Strontium isotopic composition as tracer of weathering processes, a review with respect to James Ross Island, Antarctica
Vol.2,No.1(2012)
Strontium isotopes (87Sr/86Sr) are routinely used to determine sources and mixing relationships in geochemical studies. They have proven to be useful in determining weathering processes and quantifying end-member mixing processes. A number of studies highlight that Sr isotopes represent a powerful tool helping to constrain weathering reactions, weathering rates, flow pathways and mixing scenarios, even when inherent differences in weathering rates of different minerals, and mineral heterogeneity in natural environments may cause difficulties in defining the weathering component of different geochemical systems. Nevertheless, Sr isotopes are useful when combined with other chemical data, to constrain models of water–rock interaction and mixing as well as geochemical processes such as weathering. This paper presents basic information about Sr isotopic system, new analytical developments, summary of recent published studies in constraining the weathering processes, and indicates studies similar to weathering in polar regions. The aim of this paper is to present rationale of using Sr isotopes as tracer of weathering processes on James Ross Island, Antarctica.
Strontium; isotopes; chemical weathering; Antarctica
berg, G., Jacks, G. and Hamilton, P.J. (1989): Weathering rates and 87Sr/86Sr ratios: an isotopic approach. Journal of Hydrology, 109: 65-78.
Anderson, S.P. (2005): Glaciers show direct linkage between erosion rate and chemical weathering fluxes. Geomorphology, 67: 147-157.
Anderson, S.P. (2007): Biogeochemistry of glacial landscape systems. Annual Review of Earth and Planetary Science, 35: 375-399.
Anderson, S.P., Driver, J.I., Frost, C.D. and Holden, P. (2000): Chemical weathering in the foreland of a retreating glacier. Geochimica et Cosmochimica Acta, 64: 1173-1189.
Arn, K. (2002). Geochemical weathering in the sub- and proglacial zone of two glaciated crystalline catchments in the Swiss Alps (Oberaar- and Rhoneglacier). Ph.D. Thesis, University of Neuchâtel, Neuchâtel, Switzerland.
Arn, K., Hosein, R., Föllmi, K.B., Steinmann, P., Aubert, D. and Kramers, J. (2003): Strontium isotope systematics in two glaciated crystalline catchments: Rhone and Oberaar glaciers (Swiss Alps). Swiss Bulletin of Mineralogy and Petrology, 83: 273-283.
Berner, R.A. (2003): The long-term carbon cycle, fossil fuels and atmospheric composition. Nature, 426: 232-326.
Blaxland A.B. (1974) Geochemistry and geochronology of chemical weathering, Butler-Hill-Granite, Missouri. Geochimica et Cosmochimica Acta, 38: 843-852.
Blum, J D., Klaue, A., Nezat, C.A., Driscoll, C.T., Johnson C. E., Siccama T.G., Eagar C., Fahey T.J. and Likens G.E. (2002): Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature, 417: 729-731.
Blum, J.D., Erel, Y. (1997): Rb–Sr isotope systematics of a granitic soil chronosequence; the importance of biotite weathering. Geochimica et Cosmochimica Acta, 61: 3193-3204.
Bluth, G.J.S., Kump, L.R. (1994): Lithologic and climatologic controls of river chemistry. Geochimica et Cosmochimica Acta, 58: 2341-2359.
Bullen, T., White, A., Blum, A., Harden J. and Schulz M. (1997): Chemical weathering of a soil chronosequence on granitoid alluvium: II mineralogic and isotopic constraints on the behavior of strontium. Geochimica et Cosmochimica Acta, 61: 291-306.
Bullen, T.D., Bailey, S.W. (2005): Identifying calcium sources at an acid deposition-impacted spruce forest: a strontium isotope, alkaline earth element multi-tracer approach. Biogeochemistry, 74: 63-99.
Bullen, T.D., Kendall, C. (1998): Tracing of weathering reactions and water flowpaths: a multi-isotope approach. In: C. Kendall, J.J. McDonnell (eds.): Isotope tracers in catchment hydrology, Amsterdam, The Netherlands, Elsevier Science, pp. 611-646.
Chamberlain, C.P., Waldbauer, J.R. and Jacobsen, A.D. (2005): Strontium, hydrothermal systems and steady-state chemical weathering in active mountain belts. Earth and Planetary Science Letters, 238: 351-366.
Clauer N. (1979) Relationship between the isotopic composition of strontium in newly formed continental clay minerals and their source material. Chemical Geology, 31: 325-334.
Clauer N. (1981) Strontium and argon isotopes in naturally weathered biotite, muscovite, and feldspars. Chemical Geology, 31: 325-334.
Clauer N., O'Neil J.R. and Bonnot-Courtois C. (1982) The effect of natural weathering on the chemical and isotopic compositions of biotites. Geochimica et Cosmochimica Acta, 46: 1755-1762.
Conen, F., Yakutin, M.V., Zumbrunn, T. and Leifeld, J. (2007): Organic carbon and microbial biomass in two soil development chronosequences following glacial retreat. European Journal of Soil Science, 58: 758-762.
Cook, A.J., Fox, A.J., Vaughan, D.G. and Ferrigno, J.G. (2005): Glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308: 541–544.
Dasch E.J. (1969) Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks. Geochimica et Cosmochimica Acta, 33: 1521-1552.
De Souza, G.F., Reynolds, B.C., Kiczka, M. and Bourdon, B. (2010): Evidence for mass-dependent isotopic fractionation of strontium in a glaciated granitic watershed. Geochimica et Cosmochimica Acta, 74: 2596-2614.
Dessert, C., Dupré, B., Gaillardet, J., Francois, L.M. and Allégre, C.J. (2003): Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology, 202: 257-273.
Edmond, J.M., Measures, C., McDuff R.E., Chan, L.H., Collier, R., Grant, B., Gordon, L.I. and Corliss, J.B. (1979): Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth and Planetary Science Letters, 46: 1-18.
Fantle, M.S., DePaolo, D.J. (2004): Iron isotopic fractionation during continental weathering. Earth and Planetary Science Letters, 228: 547-562.
Faure, G. (1986): Principles of Isotope Geology, 2nd edn. J. Wiley & Sons, New York. pp. 117.
Fietzke, J., Eisenhauer, A. (2006): Determination of temperature dependent stable strontium isotope (88Sr/86Sr) fractionation via bracketing standard MC-ICP-MS. Geochemistry, Geophysics, Geosystems (G3), 7: 1-6.
Gaillardet, J., Dupré, B., Louvat, P. and Allgre, C.J. (1999): Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159: 3-30.
Georg, R.B., Reynolds, B.C., Frank, M. and Halliday, A.N. (2006): Mechanisms controlling the silicon isotopic compositions of river waters. Earth and Planetary Science Letters, 249: 290-306.
Gibbs, M.T., Kump, L.R. (1994): Global chemical erosion during the last glacial maximum and the present: sensitivity to changes in lithology and hydrology. Paleoceanography, 9: 529-543.
Gíslason, S.R., Arnórsson, S. and Ármannsson, H. (1996): Chemical weathering of basalt in Southwest Iceland: effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296: 837-907.
Gíslason, S.R., Oelkers, E.H., Eiriksdottir, E.S., Kardjilov, M.I., Gisladottir, G., Sigfusson, B., Snorrason, A., Elefsen, S., Hardardottir, J., Torssander, P. and Oskarsson, N. (2009): Direct evidence of the feedback between climate and weathering. Earth and Planetary Science Letters, 277: 213-222.
Goldich, S.S., Gast, P.W. (1966) Effects of weathering on the Rb-Sr and K-Ar ages of biotite from the Morton gneiss, Minnesota. Earth and Planetary Science Letters, 1: 372-375.
Halicz, L., Segal, I., Fruchter, N., Stein, M. and Lazar, B. (2008): Strontium stable isotopes fractionate in the soil environments? Earth and Planetary Science Letters, 272: 406-411.
Hallet, B., Hunter, L. and Bogen, J. (1996): Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global and Planetary Change, 12: 213-235.
Hindshaw, R.S., Tipper, E.T., Reznolds, B.C., Lemarchand, E., Wiederhold, J.G., Magnusson, J., Bernasconi, S.M., Kretzschmar, R. and Bourdon, B. (2011): Hydrological control of stream water chemistry in a glacial catchment (Damma Glacier, Switzerland). Chemical Geology, 285: 215-230.
Hosein, R., Arn, K., Steinmann, P., Adatte, T. and Föllmi, K.B. (2004): Carbonate and silicate weathering in two presently glaciated, crystalline catchments in the Swiss Alps. Geochimica et Cosmochimica Acta, 68: 1021-1033.
Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van den Linden, P.J., Dai, X., Maskell, K. and Johnson, C.A. (2001): Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, p. 881.
Huh, Y., Chan, L.H. and Edmond, J.M. (2001): Lithium isotopes as a probe of weathering processes: Orinoco River. Earth and Planetary Science Letters, 194: 189-199.
Huh, Y., Edmond, J.M. (1997): Chemical weathering yields and strontium isotope systematics from major Siberian rivers. In: Seventh Annual V.M. Goldschmidt Conference: Houston, Texas, Lunar and Planetary Institute, LPI Contribution 921, p. 100.
Jacobson, A.D., Blum, J.D. (2003): Relationship between mechanical erosion and atmospheric CO2 consumption in the New Zealand Southern Alps. Geology, 31: 865–868.
Jacobson, A.D., Blum, J.D., Chamberlain, C.P., Poage, M. and Sloan, V. (2002): The Ca/Sr and Sr isotope systematics of a Himalayan glacial chronosequence: Carbonate versus silicate weathering rates as a function of landscape surface age. Geochimica et Cosmochimica Acta, 66: 13-27.
Jin, L., Mukasa, S.B., Hamilton, S.K. and Walter, L.M. (2012): Impacts of glacial/interglacial cycles on continental rock weathering inferred using Sr/Ca and 87Sr/86Sr ratios in Michigan watersheds. Chemical Geology, 300-301: 97-108.
King, J.C. (1994): Recent climate variability in the vicinity of the Antarctic Peninsula. International Journal of Climatology, 14: 357-369.
Krabbenhöft, A., Fietzke, J., Eisenhauer, A., Liebetrau, V., Böhm, F. and Vollstaedt, H. (2009): Determination of radiogenic and stable strontium isotope ratios (87Sr/86Sr; 88/86Sr) by thermal ionization mass spectrometry applying an 87Sr/84Sr double spike. Journal of Analytical Atomic Spektrometry, 24: 1267-1271.
Lyons, W., Nezat, C.A., Benson, L.V., Bullen, T.D., Graham, E.Y., Kidd, J., Welch, K.A. and Thomas, J.M. (2002): Strontium isotopic signatures of the streams and lakes of Tailor Valley, southern Victoria Land, Antarctica: chemical weathering in a polar climate. Aquatic Geochemistry, 8: 75-95.
Lyons, W.B., Welch, K.A. (1997): Lithium in waters of a polar desert. Geochimica et Cosmochimica Acta, 61: 4309-4319.
Matsuoka, N. (1995): Rock weathering processes and landform development in the Sor Rondane Mountains, Antarctica. Geomorphology, 12: 323-339.
Mavris, C., Egli, M., Plötze, M., Blum, J.D., Mirabella, A., Giacci, D. and Haeberli, W. (2010): Initial stages of weathering and soil formation in the Morteratsch proglacial area (Upper Engadine, Switzerland). Geoderma, 155: 359-371.
Meybeck, M. (1994): Origin and Variable Composition of Present Day Riverborne Material. Studies in Geophysics, Material Fluxes on the Surface of the Earth. National Academy Press, Washington, D.C., pp. 61-73.
Miller, E.K., Blum, J.D. and Friedland, A.J. (1993): Determination of soil exchangeable-cation loss and weathering rates using Sr isotopes. Nature, 362: 438-441.
Millot, R., Gaillardet, J., Dupré, B. and Allgre, C.J. (2003): Northern latitude chemical weathering rates: clues from the Mackenzie River Basin, Canada. Geochimica et Cosmochimica Acta, 67: 1305-1329.
Navarra-Sitchler, A., Brantley, S. (2007): Basalt weathering across scales. Earth and Planetary Science Letters, 261: 321-334.
Nezat, C.A., Lyons, W.B. and Welch, K.A. (2001): Chemical weathering in streams of a polar desert (Taylor Valley, Antarctica). GSA Bulletin, 113: 1401-1408.
Ohno, T., Hirata, T. (2007): Simultaneous determination of mass-dependent isotopic fractionation and radiogenic isotope variation of strontium in geochemical samples by multiple collector-ICP-mass spectrometry. Analytical Science, 23: 1275-1280.
Parkinson, C.L. (2002): Trends in the Length of the Southern Ocean Sea Ice Season, 1979–1999. Annals of Glaciology, 34: 435–440.
Patchett, P.J. (1980): Sr isotopic fractionation in Ca-Al inclusions from the Allene meteorite. Nature, 283: 438-441.
Peters, N.E. (1984): Evaluation of Environmental Factors Affecting Yields of Major Dissolved Ions of Streams in the United States. United States Geological Survey Water Supply Paper, p. 2228.
Pett-Ridge J.C., Derry L.A. and Kurtz A.C. (2009) Sr isotopes as a tracer of weathering processes and dust inputs in a tropical granitoid watershed, Luquillo Mountains, Puerto Rico. Geochimica et Cosmochimica Acta, 73: 25-43.
Pistiner, J.S., Henderson, G.M. (2003): Lithium-isotope fractionation during continental weathering processes. Earth and Planetary Science Letters, 214: 327-339.
Riebe, C.S., Kirchner, J.W. and Finkel, R. (2004): Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth and Planetary Science Letters, 224: 547-562.
Rose, E.F., Chaussidon, M. and France-Lanord, C. (2000): Fractionation of boron isotopes during weathering processes: the example of Himalayan rivers. Geochimica et Cosmochimica Acta, 64: 397-408.
Scambos, T.A., Hulbe, C., Fahenstock, M. and Bohlander, J. (2001): The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. Journal of Glaciology, 154: 516-530.
Schmidt, A.D., Chabaux, F. and Stille, P. (2003): The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth and Planetary Science Letters, 213: 503-518.
Selby, M.J., Wilson, A.T. (1971): The origin of the Labyrinth, Wright Valley, Antarctica. Geological Society of America Bulletin, 82: 471-476.
Shand, P., Darbyshire, D.P.F., Gooddy, D.C. and Haria, A.H. (2007): 87Sr/86Sr as an indicator of flowpaths and weathering rates in the Plynlimon experimental catchments, Wales. UK. Chemical Geology, 23: 247-265.
Sharp, M., Creaser, R.A. and Skidmore, M. (2002): Strontium isotope composition of runoff from a glaciated carbonate terrain. Geochimica et Cosmochimica Acta, 66: 595-614.
Skulan, J., DePaolo, D.J. and Owens, T.L. (1997): Biological control of calcium isotopic abundances in the global calcium cycle. Geochimica et Cosmochimica Acta, 61: 2505-2510.
Stefánsson, A., Gíslason, S.R. (2001): Chemical weathering of basalts, SW Iceland: effect of rock crystallinity and secondary minerals on chemical fluxes to the ocean. American Journal of Science, 301: 513-556.
Sverdrup, H.U. (1990): The Kinetics of Base Cation Release Due to Chemical Weathering. Lund University Press, Lund, Sweden. p. 246.
Thomas, D.N., Dieckmann, G.S. (2002): Antarctic sea ice: a habitat for extremophiles. Science, 295: 641-644.
Tipper, E T., Galy, A. and Bicykle, M J. (2006a): Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: Implications for the oceanic Ca cycle. Earth and Planetary Science Letters, 247: 267-279.
Tipper, E.T., Bicykle, M.J., Galy, A., West, A.J., Pomis, C. and Chapman, H.J. (2006b): The short term climatic sensitivity of carbonate and silicate weathering fluxes: insight from seasonal variations in river chemistry. Geochimica et Cosmochimica Acta, 70: 2737-2754.
Tranter, M., Huybrechts, P., Munhoven, G., Sharp, M.J., Brown, G.H., Jones, I.W., Hodson, A.J., Hodgkins, R. and Wadham, J.L. (2002): Direct effect of ice sheets on terrestrial bicarbonate, sulphate and base cation fluxes during the last glacial cycle: minimal impact on atmospheric CO2 concentrations. Chemical Geology, 190: 33-44.
Vaughan, D.G. (2006): Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance. Arctic, Antarctic and Alpine Research, 38: 147-152.
Vaughan, D.G., Marshall, G.J., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., King, J.C., Pudesey, C.J. and Turner, J. (2003): Recent rapid regional climate warming on the Antarctic Peninsula. Climate Change, 60: 243-274.
Viers, J., Oliva, P., Nonell, A., Gélabert, A., Sonor, J.E., Freydier, R., Gainville, R. and Dupte, B. (2007): Evidence of Zn isotopic fractionation in a soil-plant system of a pristine tropical watershed (Nsimi, Cameroon). Chemical Geology, 239: 124-137.
Wellman, H.W., Wilson, A.T. (1965): Salt weathering, a neglected geological erosive agent in coastal and arid environments. Nature, 205: 1097-1098.
West, A.J., Galy, A. and Bickle, M. (2005): Tectonic and climate control on silicate weathering. Earth and Planetary Science Letters, 235: 211-228.
White, A.F., Blum, A.E. (1995): Effects of climate on chemical weathering in watersheds. Geochimica et Cosmochimica Acta, 59: 1729-1747.
White, A.F., Blum, A.E., Bullen, T.D., Vivit, D.V., Schulz, M. and Fitzpatrick, J. (1999): The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochimica et Cosmochimica Acta, 63: 3277-3291.
White, A.F., Bullen, T.D., Schulz, M.S., Blum, A.E., Huntington, T.G. and Peters, N.E. (2001): Differential rates of feldspar weathering in granitic regoliths. Geochimica et Cosmochimica Acta, 65: 847-869.
Wickman, T., Jacks, G. (1992): Strontium isotopes in weathering budget. In: Y.K. Kharaka, A.S. Maest (eds.): Proc. 7th Internat. Symp. Water–Rock Interaction. Balkema, pp. 611-614.
Ziegler, K., Chadwick, O.A., Brzezinski, M.A. and Kelly, E.F. (2005): Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands. Geochimica et Cosmochimica Acta, 69: 4597-4610.,
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2020 Czech Polar Reports