Features of chlorophyll fluorescence transients can be used to investigate low temperature induced effects on photosystem II of algal lichens from polar regions ( Short Communication )
Vol.5,No.1(2015)
Chlorophyll fluorescence is an effective tool for investigating characteristics of any photosynthesizing organisms and its responses due to different stressors. Here, we have studied a short-term temperature response on three Antarctic green algal lichen species: Umbilicaria antarctica, Xanthoria elegans, and Rhizoplaca melanophtalma. We measured slow chlorophyll fluorescence transients in these Antarctic lichen species during slowely cooling of thallus temperature from 20°C to 5, 0 and -5°C with 20 minute acclimation at each temperature. The measurements were supplemented with saturation pulses for the analysis of chlorophyll fluorescence parameters: maximum yield of PS II photochemistry (FV/FM), effective quantum yield of PS II photochemistry (FPSII) and quenching parameters. In response to decreasing thallus temperature, we observed species-specific changes in chlorophyll fluorescence parameters as well as in the shape of the chlorophyll fluorescence transients. We propose that species-specific changes in the slow phase of chlorophyll fluorescence transients can be potentially used as indicators of freezing stress in photosynthetic apparatus of lichen algal photobionts.
Rhizoplaca melanophtalma; Umbilicaria antarctica; Xanthoria elegans; temperature stress
Armstrong, R. A., Bradwell, T. (2011): Growth of foliose lichens: A review. Symbiosis, 53:1-16.
Barták, M. (2014): Lichen Photosynthesis. Scaling from the Cellular to the Organism Level. In: Hohmann-Marriott, Martin F. (eds.): The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration. Dordrecht: Springer, pp. 379-400. Series: Advances in Photosynthesis and Respiration, Vol. 39. ISBN 978-94-017-8741-3. doi:10.1007/978-94-017-8742-0_20.
Barták, M., Gloser, J. and Hájek, J. (2005): Visualized photosynthetic characteristics of the lichen Xanthoria elegans related to daily courses of light, temperature and hydration: a field study from Galindez Island, maritime Antarctica. Lichenologist, 37: 433-443.
Barták, M., Váczi, P., Hájek, J. and Smykla, J. (2007): Low-temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria elegans. Polar Biology, 31: 47-51.
Brandt, A., de Vera, J. P., Onofri, S. and Ott, S. (2014): Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS. International Journal of Astrobiology, doi:10.1017/S1473550414000214.
Brestič, M., Zifčák, M. (2013): PS II fluorescence techniques for measurements of drought and high temperature stress signal of crop plants: protocols and applications. In: G. R. Rout, A. B. Das (eds.): Molecular Stress Physiology of Plants, Springer, India, pp. 87-131.
Conti, S., Hazdrová, J., Hájek, J., Očenášová, P., Barták, M., Skácelová, K. and Adamo, P. (2014): Comparative analysis of heterogeneity of primary photosynthetic processes within fruticose lichen thalli: Preliminary study of interspecific differences. Czech Polar Reports, 4: 149-157.
Cuchiara, C. C., Silva, I. M. C., Martinazzo, E. G., Braga, E. J. B., Bacarin, M. A. and Peters, J.A. (2013): Chlorophyll Fluorescence Transient Analysis in Alternanthera tenella Colla Plants Grown in Nutrient Solution with Different Concentrations of Copper. Journal of Agricultural Science, 5: 8-16.
Dewez, D., Ali, N. A., Perreault, F. and Popovic, R. (2007): Rapid chlorophyll a fluorescence transient of Lemna gibba leaf as an indication of light and hydroxylamine effect on photosystem II activity. Photochemical and Photobiological Sciences, 6: 532-538.
Dillman, K. E. (1996): Use of the lichen Rhizoplaca melanophthalma as a biomonitor in relation to phosphate refineries near Pocatello, Idaho. Environmental Pollution, 92: 91-96.
Duman, D. C., Aras, S. and Atakol, O. (2008): Determination of Usnic Acid Content in Some Lichen Species Found in Anatolia. Journal of Applied Biological Sciences, 2: 41-44.
Kalaji, H. M., Schansker, G., Ladle, R. J., Goltsev, V., Bosa, K., Allakhverdiev, S. I.,Brestic, M., Bussotti, F., Calatayud, A., Dąbrowski, P. , Elsheery, N. I., Ferroni, L., Guidi, L., Hogewoning, S. W., Jajoo, A., Misra, A. N., Nebauer, S. G., Pancaldi, S., Penella, C., Poli, D., Pollastrini, M., Romanowska-Duda, Z. B., Rutkowska, B., Serôdio, J., Suresh, K., Szulc, W.,Tambussi, E., Yanniccari, M. and Zivcak, M. (2014): Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynthesis Research, 122: 121-158.
Kaňa, R., Kotabová, E., Komárek, O., Šedivá, B., Papageorgiou, G. C., Govindjee and Prášil, O. (2012): The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. Biochimica et Biophysica Acta, 1817: 1237-1247.
Kautsky, H., Hirsch, A. (1931): Neue Versuche zur Kohlensäureassimilation, Naturwissen-schaften, 19: 964-964.
Kodru, S., Malavath, T., Devadasu, E., Nellaepalli, S., Stirbet, A., Subramanyam, R. and Govindjee (2015): The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii. Photosynthesis Research, 125: 219-231.
Krause, G. H., Weis, E. (1991): Chlorophyll fluorescence and photosynthesis: the basis. Annual Review of Plant Physiology and Plant Molecular Biology, 42: 313-349.
Lee, J. S., Lee, H. K., Hur, J.-S., Andreev, M. and Hong, S. G. (2008): Diversity of the Lichenized Fungi in King George Island, Antarctica, Revealed by Phylogenetic Analysis of Partial Large Subunit rDNA Sequences. Journal of Microbiology and Biotechnology, 18: 1016-1023.
Lichtenthaller, H. K., Buschmann, C. and Knapp, M. (2005): How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica, 43: 379-393.
Lovelock, C. E., Jackson, A. E., Melick, R. D. and Seppelt, R. D. (1995a): Reversible Photoinhibition in Antarctic Moss during Freezing and Thawing. Plant Physiology, 109: 955-961.
Lovelock, C. E., Osmond, C. B. and Seppelt, R. D. (1995b): Photoinhibition in the Antarctic moss Grimmia antarctici Card when exposed to cycles of freezing and thawing. Plant, Cell and Environment, 18: 1395-1402.
Luo, H., Yamamoto, Y., Kim, J. A., Jung, J. S., Koh, Y. J. and Hur, J-S. (2009): Lecanoric acid, a secondary lichen substance with antioxidant properties from Umbilicaria antarctica in maritime Antarctica (King George Island). Polar Biology, 32: 1033-1040.
McCarty, D. P. (1997): Habitat selection and ecology of Xanthoria elegans (Link) Th. Fr. in glacier forefields: implications for lichenometry. Journal of Biogeography, 24: 363-373.
Mishra, A., Mishra, K. B., Höermiller, I. I., Heyer, A. G. and Nedbal, L. (2011) : Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions. Plant Signaling and Behavior, 6: 301–310.
Mishra, A., Heyer, A. G. and Mishra, K. B. (2014): Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions. Plant Methods, doi:10.1186/1746-4811-10-38.
Murtagh, G. J., Dyer, P. S., Furneaux, P. A. and Crittenden, P. D. (2002): Molecular and physiological diversity in the bipolar lichen-forming fungus Xanthoria elegans. Mycological Research, 106: 1277-1286 .
Nybakken, L., Solhaug, K. A., Bilger, W. and Gauslaa, Y. (2004): The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia, 140: 211-216.
Olech, M. (1994): Lichenological assessment of Cape Lions Rump, King George Island, South Shetland Islands; a baseline for monitoring biological changes. Polish Polar Research, 15: 111-130.
Olech, M., Singh, S. M. (2010): Lichens and Lichenicolous Fungi of Schirmacher Oasis, Antarctica. National Centre for Antarctic and Ocean Research, Ministry of Earth Sciences, Government of India, 2010, India. NISCAIR, New Delhi, 140 p.
Oukarroum, A., Strasser, R. J. and Schansker, G. (2012): Heat stress and the photosynthetic electron transport chain of the lichen Parmelina tiliacea (Hoffm.) Ach. in the dry and the wet state: differences and similarities with the heat stress response of higher plants. Photosynthesis Research, 111: 303-314.
vstedal, D. O., Lewis Smith, R. I. (2001): Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Cambridge University Press, Cambridge. 424 p.
Papageorgiou, G. C., Tsimilli-Michael, M. and Stamatakis, K. (2007): The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynthesis Research, 94: 275-290.
Rai, H., Khare, R., Nayaka, S., Upreti, D. K. and Gupta, R. K. (2011): Lichen synusiae in East Antarctica (Schirmacher Oasis and Larsemann Hills): substratum and morphological preferences. Czech Polar Reports, 1: 65-77.
Rapacz, M. (2007): Chlorophyll a fluorescence transient during freezing and recovery in winter wheat. Photosynthetica, 45: 409-418.
Rapacz, M., Gasior, D., Koscielniak, J., Kosmala, A., Zwierzykowski, Z. and Humphreys, M. W. (2007): The role of the photosynthetic apparatus in cold acclimation of Lolium multiflorum. Characteristics of novel genotypes low-sensitive to PS II over-reduction. Acta Physiologiae Plantarum, 29: 309-316.
Roháček, K. (2002): Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica, 40: 13-29.
Roháček, K., Barták, M. (1999): Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica, 37: 339-363.
Roháček, K., Soukupová, J. and Barták, M. (2008): Chlorophyll Fluorescence: A wonderful tool to study plant physiology and plant stress. In: B. Schoefs (ed.): Plant Cell Compartments – Selected Topics. Research Signpost, Kerala, India, pp. 41-104.
Sayed, O. H. (2003): Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica, 41: 321-330.
Stirbet, A., Govindjee (2011): On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104: 236-257.
Strasser, R. J., Srivastava, A. and Govindjee (1995): Polyphasic chlorophyll-Alpha fluorescence transcient in plants and cyanobacteria. Photochemistry and Photobiology, 61: 32-42.
Tuba, Z., Csintalan, Z., Szente, K., Nagy, Z., Fekete, G., Larcher, W. and Lichtenthaler, H. K. (2008): Winter photosynthetic activity of twenty temperate semi-desert sand grassland species. Journal of Plant Physiology, 165: 1438-1454.
Tyystjärvi, E., Koski, A., Keränen, M. and Nevalainen, O. (1999): The Kautsky Curve Is a Built-in Barcode. Biophysical Journal, 77: 1159-1167.
Wang, G., Hao Z., Chen, K., and Liu, Y. (2008): Effects of UVB radiation on Photosynthesis Activity of Wolffia arrhiza as Probed by Chlorophyll Fluorescence Transient. 37th COSPAR Scientific Assembly. 13-20 July 2008, in Montréal, Canada., p. 3395
Xue, W., Li, X. Y., Lin, L. S., Wang, Y. J. and Li, L. (2011): Effects of elevated temperature on photosynthesis in desert plant Alhagi sparsifolia S. Photosynthetica, 49: 435-447.
Other sources
Quilot, W. (1998): Quantitative variations of phenolic compounds related to thallus age in Umbilicaria antarctica in Antarctica. Global Change Master Directory, Data set, Centro Nacional de Datos Antarticos, Instituto Antartico Chileno, Chile.
,This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2020 Czech Polar Reports