Changes in chlorophyll fluorescence parameters during desiccation and osmotic stress of Hassallia antarctica culture

Vol.8,No.2(2018)

Abstract

Hassallia antarctica is a terrestrial cyanobacterium colonizing various habitats in Antarctica such as soil surface, microbiological mats and seepages. H. antarctica represents one of the cyanobacterial species forming biodiversity of terrestrial autotrophs of James Ross Island, Antarctica. It is a filamentous cyanobacterium composing blackish fasciculated clusters thanks to false branching. In our study, sensitivity of the species to dehydration and salt stress was studied. We used H. antarctica culture (CCALA 956) grown on Z liquid medium. Clusters of H. antarctica were placed on wet filter paper and dried naturally at 5°C. During gradual dehydration, relative water content (RWC) was evaluated gravimetrically simultaneously with chlorophyll fluorescence measurements. Slow Kautsky kinetics and the chlorophyll fluorescence parameters (FV/FM, ФPSII) were used to assess dehydration-related decrease in primary photosynthetic processes. It was found that H. antarctica, contrastingly to other terrestrial cyanobacteria from polar habitats, was not able to maintain photosynthetic processes at RWCs as low as 20%. Even during initial phase of dehydration (RWC of 95%) rapid decline in FV/FM occured. Resistance of H. antarctica to osmotic stress was studied by time courses of the chlorophyll fluorescence parameter in response to 3.0, 0.3, and 0.03 M NaCl solution. Both shape of slow Kautsky kinetics and numeric values of chlorophyll fluorescence parameters were affected by osmotic stress. While full inhibitory effect was apparent in 3.0 M NaCl treatment immediately, the salt stress-induced decline in chlorophyll fluorescence parameters was observed at 0.03 M NaCl even after 8 hours of exposition. It was, therefore, concluded that H. antarctica exhibited high resistance to osmotic stress which may help the species to cope with repetitive dehydration events that happen in the field during austral summer season in Antarctica, James Ross Island in particular.


Keywords:
cyanobacterium; Antarctics; James Ross Island; dehydration; Kautsky kinetics
References

Allakhverdiev, S. I., Sakamoto, A., Nishiyama, Y., Inaba, M. and Murata, N. (2000): Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiolology, 123: 1047-56.

Allakhverdiev, S. I., Nishiyama, Y., Miyairi, S., Yamamoto, H., Inagaki, N., Kanesaki, Y. and Murata, N. (2002): Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psba genes in Synechocystis. Plant Physiolology, 130: 1443-1453.

Andersen, R. A. (2005):Algal culturing techniques.Elsevier, Amsterdam, 578 p.

Barták, M., Hájek, J. and Očenášová, P. (2012): Photoinhibition of photosynthesis in Antarctic lichen Usnea antarctica. I. Light intensity-and light duration-dependent changes in functioning of photosystem II. Czech Polar Reports, 2(1): 42-51.

Demetriou, G., Neonaki, Ch., Navakoudis , E. and Kotzabasis, K. (2007): Salt stress impact on the molecular structure and function of the photosynthetic apparatus- The protective role of polyamines. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1767: 272-280.

Herburger, K., Lewis, L. A. and Holzinger, A. (2015): Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): Role of pre-akinete formation. Protoplasma, 252(2): 571-589.

Jajoo, A. (2014): Changes in photosystem II heterogeneity in response to high salt stress. In: S. I. Allakhverdiev, A. B. Rubin, V. A. Shuvalov (eds.): Contemporary problems of photosynthesis. Institute of Computer Science, Izhevsk–Moscow, Vol. 2, pp. 397–413.

Jeanjean, R., Matthij, H. C. P., Onana, B., Havaux, M. and Joset, F. (1993):Exposure of the cyanobacteriumSynechocystisPCC 6803 to salt stress induces concerted changes in respiration and photosynthesis.Plant and Cell Physiology, 34: 1073-1079.

Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestič, M., Zivčák, M., Samborska, I. A., Cetner, M. D., Łukasik, I., Goltsev, V. and Ladle, R. J. (2016): Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38: 102.

Kaplan, F., Lewis, L. A., Herburger, K. and Holzinger, A. (2013): Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema (Zygnematales, Streptophyta): Effects on photosynthesis and ultrastructure. Micron, 44(2-2): 317-330.

Kirilovsky, D. (2015): Photosynthesis: dissipating energy by carotenoids. Nature Chemical Biology, 11: 242-243.

Komárek, J., Nedbalová, L. and Hauer, T. (2012): Phylogenetic position and taxonomy of three heterocytous cyanobacteria dominating the littoral of deglaciated lakes, James Ross Island, Antarctica. Polar Biology, 35: 759-774.

Komárek, J., Genuário, D. B., Fiore, M. F. and Elster, J. (2015): Heterocytous cyanobacteria of the Ulu Peninsula, James Ross Island, Antarctica. Polar Biology, 38: 475-492.

Latifi, A., Ruiz, M. and Zhang, C. C. (2009): Oxidative stress in cyanobacteria. FEMS Microbiology Reviews, 33: 258-278.

Lionard, M., Péquin, B., Lovejoy, C. and Vincent, W. F. (2012): Benthic cyanobacterial mats in the High Arctic: multi-layer structure and fluorescence responses to osmotic stress. Frontiers in Microbiology, 3: 140.

Lu, C., Vonshak, A. (2002): Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologia Plantarum, 114: 405-413.

Lüttge, U., Büdel, B., Ball, E., Strube, F. and Weber, P. (1995): Photosynthesis of terrestrial cyanobacteria under light and desiccation stress as expressed by chlorophyll fluorescence and gas exchange. Journal of Experimental Botany, 46: 309-319.

Neuhof, T., Schmieder, P., Preussel, K., Dieckmann, R., Pham, H., Bartl, F. and von Döhren, H. (2005): Hassallidin A, a glycosylated lipopeptide with antifungal activity from the cyanobacterium Hassallia sp. Journal of Natural Products, 68(5): 695-700.

Obbels, D., Verleyen, E., Tytgat, B., Elster, J., Strunecki, O., Wilmotte, A., Willems, A., Sabbe, K. and Vyverman, W. (2013): The diversity and tolerance to osmotic stress of East Antarctic filamentous Cyanobacteria. Scientific congresses and symposiums: Poster. 11th SCAR Biology Symposium. Barcelona, Spain.

Ohad, I., Raanan, H., Keren, N., Tchernov, D. and Kaplan, A. (2010): Light-Induced changes within photosystem II protects Microcoleus sp. in biological desert sand crusts against excess light. Plos One, 55(6): e11000. https://doi.org/10.1371/journal.pone.0011000.

Pichrtová, M., Kulichová, J. and Holzinger, A. (2014): Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae) from polar habitats. PLoS One, 9(11): e113137. https://doi.org/10.1371/journal.pone.0113137.

Potts, M. (2006): The anhydrobiotic cyanobacterial cell. Physiologia Plantarum, 97: 788-794.

Raanan, H., Oren, N., Treves, H., Keren, N., Ohad, I., Berkowicz, S.M., Hagemann, M., Koch, M., Shotland, Y. and Kaplan, A. (2016): Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: The photosynthetic aspect. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1857: 715-722.

Sadowsky, A., Mettler-Altmann, T. and Ott, S. (2016): Metabolic response to desiccation stress in strains of green algal photobionts (Trebouxia) from two Antarctic lichens of southern habitats. Phycologia, 55: 703-714.

Schubert, H., Fluda, S. and Hagemann, M. (1993):Effects of adaptation to different salt concentrations on photosynthesis and pigmentation of the cyanobacteriumSynechocystissp. PCC 6803.Journal of Plant Physiology, 142: 291-295.

Shirkey, B., Kovarcik, D.P., Wright, D.J., Wilmoth, G., Prickett, T.F., Helm, R.F., Gregory, E.M. and Potts, M. (2000): Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (cyanobacteria) after years of desiccation. Journal of Bacteriology, 182: 189-197.

Sudhir, P. R., Pogoryelov, D., Kovacs, L., Garab, G. and Murthy, S. D. (2005): The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. International Journal of Biochemistry and Molecular Biology, 38: 481-485.

Trnková, K., Barták, M. (2017): Desiccation-induced changes in photochemical processes of photosynthesis and spectral reflectance in Nostoc commune (Cyanobacteria, Nostocales) colonies from polar regions. Phycological Research, 65: 44-50.

Winckelmann, D., Bleeke, F., Bergmann, P. and Klock, G. (2015): Growth of cyanobacterium aponinum influenced by increasing salt concentrations and temperature. 3 Biotech, 5(3): 253-260.

Zehnderin Staub,R. (1961):Ernährungphysiologish-autökologische Untersuchung an den Planktonischen Blaualge Oscillatoria rubescens DC.Schweizerische Zeitschrift für Hydrologie, 23: 82-198. (In German).

,

Metrics

251

Views

47

PDF views