Temperature-dependent growth rate and photosynthetic performance of Antarctic symbiotic alga Trebouxia sp. cultivated in a bioreactor

Vol.3,No.1(2013)

Abstract

Optimum growth temperature of Trebouxia sp. (re-classified as Asterochloris sp. recently), a symbiotic lichenized alga was evaluated using a batch culture cultivated in a bioreactor. The algae were isolated from lichen thalli of Usnea antarctica collected at the James Ross Island, Antarctica in February 2012. The algae were isolated under laboratory conditions and then cultivated on agar medium at 5°C. When sufficiently developed, the algae were suspended in a BBM liquid medium and cultivated in a photobioreactor for 33 days at either 15, or 10°C. During cultivation, optical density (OD) characterizing culture growth, and effective quantum yield of photosystem II (FPSII) characterizing photosynthetic performance were measured simultaneously. Thanks to higher FPSII values, faster growth was achieved at 10oC than 15oC indicating that Trebouxia sp. might be ranked among psychrotolerant species. Such conclusion is supported also by a higher specific growth rate found during exponential phase of culture growth. The results are discussed and compared to available data on temperature-dependent growth of polar microalgae.


Keywords:
Usnea antarctica; chlorophyll fluorescence; lichen; effective quantum yield; James Ross Island; psychrotolerance; Asterochloris
References

Ahmadjian, V. (1993): The Lichen Symbiosis. John Wiley & Sons, New York. 250 p.

Alvarez, R., Del Hoyo, A., Garcia-Breijo, F., Reig-Armiana, J., Del Campo, E. M., Guéra, A., Barreno, E. and Casano, L. M. (2012): Different strategies to achieve Pb-tolerance by the two Trebouxia algae coexisting in the lichen Ramalina farinacea. Journal of Plant Physiology, 169: 1797-1806.

Blanc, G., Agarkova, I., Grimwood, J., Kuo, A., Brueggeman, A., Dunigan, D. D., Gurnon, J., Ladunga, I., Lindquist, E., Lucas, S., Pangilinan, J., Pröschold, T., Salamov, A., Schmutz, J., Weeks, D., Yamada, T., Lomsadze, A., Borodovsky, M., Claverie, J.-M., Grigoriev, I.V. and Van Etten, J. L. (2012): The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biology, 13 (R39): 1-12.

Branquinho, C., Matos, P., Vieira, A. R. and Prestello-Ramos, M. M. (2011): The relative impact of lichen symbiotic partners to repeated copper uptake. Environmental and Experimental Botany, 72: 84-92.

Chen, Z., He, Ch. and Hu, H. (2012): Temperature responses of growth, photosynthesis, fatty acid and nitrate reductase in Antarctic and temperate Stichococcus. Extremophiles, 16: 127-133.

Del Hoyo, A., Álvarez, R., Del Campo, E. M., Gasulla, F., Barreno, E. and Casano, L. M. (2011): Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. Annals of Botany, 107: 109-118.

Fogliano, V., Andreoli, C., Martello, A., Caiazzo, M., Lobosco, O., Formisano, F., Carlino, P. A., Meca, G., Graziani, G., Di Martino Rigano, V., Vona, V., Carfagna, S. and Rigano, C. (2010): Functional ingredients produced by culture of Koliella antarctica. Aquaculture, 299: 115-120.

Friedl, T. (1989): Comparative ultrastructure of pyrenoids in Trebouxia (Microthamniales, Chlorophyta). Plant Systematics and Evolution, 164: 145-159.

Fu, W., Gudmundsson, O., Feist, A. M., Herjolfsson, G., Brynjolfsson, S. and Palsson, B. . (2012): Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. Journal of Biotechnology, 161: 242-249.

Gärtner, G., Inolić, E. (1998): Problems in the identification of lichen photobionts. Sauteria, 9: 373-380.

Gasulla, F., Guéra, A. and Barreno, E. (2010): A simple and rapid method for isolating lichen photobionts. Symbiosis, 51: 175-179.

Gasulla, F., Jain, R., Barreno, E., Guéra, A., Balbuena, T. S., Thelen, J. J. and Oliver, M. J. (2013): The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach. Plant, Cell and Environment, doi: 10.1111/pce.12065.

Genty, B., Briantais, J.-M. and Baker, N. R. (1989): The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990: 87-92.

Hájek, J., Váczi, P., Barták, M. and Jahnová, L. (2012): Interspecific differences in cryoresistance of lichen symbiotic algae of genus Trebouxia assessed by cell viability and chlorophyll fluorescence. Cryobiology, 64: 215-222.

He, Y., Zhang, Z. (2012): Diversity of organism in the Usnea longissima lichen. African Journal of Microbiology Research, 6: 4797-4804.

Kvíderová, J., Hájek, J., Elster, J. Barták, M., Váczi, P. and Nedbalová, L. (2010): Photosynthetic microorganisms in cold environments. 38th COSPAR Scientific Assembly. Held 18-15 July 2010, Bremen, Germany, p.7.

Lewis, L. A., McCourt, R. M. (2004): Green algae and the origin of land plants. American Journal of Botany, 91: 1535-1556.

Morlon, H., Fortin, C., Floriani, M., Adam, C., Garnier-Laplace, J. and Boudou, A. (2005): Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: Comparison between effects at the population and sub-cellular level. Aquatic Toxicology, 73: 65-78.

Ocampo-Friedmann, R., Meyer, M. A., Chen, M. and Friedmann, E. I. (1998): Temperature response of Antarctic cryptoendolithic photosynthetic microorganisms. Polarforschung, 58: 121-124.

Peksa, O., Škaloud, P. (2011): Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Molecular Ecology, 20: 3936-3948.

Piovár, J., Stavrou, E., Kaduková, J., Kimáková, T. and Bačkor, M. (2011): Influence of long-term exposure to copper on the lichen photobiont Trebouxia erici and the free-living algae Scenedesmus quadricauda. Plant Growth Regulation, 63: 81-88.

Sadowsky, A., Ott, S. (2012): Photosynthetic symbionts in Antarctic terrestrial ecosystems: the physiological response of lichen photobionts to drought and cold. Symbiosis, 58: 81-90.

Sankar, V., Daniel, D. K. and Krastanov, A. (2011): Carbon dioxide fixation by Chlorella minutissima batch cultures in a stirred tank bioreactor. Biotechnology & Biotechnological Equipment, 25: 2468-2476.

Seaburg, K. g., Parker, B. c., Wharton, R. a. and Simmons, G. m. (1981): Temperature-growth responses of algal isolates from Antarctic oases. Journal of Phycology, 17: 353-360.

Showman, R. E. (1972): Photosyntetic response with respect to light in three strains of lichen algae. The Ohio Journal of Science, 72: 114-117.

Teoh, M.-L., Chu, W.-L., Marchand, H. and Phang, S.-M. (2004): Influence of culture temperature on the growth, biochemical composition and fatty acid profiles in six Antarctic microalgae. Journal of Applied Phycology, 16: 421-430.

Váczi, P., Barták, M. (2006): Photosynthesis of lichen symbiotic alga Trebouxia erici as affected by irradiance and osmotic stress. Biologia Plantarum, 50: 257-264.

Vona, V., Rigano, V.D., Lobosco, O., Carfagna, S., Esposito, S. and Rigano, C. (2004): Temperature reponses of growth, photosynthesis, respiration, and NADH: Nitrate reductase in cryophilic and mesophilic algae. New Phytologist, 163: 325-331.

Wieners, P. C., Mudimu, O. and Bilger, W. (2012): Desiccation-induced non-radiative dissipation in isolated green lichen algae. Photosythesis Research, 113: 239-247.,

Metrics

0


275

Views

52

PDF views