Non-structural carbohydrate content in cryptogamic Antarctic species after two years of passive warming on the Fildes Peninsula
Vol.5,No.1(2015)
Cryptogamic vegetation dominates the ice-free areas of the maritime Antarctic. This particular flora grows slowly due to extreme environmental conditions, typically low temperature that may limit growth during a short summer. Over the last 50 years, the Antarctic Peninsula has undergone the highest registered temperature increases in Antarctica. As a consequence of higher temperatures, we hypothesized that lichens and mosses would produce more carbohydrates. To test this, open top chambers (OTCs) were installed in an Usnea-Himantormia community on Fildes Peninsula of King George Island. After two years, lichen thalli and plant tissues were collected to quantify non-structural carbohydrates in three lichens and two mosses. Responses contrasted between species. While non-structural carbohydrates were higher in the OTC for the lichen Himantormia lugubris, the values decreased in the moss Polytrichastrum alpinum. No marked responses to experimental warming were observed in the other three species. A significant species-specific increase in soluble sugar was observed inside the OTCs, while polyols content were not markedly different due to OTC treatment. In general, the obtained results indicate that warming does not increase carbohydrate content in all cryptogams, instead suggesting a strong species-specific response to a scenario of global warming. Further long-term warming experiments are needed to assess the responses of target species in the terrestrial Antarctic ecosystem.
Antarctica; OTC; bryophytes; lichens; carbohydrate metabolism
Andreyev, M. P. (1989): The lichens in the vicinity of Bellingshausen station, King George Island. Polar Geography and Geology, 13: 42-45.
Bokhorst, S., Huiskes, A., Aerts, R., Convey, P., Cooper, E. J., Dalen, L., Erschbamer, B., Gudmundsson, J., Hofgaard, A., Hollister, R. D., Johnstone J., Jónsdóttir, I.S., Lebouvier, M., Van De Vijver, B., Wahren, C. H. and Dorrepaal, E. (2013): Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth. Global Change Biology, 19: 64-74.
Bokhorst, S., Huiskes, A., Convey, P. and Aerts R. (2007): The effect of environmental change on vascular plant and cryptogamic communities from the Falkland Islands and the Maritime Antarctic. BMC Ecology, 7:15.
Bokhorst, S., Huiskes, A., Convey, P., Sinclair, B.J., Lebouvier, M., Van De Vijver, B. and Wall, D. H. (2011): Microclimate impacts of passive warming methods in Antarctica: implications for climate change studies. Polar Biology, 34: 1421-1435.
Carrasco, J., González, M. (2007): Climatología de la Peninsula Antártica y de la base Presidente Eduardo Frei Montalva. Dirección General de Aeronáutica Civil. Dirección Meteorológica de Chile. (http://164.77.222.61/climatologia/publicaciones/Climatologia_Frei.pdf)
Convey, P., Smith, R. I. L. (2006): Responses of terrestrial Antarctic ecosystems to climate change. Plant Ecology, 182: 1-10.
Cook, A. J., Fox, A. J., Vaughan, D. G. and Ferrigno, J. G. (2005): Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308: 541-544.
Day, T. A., Ruhland, C. T. and Xiong, F. S. (2008): Warming increases aboveground plant biomass and C stocks in vascular-plant-dominated Antarctic tundra. Global Change Biology, 14: 1827-1843.
Day, T. A., Ruhland, C. T., Strauss, S. L., Park, J. H., Krieg, M. L., Krna, M. A. and Bryant, D. M. (2009): Response of plants and the dominant microarthropod, Cryptopygus antarcticus, to warming and contrasting precipitation regimes in Antarctic tundra. Global Change Biology, 15: 1640-1651.
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Bjork, R. G., Bjorkman, A. D., Callaghan, T. V., Collier, L. S., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Fota, A. M., Gould, W. A., Gretarsdottir, J., Harte, J., Hermanutz, L., Hik, D. S., Hofgaard, A., Jarrad, F., Jonsdottir, I. S., Keuper, F., Klanderud, K., Klein, J.A., Koh, S., Kudo, G., Lang, S. I., Loewen, V., May, J. L., Mercado, J., Michelsen, A., Molau, U., Myers-Smith, I. H., Oberbauer, S. F., Pieper, S., Post, E., Rixen, C., Robinson, C. H., Schmidt, N. M., Shaver, G. R., Stenstrom, A., Tolvanen, A., Totland, O., Troxler, T., Wahren, C. H., Webber, P. J., Welker, J. M. and Wookey, P. A. (2012): Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 15: 164-175.
Green, T. G. A., Schroeter, B. and Sancho, L. G. (2007): Plant life in Antarctica. In: Pugnaire F. I., Valladares F. (eds.): Functional plant ecology, 2nd edn. CRC Press, Boca Ratón, pp. 389-434.
Henry, G. H. R., Molau, U. (1997): Tundra plants and climate change: the International Tundra Experiment (ITEX). Global Change Biology, 3: 1-3.
Kennedy, A. D. (1995): Antarctic terrestrial ecosystem repsonse to global environmental change. Annual Review of Ecology and Systematics, 26: 683-704.
Lang, S. I., Cornelissen, J. H. C., Shaver, G. R., Ahrens, M., Callaghan, T. V., Molau, U., Ter Braak, C. J. F., Holzer, A. and Aerts, R. (2012): Arctic warming on two continents has consistent negative effects on lichen diversity and mixed effects on bryophyte diversity. Global Change Biology, 18: 1096-1107.
Levitt J. (1980): Responses of plants to environmental stresses. New York: Academic Press, 2nd Edition. 497 p.
Marion, G. M., Henry, G. H. R., Freckman, D. W., Johnstone, J., Jones, G., Jones, M. H., Levesque, E., Molau, U., Molgaard, P., Parsons, A. N., Svoboda, J. and Virginia, R. A. (1997): Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology, 3: 20-32.
Mcmillan, M., Shepherd, A., Sundal, A. Briggs, K., Muir, A., Ridout, A., Hogg, A. and Wingham, D. (2014): Increased ice losses from Antarctica detected by CryoSat-2. Geophysical Research Letters, 2014GL060111.
Melick, D. R., Seppelt, R. D. (1994): Seasonal Investigations of Soluble Carbohydrates and Pigment Levels in Antarctic Bryophytes and Lichens. The Bryologist, 97: 13-19.
Molau, U., Molgaard, P. (1996): ITEX Manual second edition. Denmark: Danish Polar Center. (http://ibis.geog.ubc.ca/itex/PDFs/ITEXmanual.pdf).
Ochyra, R., Smith, R. I. L. and Bednarek-Ochyra H. (2008): The Illustrated Moss Flora of Antarctica. Cambridg: Cambridge University Press. 704 p.
Olech, M. (2002): Plant Communities on King George Island. In: Beyer L, Bölter M, editors. Ecological Studies Vol. 154, Geoecology of Antarctic Ice-Free Coastal Landscapes. New York: Springer-Verlag Berlin Heidelberg. pp. 215-231.
Olech, M. (2004): Lichens of King George Island, Antarctica. The Institute of Botany of the Jagiellonian University, Cracow, Poland. 391 p.
vstedal, D. O., Smith, R. I. L. (2001): Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Cambridge University Press, Cambridge, UK. 411 p.
Robinson, S. A., Wasley, J., Popp, M. and Lovelock, C. E. (2000): Desiccation tolerance of three moss species from continental Antarctica. Australian Journal of Plant Physiology, 27: 379-388.
Royles, J., Ogée, J., Wingate, L., Hodgson, D. A., Convey, P. and Griffiths H. (2012): Carbon isotope evidence for recent climate-related enhancement of CO2 assimilation and peat accumulation rates in Antarctica. Global Change Biology, 18: 3112-3124.
Sancho, L. G., Green, T. G. A., Pintado, A. (2007): Slowest to fastest: Extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora, 202: 667-673.
Scambos, T., Hulbe, C., Fahnestock, M. and Bohlander. J. (2000): The link between climate warming and break-up of ice shelves in the Antarctic Peninsula, Journal of Glaciology, 46: 516-530.
Steig, E. J., Schneider, D. P., Rutherford, S. D., Mann, M. E., Comiso, J. C. and Shindell, D. T. (2009): Warming of the Antarctic ice-sheet surface since the 1957 international geophysical year. Nature, 457: 459-462.
Turner, J., Barrand, N. E., Bracegirdle, T. J., Convey, P., Hodgson, D. A., Jarvis, M., Jenkins, A. , Marshall, G., Meredith, M. P., Roscoe, H., Shanklin, J., French, J., Goosse, H., Guglielmin, M., Gutt, J., Jacobs, S., Kennicutt, M. C., Masson-Delmotte, V., Mayewski, P., Navarro, F., Robinson, S., Scambos, T., Sparrow, M., Summerhayes, C., Speer, K. and Klepikov, A. (2014): Antarctic climate change and the environment: an update. Polar Record, 50: 237-259.
Turner, J., Colwell, S. R. and Harangozo, S. A. (1997): Variability of precipitation over the coastal western Antarctic Peninsula from synoptic observations. Journal of Geophysical Research, 102: 13999-14007.
Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Carleton, A. M., Jones, P. D., Lagun, V., Reid, P. A. and Iagovkina, S. (2005): Antarctic climate change during the last 50 years. International Journal of Climatology, 25: 279-294.
Turner, J., Overland, J. (2009): Contrasting climate change in the two polar regions. Polar Research, 28: 146-164.
Vaughan, D. G. (2006): Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level. Arctic, Antarctic, and Alpine Research, 38: 147-152.
Vaughan, D. G., Marshall, G., Connolley, W. M., Parkinson, C., Mulvaney, R., Hodgson, D. A., King, J. C., Pudsey, C. J. and Turner, J. (2003): Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60: 243-274.
Wasley, J., Robinson, S.A., Lovelock, C. and Popp, M. (2006): Climate change manipulations show Antarctic flora is more strongly affected by elevated nutrients than water. Global Change Biology, 12: 1800-1812.
Zúiga, G. E., Pizarro, M., Contreras, R. A. and Kohler, H. (2012): Tolerancia la desecacion en briofitas. Participacion de azucares. Cuaderno de Pesquisa, Serie Biologica, 24: 146-154.
Zúiga, G. E., Alberdi, A. and Corcuera, L. J. (1996): Non-structural carbohydrates in Deschampsia antarctica Desv. from South Shetland Islands, Maritime Antarctic. Environmental and Experimental Botany, 36: 393-398.
Zúiga, P., Zúiga, G. E., Pizarro, M. and Casanova-Katny, A. (2015, in press): Soluble carbohydrate content variation in Sanionia uncinata and Polytrichastrum alpinum, two Antarctic mosses with contrasting desiccation capacities. Biological Research.,
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2020 Czech Polar Reports