Phototrophic microflora colonizing substrates of man-made origin in Billefjorden Region, Central Svalbard

Vol.6,No.1(2016)

Abstract

Substrates created by human have a significant impact on Arctic terrestrial environment. These substrates are new potential niche for microbial biota, which may have several essential chemical agents supporting microbial growth. Wood, concrete, brick, ceramic and other different building materials, which have been introduced by human in this iso-lated environment, are colonized with terrestrial and aero-terrestrial microorganisms living in the natural niches near the substrates like soil, rocks, etc., but these materials newly-introduced to Svalbard terrestrial ecosystems can also work as vectors for invasion of new species into the environment. We have collected different types of artificial substrates mainly in the region of Petuniabukta bay and studied the species composition of microbial phototrophs living there. A total of 25 taxa of cyanobacteria and algae were documented on different types of substrates like brick walls, concrete, glass, iron, wood and plastic. A commonality in species diversity was observed with similar substrates in temperate climatic regions. Fottea stichococcoides, Sphaerococcomyxa olivacea, Polysphaera composita and Diplosphaera chodatii were first time recorded from Svalbard Archipelago.


Keywords:
cyanobacteria; algae; anthropogenic substrates; Arctic
References

Adhikary, S. P., Kováčik, L. (2010): Comparative analysis of cyanobacteria and micro- algae in the biofilms on the exterior of stone monuments in Bratislava, Slovakia and in Bhubaneswar, India. The Journal of the Indian Botanical Society, Madras, 89 (1&2): 19-23.

Broady, P. A. (1979): The Terrestrial Algae of Signy Island, South Orkney Islands. British Antarctic Survey, 98: 1-117.

Broady, P. A. (1996): Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodiversity and Conservation, 5: 1307-1335.

Brown, R. M., Larson, D. A. and Bold, H. C. (1964): Airborne algae: their abundance and heterogeneity. Science, 143: 583-585.

Coutinho, L. M., Miller, Z. A. and Macedo, F. M. (2015): Biological colonization and biodeterioration of architectural ceramic materials. Journal of Cultural Heritage,16: 759-777.

Davydov, D. (2014): Diversity of the Cyanoprokaryota of the area of settlement Pyramiden, West Spitsbergen Island, Spitsbergen archipelago. Folia Cryptogamica Estonica, 51: 13-23.

Ettl, H., Gärtner, G. (1995): Syllabus der Boden-, Luft- und Flechtenalgen. Gustav Fischer Verlag, Stuttgart, 721p.

Graham, L. E., Graham, J. M. and Wilcox, L. W. (2009): Algae (2nd edition). Pearson Education, San Francisco, CA. 640p.

Karsten, U., Friedl, T., Schumann, R., Hoyer, K. and Lembcke, S. (2005): Mycosporine-like amino acids (MAAs) and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). Journal of Phycology, 41: 557-566.

Karsten, U., Schumann, R. and Mosteart, A. (2007): Aeroterrestrial algae growing on man-made surfaces – what are the secrets of their ecological success? In: J. Seckbach (ed.): Algae and Cyanobacteria in Extreme Environments. Springer, Berlin, pp. 583-597.

Karsten, U., Lütz, C. and Holzinger, A. (2010): Ecophysiological performance of the aeroterrestrial green alga Klebsormidium crenulatum (Charophyceae, Streptophyta) isolated from an alpine soil crust with an emphasis on desiccation stress. Journal of Phycology, 46: 1187-1197.

Kaštovská, K., Elster, J., Stibal, M. and Šantručková, H. (2005): Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microbial Ecology, 50: 396-407.

Kim, G. H, Klochkova, T. A. and Kang, S. H. (2008): Notes on freshwater and terrestrial algae from Ny-Ǻlesund, Svalbard (high Arctic sea area). Journal of Environmental Biology, 29: 485-491.

Kim, G. H., Klochkova, T. A., Han, W. J., Kang, S.-H., Choi, G. H., Chung, K. W. and Kim, S. J. (2011): Freshwater and terrestrial algae from Ny-lesund and Blomstrandhalvya Island (Svalbard). Arctic, 64: 25-31.

Komárek, J., Anagnostidis, K. (2005): Cyanoprokaryota – 2. Part: Oscillatoriales. Süßwasserflora von Mitteleuropa 19/2, Spektrum, Akademischer Verlag, Heidelberg. 759 p.

Komárek, J., Kováčik, L., Elster, J. and Komárek, O. (2012): Cyanobacterial diversity of Petuniabukta, Billefjorden, central Spitzbergen. Polish Polar Research, 33: 347-368.

Kostikov, I., Darienko, T., Lukešová, A. and Hoffmann, L. (2002): Revision of the classification of Radiococcaceae FOTT ex KOMÁREK (except the subfamily Dictyochlorel-loideae) (Chlorophyta). Algological Studies, 104: 23-58.

Kováčik, L. (2000): Cyanobacteria and algae as agents of biodeterioration of stone substrata of historical buildings and other cultural monuments. In: S. Choi, M. Suh (eds.): Proceedings of the New Millenium International Forum on Conservation of Cultural Property, Daejeon, Korea, December 5-8, 2000. Kongju National University, Kongju, Korea. pp. 44-58.

Kvíderová, J.(2012): Research on cryosestic communities in Svalbard: the snow algae of temporary snowfields in Petuniabukta, Central Svalbard.Czech Polar Reports,2: 8-19.

Leya, T., Müller, T., Ling, H. U. and Fuhr, G. (2000): Taxonomy and biophysical properties of cryophilic microalgae and their environmental factors in Northwest Spitsbergen, Svalbard. 57th Eastern Snow Conference, Syracuse/NY, USA, 7 p.

Mandrioli, P., Caneva, G. and Sabbioni, C. (2003): Cultural heritage and aerobiology. Methods and measurement techniques for biodeterioration monitoring. Kluwer Academic, Dordrecht, 243 p.

Matuɫa, J., Pietryka, M., Richter, D. and Wojtuń, B. (2007): Cyanoprokaryota and algae of Arctic terrestrial ecosystems in the Horsund area, Spitsbergen. Polish Polar Research, 28: 283-315.

Marshall, W. A., Chalmers, M. O. (1997): Airborne dispersal of Antarctic terrestrial algae and cyanobacteria. Ecography, 20: 585-594.

Nowicka-Krawczyk, P., Żelazna-Wieczorek, J., Otlewska, A., Koziróg, A., Rajkowska, K. , Piotrowska, M. , Gutarowska, B. and Zydzik-Biaɫek, A. (2014): Diversity of an aerial phototrophic coating of historic buildings in the former Auschwitz II-Birkenau concentration camp. Science of the Total Environment, 493: 116-123.

Olech, M. (1996): Human impact on terrestrial ecosystems in West Antarctica. Proceedings of the NIPR Symposium on Polar Biology, 9: 299-306.

Oleksowicz , A. S., Luścińska, M. (1992): Occurrence of algae on tundra soils in Oscar II Land, Spitsbergen. Polish Polar Research, 13: 131-147.

Ortega-Calvo, J. J., Arino, X., Hernandez-Marine, M. and Saiz-Jimenez, C. (1995): Factors affecting the weathering and colonisation of monuments by phototrophic microorganisms. Science of the Total Environment, 167: 329-341.

Raabová, L., Kováčik, L. (2013): Four aeroterrestrial algae grown at a special substrate of deglaciated coastal areas of Petuniabukta, Svalbard. Czech Polar Reports, 2: 157-162.

Richter, D., Matuɫa, J. and Pietryka, M. (2009): Cyanoprokaryota and algae of selected tundra habitats in the Horsund fjord area (West Spitsbergen). Oceanological and Hydrobiological Studies, 38: 65-70.

Rindi, F. (2007): Diversity, distribution and ecology of green algae and cyanobacteria in urban habitats. In: J. Seckbach (ed.): Algae and Cyanobacteria in Extreme Environments. Springer, Berlin. pp. 621-638.

Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. and Stanier, R. Y. (1979): Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Journal of General Microbiology, 111: 1-61.

Sahu, N., Tangutur, A. D. (2014): Airborne algae: overview of the current status and its implications on the environment. Aerobiologia, 31: 89-97.

Samad, L. K., Adhikary, S. P.( 2008): Diversity of microalgae and cyanobacteria on building facades and monuments in India. Algae, 23: 91-114.

Sharma, N. K., Rai, A. K., Singh, S. and Brown, R. M. (2007): Airborne algae: their present status and relevance. Journal of Phycology, 43: 615-627.

Skulberg, O. M. (1996): Terrestrial and limnic alga and cyanobacteria. Part 9. In: A. Elvebakk, P. Prestrud (eds.): A catalogue of Svalbard plants, fungi, algae and cyanobacteria. Norsk Polarinstitutt Skrifter, 198: 383-395.

Staub, R. (1961): Ernährungsphysiologisch-autökologische Untersuchungen an der Planktonischen Blaualge Oscillatoria rubescens DC. Schweizerische Zeitschift für Hydrologie, 23: 82-198a.

Stibal, M., Šabacká, M. and Kaštovská, K. (2006): Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microbial Ecology, 52: 644-654.

Wojtuń, B., Samecka-Cymerman, A., Kolon, K. and Kempers, A. J. (2013): Decreasing concentrations of metals in Sphagnum mosses in ombrotrophic mires of the Sudety mountains (SW Poland) since late 1980s. Chemosphere, 91: 1456-1461.,

Metrics

226

Views

18

PDF views