubs can fully serve as valuable proxy archive only if those are understood. Finally, the factors influencing the length of dwarf tundra shrub life are studied in order to sample the oldest living individuals in the field. Despite the field collection should aim to sample various sizes and ages of plants to make the dataset robust, the longest living individuals which are important to prolong chronologies are usually inhabiting rather nutrient poor and undisturbed sites close to their survival limits. The paper indicates the most suitable dwarf tundra shrub research designs for the purposes of paleoclimatology. As such it can help to harvest the benefits of dendrochronology from the vast and new territories.


Keywords:
climate archive; lifespan; dendroclimatology; wood anatomy; the Arctic
References

ACIA (2005): Arctic Climate Impact Assessment, Cambridge University Press, NY, USA, 140 p.

Atkinson, D., Gajewski, K. (2002): High-resolution estimation of surface air temperature in the Canadian High Arctic. Journal of Climatology, 15: 3601-3614.

Bär, A., Bräuning, A. and Löffler, J. (2006): Dendroecology of dwarf shrubs in the high mountains of Norway – a methodological approach. Dendrochronologia, 24: 17-27.

Bär, A., Bräuning, A. and Löffler, J. (2007): Ring-width chronologies of the alpine dwarf shrub Empetrum hermaphroditum from the Norwegian mountains. IAWA Journal, 28: 325-338.

Bär, A., Pape, R., Bräuning, A. and Löffler, J. (2008): Growth-ring variations of dwarf shrubs reflect regional climate signals in alpine environments rather than topoclimatic differences. Journal of Biogeography, 35: 625-636.

Blok, D., Heijmans, M. M. P. D., Schaepman-Strub, G., Kononov, A. V., Maximov, T. C. and Berendse, F. (2010): Shrub expansion may reduce summer permafrost thaw in Siberian tundra, Global Change Biology, 16: 1296-1305.

Blok, D., Sass-Klaassen, U., Schaepman-Strub, G., Heijmans, M. M. P. D., Sauren, P. and Berendse, F. (2011): What are the main climate drivers for shrub growth in Northeastern Siberian tundra? Biogeosciences, 8: 1169-1179.

Briffa, K. R., Jones, P. D., Schweingruber, F. H., Shiyatov, S. H. and Cook, E. R. (1995): Unusual twentieth-century summer warmth in a 1,000 year temperature record from Siberia. Nature, 376: 156-159.

Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Jones, P. D., Shiyatov, S. G. and Vaganov, E. A. (2002): Tree-ring width and density data around the Northern Hemisphere: Part 1, local and regional signals. The Holocene, 12: 737-757.

Buchwal, A., Rachlewicz, G., Fonti, P., Cherubini, P. and Gärtner, H. (2013): Temperature modulates intra-plant growth of Salix polaris from a High Arctic site (Svalbard). Polar Biology, 36: 1305-1318.

Bunn, A., Goetz S., Kimbal, J. and Zhang, K. (2007): Northern high latitude ecosystem response to climate change. EOS, 88: 333-334.

Büntgen, U., Hellmann, L., Tegel, W., Normand, S., Myers-Smith, I., Kirdyanov, A. V., Nievergelt, D. and Schweingruber, F. H. (2015): Temperature-induced recruitment pulses of Arctic dwarf shrub communities. Journal of Ecology, 103, Issue 2: 489-501.

Büntgen, U., Schweingruber, F. H. (2010): Environmental change without climate change (letter). New Phytologist, 188: 646-651.

Cook, E. R. (1985): A Time Series Analysis Approach to Tree-Ring Standardization. PhD. Dissertation, The University of Arizona, Tuscon, 1985.

Cook, E.R., Briffa, K., Shiatov, S. and Mazepa, V. (1990): Tree-ring standardization and growth-trend estimation. In: E. R. Cook, and L. A. Kairiuktis (eds.): Methods of dedrochronology: Application in the environmental science. Kluwer Academic Publishers, Dordrecht, 1990.

Cook, E. R., Kairiuktis, L. A. (1990): Methods of dendrochronology: Applications in the environmental sciences, Kluwer, London, 1990.

Esper, J., Cook, E. R., Krusic, P. J., Peters, K. and Schweingruber, F. H. (2003): Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Research, 59: 81-98.

Forbes, B. C., Fauria, M. M. and Zetterberg, P. (2010): Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Global Change Biology 16: 1542-1554.

Fritts, H. C. (1976): Tree ring and climate. Academic Press, New York. 567 p.

Gärtner, H., Schweingruber, F. H. (2013): Microscopic preparation techniques for plant stem analysis. Verlag Dr. Kessel, Remagen. 78 p.

Hallinger, M., Manthey, M. and Wilmking, M. (2010): Establishing a missing link: warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytologist, 186: 890-899.

Hantemirov, R., Gorlanova, L. and Shiyatov, S. (2000): Pathological Tree-Ring Structures in Siberian Juniper (Juniperus sibirica Burgsd.) and Their Use for Reconstructing Extreme Climatic Events. Russian Journal of Ecology, 31: 185-192.

Hantemirov, R., Shiyatov, S. and Gorlanova, L. (2011): Dendroclimatic study of Siberian juniper. Dendrochronologia, 29: 119­122.

Holmes, R. L., Adams, R. K. and Fritts, H. C. (1986): Tree-ring chronologies of western North America: California, eastern Oregon, and northern Great Basin with procedures based on chronology development work including users manual for computer programme COFECHA and ARSTAN. Chronology Series VI. Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona. 51 p.

Kanngiesser, F. (1906): Einiges über Alter und Dickenwachstum von Jenenser Kalksträuchern. Jenaische Zeitschriftung für Naturwissenschaften, 41: 472-482.

Kanngiesser, F. (1909): Zur Lebensdauer der Holzpflanzen. Flora, 99: 414-435.

Kanngiesser, F. (1914): Über Lebensdauer von Zwergsträuchern aus hohen Höhen des Himalaya. Viertteljahrsschr. Naturforschenden Gesellschaft,Zürich, 58: 198-202.

Kolishchuk, V. G. (1990): Dendroclimatological study of prostrate woody plants, In: E. R. Cook, L. A. Kairiuktis (eds.): Kluwer Methods of dendrochronology. Applications in the environmental sciences. London, pp. 51-55.

Körner, C. (2003): Alpine Plant Life. Functional Plant Ecology of High Mountain Ecosystems. Second edition. Springer. Berlin. 349 p.

Körner, C., Paulsen, J. (2004): A world wide study of high altitude treeline temperatures. Journal of Biogeography, 31: 713-732.

LeBlanc, D. (1996): Using tree rings to study forest decline: an epidemiological approach on estimated annual wood volume increment, In: J. S. Dean, D. M. Meko, T. W. Swetman (eds.): Tree rings, environment and humanity. Radiocarbon, pp. 437-449.

Löffler, J. (2005): Snow cover, soil moisture and vegetation ecology in central Norwegian high mountain catchments.HyH Hydrological Processes, 19: 2384-2405.

Myers-Smith, I. H., Elmendorf, S. C., Beck, P. S. A., Wilmking, M., Hallinger, M., Blok, D., Tape, K. D., Rayback, S. A., Macias-Fauria, M., Forbes, B. C., Speed, J., Boulanger-Lapointe, N., Rixen, C., Lévesque, E., Schmidt, N. M., Baittinger, C., Trant, A., Hermanutz, L., Collier, L. S., Dawes, M., Lantz, T., Weijers, S., Jrgensen, R. H., Buchwal, A., Buras, A., Naito, A., Ravolainen, V., Schaepman-Strub, G., Wheeler, J., Wipf, S., Guay, K., Hik, D. S. and Vellend, M. (2015): Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change, 5: 887-891.

Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K. D., Macias-Fauria, D., Sass-Klaassen, U., Levesque, E., Boudreau, S., Ropars, P., Hermanutz, L., Trant, A., Collier, L. S., Weijers, S., Rozema, J., Rayback, S. A., Schmidt, N. M., Schaepman-Strub, G., Wipf, S., Rixen, C., Menard, C. B., Venn, S., Goetz, S., Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, V., Epstein, H. E. and Hik, D. S. (2011): Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters, 6: 1-15.

Pederson, N., Cook, E. R., Jacoby, G. C., Peteet, D. M. and Griffin, K. L. (2004): The influence of winter temperatures on the annual radial growth of six northern range margin tree species. Dendrochronologia, 22: 7-29.

Pellizzari, E., Pividori, M. and Carrer, M. (2014): Winter precipitation effect in a mid-latitude temperature-limited environment: the case of common juniper at high elevation in the Alps. Environmental Research Letters, 9: 1-9.

Rayback, S. A., Henry, H. R. H. (2005): Dendrochronological potential of the Arctic Dwarf-shrub Cassiope tetragona. Tree-Ring Research, 61: 43-53.

Rixen, C., Schwoerer, C. and Wipf, S. (2010): Winter climate change at different temporal scales in Vaccinium myrtillus, an arctic and alpine dwarf shrub. Polar Research, 29: 85-94.

Rosenthal, M. (1904): Über die Ausbildung der Jahrringe an der Grenze des Baumwachstums in den Alpen. Diss. Univ. Berlin. 24 p.

Rossi, S., Deslauriers, A., Griçar, J., Seo, J. W., Rathgeber, C. B. K., Anfodillo, T., Morin, H., Levanic, T., Oven, P. and Jalkanen, R. (2008): Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, 17: 696-707.

Schmidt, M. N., Battinger, C. and Forchhammer, R. C. (2006): Reconstructing century-long snow regimes using estimates of high Arctic Salix arctica radial growth. Arctic, Antarctic, and Alpine Research, 38: 257-262.

Schweingruber, F. H. (1996): Tree-Rings and Environment. Dendroecology. Swiss Federal Institute for Forest, Snow and Landscape Research. Paul Haupt Verlag, Vienna. 609 p.

Schweingruber, F. H. (2001):Modifications of wood anatomical structures by variable internal and external environmental condition,In: Pre-Proceedings of the First International Conference of the European Society for Wood Mechanics. April 19th-21st, 2001. Lausanne,Swiss Federal Institute of Technology, pp. 135-143.

Schweingruber, F. H., Dietz, H. (2001): Annual rings in the xylem of dwarf shrubs and perennial dicotyledonous herbs. Dendrochronologia, 19: 115-129.

Schweingruber, F.H., Eckstein, D., Serre-Bachet, F. and Bräker, O. (1990): Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia, 8: 9-38.

Schweingruber, F. H., Poschlod, P. (2005): Growth rings in herbs and shrubs: life span, age determination, and stem anatomy. Forest Snow and Landscape Research, 79: 195-415.

Serreze, M. C., Walsh, J. E., Chapin, S. III,, Osterkamp, T., Dyurgerov, M,, Romanovsky, V., Oechel, W. C., Morison, J., Zhang, T. and Barry, R. G. (2000): Observational evidence of recent change in the northern high-latitude environment. Climate Change, 46: 159-207.

Shaver, G. R. (1986): Woody stem production in Alaskan tundra shrubs. Ecology, 56: 401-410.

Speer, H. J. (2010): Fundamentals of tree ring research. The University of Arizona Press. 368 p.

Sturm, M., McFadden, J. P., Liston, G. E., Chapin, S. III., Racine, C. H. and Holmgren, J. (2001): Snow-shrub interactions in Arctic tundra: A hypothesis with climatic implications. Journal of Climate, 14: 336-344.

Suzuki, M., Yoda, K. and Suzuki, H. (1996): Phenological comparison of the onset of vessel formation between ring-porous and diffuse-porous deciduous trees in a Japanese temperature forest. IAWA Journal, 14: 431-444.

Tape, K., Hallinger, M., Welker, J. and Ruess, R. (2012): Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems, 15: 711-724.

Vaganov, E. A., Hughes, M. K., Kirdyanov, A. V., Schweingruber, F. H. and Silkin, P. K. (1999): Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, 400: 149-151.

Ward, L. K. (1982): The conservation of juniper: longetivity and old age. Journal of Applied Ecology, 19: 917-928.

Warren-Wilson, J. (1964): Annual growth of Salix arctica in the High Arctic. Annals of Botany, 28: 71-76.

Weijers, S., Broekman, R. and Rozema, J. (2010): Dendrochronology in the High Arctic: July air temperatures reconstructed from annual shoot length growth of the circumarctic dwarf shrub Cassiope tetragona.Quaternary Science Review, 29: 3831-3842.

Wilmking, M., Hallinger, M., Van Bogaert, R., Kyncl, T., Babst, F., Hahne, W., Juday, G. P., de Luis, M., Novák, K. and Völlm, C. (2012): Continuously missing outer rings in woody plants at their distributional margins. Dendrochronologia, 30: 213-222.

Woodcock, H., Bradley, R. S. (1994): Salix arctica (Pall.): Its potential for dendroclimatological studies in the high Arctic. Dendrochronologia, 12: 11-22.

Zalatan, R., Gajewski, K. (2006): Dendrochronological potential of Salix alaxensis from the Kuujjua river area, western Canadian Arctic. Tree-Ring Research, 62: 75-82.

Zongshan, L., Guohua, L., Bojie, F., Oibing, Z., Keping, M. and Pederson, N. (2013): The growth-ring variations of alpine shrub Rhododendron przewalski reflect regional climate signals in the alpine environment of Miyaluo Town in Western Sichuan Province, China. Acta Ecologica Sinica, 33: 23-31.,

Metrics

227

Views

31

PDF views