Biometrical parameters, pigment content and functional characteristics of photosynthetic apparatus of Bistortavivipara within the territory of West Spitsbergen
Vol.6,No.1(2016)
In the present paper, the results of the research of biometric and functional parameters of photosynthetic apparatus of Bistorta vivipara from West Spitsbergen are presented and discussed. A high intraspecific variability of biometric parameters (linear dimensions and biomass) was found. The differences found in biomass suggest that biological productivity is associated with the functional activity of the plant individuals. A direct dependence of the biomass on the photosynthetic pigment content per unit dry mass of leaf has been revealed. A high variability of non-photochemical fluorescence quenching (NPQ), basic fluorescence yield (F0), maximal fluorescence yield (FM) and variable fluorescence yield (FV) have been shown contrastingly to relatively constant values of the maximum photochemical quantum yield of PS II (FV/FM) and the coefficient of photochemical fluorescence quenching (qP). Close-to-theoretical-maximum FV/FM values indicated the absence of stress conditions and the presence of regulation systems in chloroplastic photosynthetic apparatus (PA) level functioning during varying microclimate parameters of the daily climate. The relatively constant qP indicated the same photosynthetic activity of the B. vivipara leaves, unaffected by the varying weather conditions. The NPQ data suggest that the non-photochemical quenching acts as a protective mechanism, sustaining the PA in an optimally active state and reducing probability of negative changes to PSII. The revealed high PA adaptability at the level of the plant structure and light-dependent reactions of photosynthesis makes it possible for B. vivipara to develop at a high functional level at various values of environmental factors, which provides for the successful growth of the species in the high Arctic region. The high PA flexibility suggests that B. vivipara is capable of active adaptation in the context of the forecast climate change.
Arctic; biomass; chlorophyll fluorescence; photosynthetic apparatus; photosynthetic pigments; Polygonum viviparum
Angelini, G., Ragni, P., Esposito, D., Giardi, P., Pompili, M. L., Moscardelli, R. and Giardi, M.T. (2001): A device to study the effect of space radiation on photosynthetic organisms. Physica Medica, 17: 267-268.
Barták, M., Váczi, P. and Hájek, J. (2012): Photosynthetic activity in three vascular species of Spitsbergen vegetation during summer season in response to microclimate. Polish Polar Research, 33: 443-462.
Bascuán-Godoy, L., García-Plazaola, J. I., Bravo, L. A. and Corcuera, L. J. (2010): Leaf functional and micro-morphological photoprotective attributes in two ecotypes of Colobanthus quitensis from the Andes and Maritime Antarctic. Polar Biology, 33: 885-896.
Batygina, T. B. (1999): Genetic heterogeneity of seeds. Phisiologia rasteniy [Plant Physiology], 46 (3): 438-453 (in Russian).
Batygina, T.B., Vasilyeva, V. E. (2002): Razmnozhenie rasteniy [Propagation of plants]. Saint Petersburg, Saint Petersburg Gos. Univ. Publ., 2002, 230 p. (in Russian)
Bauert, M. R. (1993): Vivipary in Polygonum viviparum: an adaptation to cold climate? Nordic Journal of Botany, 13: 473-480.
Bauert, M. R. (1996): Genetic diversity and ecotypes differentiation in arctic and alpine populations of Polygonum viviparum. Arctic and Alpine Research, 28:190-195.
Björkman, O., Demming, B. (1987): Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170: 489-504.
Bokhorst, S., Bjerke, J. W., Davey, M. P., Taulavuori, K., Taulavuori, E., Laine, K., Callaghan, T.V. and Phoenix, G. K. (2010): Impacts of extreme winter warming events on plant physiology in a sub-arctic heath сommunity. Physiologia Plantarum, 140: 128-140.
Casanova-Katny, M. A., Zúiga, G. E, Corcuera, L. J, Bravo, L. and Alberdi, M. (2010): Deschampsia antarctica Desv. primary photochemistry performs differently in plants grown in the field and laboratory. Polar Biology, 33: 477-483.
Diggle, P. K., Lower, S. and Ranker, T. A. (1998): Clonal diversity in alpine populations of Polygonum viviparum (Polygonaceae). International Journal of Plant Sciences, 159: 606-615.
Diggle, P. K., Meixner, M. A., Carroll, A. B. and Aschwanden, C. F. (2002): Barriers to sexual reproduction in Polygonum viviparum: a comparative developmental analysis of P. viviparum and P. bistortoides. Annals of Botany, 89: 145-156.
Gamalei, Yu.V. (2004): Transport system of vascular plants. Publishing House of Saint Petersburg State University, Saint Petersburg, Russia, 2004, 424 p. (in Russian)
Gerasimenko, T. V., Popova, I. A. and Alexandrova, N. M. (1989): On the characterization of the photosynthetic apparatus and plant photosynthesis of Arctic tundra (of Wrangel Island). Botanicheskiy Journal [Botanical Journal], 74 (5): 669-679 (in Russian).
Goltsev, V. N., Kalaji, M. H., Kouzmanova, M. A. and Allakhverdiev, S. I. (2014): Variable and delayed chlorophyll a fluorescence – basics and application in plant science. Moscow-Izshevsk: Institute of computer science, 220 p. (in Russian)
Huner, N.P.A., Oquist, G., Hurry, V.M., Krol, M., Flak, S. and Griffith, M. (1993): Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynthesis Research, 37: 19-37.
Klokk, T., Rnning, O. I. (1987): Revegetation experiments at Ny-lesund, Spitsbergen, Svalbard. Arctic and Alpine Research, 19: 549-553.
Law, R., Cook, R. E. D. and Manlove, R. J. (1983): The ecology of flower and bulbil production in Polygonum viviparum. Nordic Journal of Botany, 3: 559-566.
Li, Y., Jiao, Y. and Zhao, Q. (2013): Photosynthetic Characteristics of Arctic Plants. In: T. Kuang, C. Lu, L. Zhang, (eds.): Photosynthesis Research for Food, Fuel and the Future, 15th International Conference on Photosynthesis, Symposium 17, pp. 633-637.
Lichtenthaler, H. K., Wellburn, A. R. (1983): Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11: 591-592
Lütz, C. (2010): Cell physiology of plants growing in cold environments. Protoplasma 244: 53-73.
Lütz, C., Bergweiler, P., Di Piazza, L. and Holzinger, A. (2012): Cell organelle structure and function in alpine and polar plants are influenced by growth conditions and climate. In: C. Lütz (ed.): Plants in alpine regions: cell physiology of adaption and survival strategies. Springer, Wien, pp. 43-60.
Marchand, F.L., Verlinden, M., Kockelbergh, F., Graae, B., Beyens, L. and Nijs, I. (2006): Disentangling effects of an experimentally imposed extreme temperature event and naturally associated desiccation on Arctic tundra. Functional Ecology, 20: 917-928.
Markovskaya, E. F., Shmakova, N. Y. and Terebova, E. N. (2014): Total nitrogen content and cell wall’s features of some species of Western Spitsbergen. Fundamental'nye issledovaniya [Fundamental research], 12(1): 124-130 (in Russian).
Maslova, T. G., Popova, I. A. (1993): Adaptive properties of the plant pigment systems. Photosynthetica, 29: 195-203.
Pawłowski, B. (1956): Flora Tatr (Flora of the Tartas), Vol. 1, Państwowe Wydawnictwo Naukowe, Warszawa, 672 p.
Perez-Torres, E., Dinamarca, J., Bravo, L. A and Corcuera, L. J. (2004): Responses of Colobanthus quitensis (Kunth) Bartl. to high light and low temperature. Polar Biology, 27: 183-189.
Shmakova, N. Yu., Markovskaya, E. F. (2010): Photosynthetic pigments of plants and lichens inhabiting arctic tundra of West Spitsbergen. Russian Journal of Plant Physiology, 57: 764-769.
Skrede, I., Bronken, E. P., Pineiro, P. R. and Brochman, Ch. (2006): Refugia, differentiation and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.). Molecular Ecology, 15: 1827-1840.
Streb, P., Josse, E.-M., Gallouët, E., Baptist, F., Kuntz, M. and Cornic, G. (2005): Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain species Ranunculus glacialis. Plant Cell and Environment, 28: 1123-1135.
Villar, L. (1990): Polygonum. In: S. Castroviejo, M. Lainz, G. L. González, P. Montserrat, F. Muňoz Garmendia, J. Paiva & L. Villar (eds.): Flora Iberica. Real Jardín Botánico, Madrid, Vol. 2, pp. 571-586.
Webb, D.A., Chater, A.O. (1964): Polygonum. In: T. G. Tutin, V. H. Heywood, N. A. Burge, D. H. Valentine, S. M. Walters, D. A. Webb (eds.): Flora Europaea, Cambridge University Press, Cambridge, Vol. 1, pp. 76-80.
Wookey, P. A., Welker, J. M., Parsons, A. N., Press, M. C., Callaghan, T. V. and Lee, J. A. (1994): Differential growth, allocation and photosynthetic responses of Polygonum viviparum to simulated environmental change at a high arctic polar semi-desert. Oikos, 70: 131-139.
Xiong, F. S., Ruhland, Ch. T. and Day, T. A. (1999): Photosynthetic temperature response of the Antarctic vascular plants Colobantus quitensis and Deschampsia antarctica. Physiologia plantarum, 106: 276-286.
Zając, M., Zając, A. (2009): The geographical elements of native flora of Poland. Edited by Laboratory of Computer Chorology, Institute of Botany, Jagiellonian University, Kraków, 94 p.
Other sources
IPCC (2007): Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R. K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 p.
,This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2020 Czech Polar Reports