
ABSTRACT

The study examines the use of machine learning models to forecast attendance at sports 
stadiums, specifically analyzing National Football League (NFL) games from 2000 to 2019, 
with over 5,055 regular-season games. The models, including Linear Regression, Classifica-
tion and Regression Trees (CART), Random Forest, CatBoost, and XGBoost, integrate a di-
verse set of variables such as team performance, economic indicators, stadium characteris-
tics, and weather conditions. Each model’s accuracy and effectiveness are assessed using five 
statistical metrics. With a Mean Absolute Error (MAE) of 0.02 and a Root Mean Squared 
Error (RMSE) of 0.04, the models display high precision in predicting stadium attendance. 
The coefficient of determination (R²) reaches 77.27% after optimization. These figures sug-
gest that the models, particularly Random Forest and CatBoost, are highly effective in fore-
casting attendance rates for NFL games. Key influences on game attendance include factors 
like ‘stadium_name,’ ‘personal_income,’ ‘stadium_age,’ and ‘home_club_age’, which emerge 
as significant predictors. This study fills a theoretical gap in the limited research on the NFL 
and provides valuable insights for strategic planning and decision-making in professional 
sports management.

Keywords:  machine learning, stadium attendance forecast, Random Forest, CatBoost, 
XGBoost.
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INTRODUCTION

The National Football League (NFL) is a cornerstone of the sports industry in the United States, 
not only for its cultural significance but also for its substantial economic impact. Each season, NFL 
games draw millions of fans, playing a crucial role in the league’s financial success. Especially, 
NFL attendance directly influences various revenue streams, including ticket sales, in-stadium 
purchases, and sponsorships, all of which are closely tied to game attendance. Furthermore, 
attendance figures significantly impact broadcast rights and advertising revenues, as they reflect 
the sport’s popularity (Buraimo, 2008). However, these attendance numbers can fluctuate due 
to many factors, such as team performance, economic conditions, and even weather patterns 
(Ge et al., 2020; Paul et al., 2021). Consequently, understanding and accurately forecasting these 
factors is vital for financial planning and strategic decision-making within the NFL (Şahin & 
Uçar, 2020). 

Traditional forecasting methods often do not fully capture the complex, multifaceted nature 
of the factors influencing audience turnout. This inadequacy highlights the need for more 
sophisticated approaches, particularly at a time when data-driven decision-making is becoming 
increasingly prevalent in sports management. In this context, machine learning emerges as an 
effective tool, offering a more advanced method for forecasting NFL attendance. By using large 
amounts of data and detecting complex trends, machine learning models have the potential 
to provide more accurate and reliable forecasts than traditional statistical methods (Rein & 
Memmert, 2016). 

The application of machine learning methods to forecast attendance in various sports has been 
increasingly recognized and adopted in the existing literature. For instance, significant research 
has been conducted across Major League Soccer (MLS) (King & Rice, 2018) , Major League Baseball 
(MLB) (Gupta, 2019; Mueller, 2020), the National Basketball Association (NBA) (King, 2017). 
However, studies focusing on the NFL are limited and typically cover only short-term data (Şahin 
& Uçar, 2020). This lack of comprehensive research presents a critical opportunity to conduct a 
more in-depth analysis that spans a longer timeframe and incorporates a broader set of variables 
in the context of NFL attendance forecasting. 

Our study aims to bridge this gap by offering a comprehensive analytical insight by comparing 
five proven-effective machine learning-based models for NFL game attendance forecasts, including 
Linear Regression, Classification and Regression Trees, Random Forest, XGBoost, and CatBoost. 
Also, we compiled a comprehensive dataset that includes over 5,055 NFL regular-season games 
from 2000 to 2019, incorporating a wide range of predictors such as team performance, economic 
indicators, stadium conditions, and weather patterns. The accuracy and effectiveness of these 
models were examined using statistical metrics such as MAE, MAPE, MSE, RMSE, and R². Among 
these models, Random Forest, CatBoost, and XGBoost demonstrated the best performance. This 
study not only fills the existing theoretical research gap but also offers valuable practical insights 
for strategic planning and decision-making in professional sports management. 
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DATA AND METHOD

Data collection and classification
In this study, data were gathered on all National Football League (NFL) games played from 2000 to 
2019, including a total of 5,324 games. These games included various stages of competition such as 
regular season, Wild Card playoffs, Divisional playoffs, Conference Championships, and the Super 
Bowl. To focus on forecasting stadium attendance with greater precision, the analysis was limited to 
regular season games. These games typically exhibit higher team engagement and more consistent 
outcomes. Consequently, all playoff games were removed from the dataset, leaving 5,104 regular 
season games for analysis. Furthermore, certain regular season games held internationally—at 
venues including Wembley, Twickenham, and Tottenham in England, as well as Toronto, Canada, 
and Mexico City, Mexico—were excluded. A total of 38 games were omitted due to their distinctive 
characteristics and the potential variability in their attendance patterns. Additionally, 11 games 
that were relocated to alternative stadiums due to extreme weather damage during this period 
were also excluded to maintain consistency within the dataset. Following these adjustments, the 
dataset was refined to encompass 5,055 regular-season games. Table 1 outlines the details and 
descriptive statistics of these games.

Table 1. The descriptive statistics of NFL regular-season matches and attendance

Season Count Mean SD Season Count Mean SD
2000/2001 248 65934.44 9345.13 2010/2011 253 67036.61 9229.69 

2001/2002 248 65753.58 9514.52 2011/2012 254 67418.85 7982.57 

2002/2003 256 66325.67 8901.60 2012/2013 254 67632.18 8347.35 

2003/2004 255 66649.50 9572.38 2013/2014 253 68397.32 8249.17 

2004/2005 256 67462.60 9032.13 2014/2015 252 68650.90 8081.27 

2005/2006 247 67947.58 8348.47 2015/2016 253 68212.84 8336.46 

2006/2007 256 68773.64 6483.32 2016/2017 252 69324.70 8229.04 

2007/2008 255 68692.19 6405.20 2017/2018 251 67167.65 10971.11 

2008/2009 254 68206.94 6844.63 2018/2019 253 66887.30 10877.42 

2009/2010 254 67505.53 9684.24 2019/2020 251 66433.25 11075.18 

Source: authors’ elaboration according to Pro Football Reference. URL: https://www.pro-football-reference.com/ 
(accessed on 25.12.2023).

Building on the classification methodology developed by Borland and Macdonald (2003), we 
categorized variables into five groups: consumer preferences, economic factors, quality of viewing, 
attraction of the sporting contest, and supply capacity. This categorization, grounded in sports 
economics and fan behavior research, ensures a thorough analysis of factors affecting stadium 
attendance. As presented in Table 2, the data collection included various open sources, including:

•	 Pro Football Reference (https://www.pro-football-reference.com/) provided detailed 
match-specific data, including the year, round, weekday, starting hour, home and away 
team names, teams’ winning percentages, previous season performance, stadium names, 
and game attendance numbers. Acknowledging that home teams are typically the same 
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as their home stadiums, the variable “Stadium_Name” was expressly incorporated into 
our predictive model. This addition caters to the instances within our dataset where teams 
have transitioned to different stadiums over the years, ensuring that our analysis captures 
any influence that a change in stadium might have on game attendance.

•	 Weather data: Our primary weather data was sourced from Meteostat via their API (https://
dev.meteostat.net/python/api/timeseries/), which allowed us to link stadium locations 
with match day weather conditions, including temperature, precipitation, and atmospheric 
pressure. For instances where Meteostat lacked historical records, supplementary data 
were obtained from Weather Underground (https://www.wunderground.com/). This 
information reflects conditions at the time decisions to attend games are typically made.

•	 Economic indicators: Data were gathered based on the Metropolitan Statistical Areas 
(MSAs) corresponding to the home territories of each team, as delineated by Welki & 
Zlatoper (1999). This data was acquired from the Federal Reserve Economic Data (FRED) 
(https://fred.stlouisfed.org/). Economic measures, particularly Per Capita Personal 
Income, were standardized to 2017 dollar values using the Consumer Price Index (CPI) to 
facilitate consistent economic comparisons across years.

•	 Team official websites: Data such as the age of clubs, construction year of stadiums, and 
roof types were sourced from the teams’ official websites. Notable stadium features, such 
as roof type adaptability at So-Fi Stadium and post-2016 improvements at Hard Rock 
Stadium, were categorized accordingly to reflect their weather protection capabilities. 
Stadium capacity data, which may fluctuate due to operational changes, were calibrated 
for consistent comparison.

•	 Geographic Data: Position coordinates were obtained from Google Maps, and distances 
from away city centers to home team stadiums were calculated using the Haversine equation.

In addition, the attendance percentage was chosen as the dependent variable and calculated by 
dividing the actual attendance by the stadium’s capacity, as suggested by Falls and Natke (2014), 
and Bowley and Berger (2014).

Table 2. Description of independent variables

Classification Variable Description Coding/Value Reference

Consumer 
preferences

Age of home team 
clubs

Year of  team establishment
Min = 0

Max = 121
Mean = 54.54

(Coates & Humphreys, 
2007; Depken, 2001)Age of away team 

clubs

Economic 
factors

Real Per Capita 
Personal Income 

Average income in the team’s 
MSA area (U.S. Dollar, 2017 

= 100)

Min = 39081.05
Max = 96225.64

Mean = 52717.83

(Depken, 2001; Spenner et 
al., 2004; Welki & Zlatoper, 

1999)

Population
Resident population of 

the metropolitan area (in 
thousands)

Min = 283.34
Max = 13266.52 
Mean = 3659.76

(Depken, 2001; Hart et al., 
1975; Jennett, 1984; King & 

Rice, 2018)

Unemployment 
Rate

Economic indicator of the 
team’s city (%)

Min = 2.0
Max = 15.0
Mean = 5.5

( Jennett, 1984; Lenten, 
2011)
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Classification Variable Description Coding/Value Reference

Quality of 
viewing

Year The starting year of NFL 
season

Min = 2000
Max = 2019

(Depken, 2001; Jennett, 
1984; Spenner et al., 2004)

Starting hour The starting hour of the game
Min = 12
Max = 23

Mean = 15.02

(Alonso & O’Shea, 2013; 
King & Rice, 2018)

Weekday The weekday of the game
Min = 1
Max = 7

Mean = 6.46

(Coates & Humphreys, 
2010; King & Rice, 2018; 

Paul et al., 2021)

Distance Kilometers from away team 
city center to home stadium

Min = 5.91
Max = 4395.72

Mean = 1568.45

(Hart et al., 1975; Şahin & 
Erol, 2018)

Temperature
Refers to the temperature 
several hours prior to the 

game (Fahrenheit)

Min = -13.0
Max = 109.04
Mean = 58.72

(Gropper & Anderson, 
2018; Paul et al., 2021)

Precipitation
Refers to the rainfall several 

hours prior to the game 
(Inch)

Min = 0
Max = 0.72

(Ge et al., 2020; Paul et al., 
2021)

Pressure Refers to atmospheric 
pressure of mercury (Inch)

Min = 24.07
Max = 30.85

Mean = 30.06 
(Paul et al., 2021)

Roof type Indoor/ Outdoor/ retractable 
Min = 0
Max = 2

(Ge et al., 2020; Paul et al., 
2021)

Age of stadium Years since built
Min = 0

Max = 96
Mean = 21.62

(Depken, 2001; Gropper & 
Anderson, 2018; Paul et al., 
2021; Spenner et al., 2004)

Attraction of 
sporting contest

Round Regular season weeks
Min = 1

Max = 17
(Falls & Natke, 2014; 

Mueller, 2020)

Stadium Name The code of stadium where 
the match was held

Min = 0
Max = 48

(King & Rice, 2018)

Home/Away team 
name

The code of home and away 
team names 

Min = 0
Max = 33

(Falls & Natke, 2014; 
Hansen & Gauthier, 1989; 

King & Rice, 2018; Mueller, 
2020)

Home winning 
percentage

The home team winning 
percentage in the season 

before the game

Min = 0
Max = 1

Mean = 0.462

(Depken, 2001; Gropper & 
Anderson, 2018; Paul et al., 

2021; Welki & Zlatoper, 
1999)

Away winning 
percentage

The away team winning 
percentage in the season prior 

to the game

Min = 0
Max = 1

Mean = 0.477

(Coates & Humphreys, 
2010; Gropper & Anderson, 

2018; Mueller, 2020)

Home/Away Last 
season play-off 

teams

Whether home/away team 
last season is play-off team

0 = No
1 = Yes

(Coates & Humphreys, 
2007; Falls & Natke, 2016; 

Gropper & Anderson, 2018; 
Nesbit & King, 2010)

Home/Away Last 
season Super 
Bowl teams

Whether home/away team 
last season is Super Bowl 

team

0 = No
1 = Yes

( Jennett, 1984; Nesbit & 
King, 2010)

Supply capacity Capacity Maximum attendance 
capacity

Min = 27000
Max = 100000

Mean = 70901.09

(Depken, 2001; Gropper & 
Anderson, 2018; Hansen 
& Gauthier, 1989; King & 

Rice, 2018)

Source: authors’ elaboration.
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Variables’ selection and validation
We employed the Spearman correlation coefficient to evaluate the association between diverse 
variable types within our dataset. Prior to assessment, categorical variables such as home team, 
away team, stadium name, and roof type were numerically encoded to enable their inclusion. 
This non-parametric measure was chosen for its capacity to handle mixed data types effectively, 
without the requirement of a normal distribution (Hauke & Kossowski, 2011).

Fig. 1. Feature correlation matrix

Figure 1 presents a heatmap that illustrates the Spearman correlation matrix, offering a visual 
exploration of the relationships between the variables. It is important to note that Spearman 
coefficients close to or exceeding 0.7 may signal the presence of multicollinearity, which can distort 
model estimation (Rodionova et al., 2022). Such multicollinearity necessitates careful variable 
selection to avert the redundancy that highly correlated variable pairs can cause in the modeling 
process. In our analysis, the most notable correlation is observed between the “round” and “weather”, 
presenting a negative coefficient of -0.63. This notable inverse relationship likely arises from the 
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NFL season‘s span from September to January, where later rounds are typically associated with 
colder weather conditions. The other variables demonstrate negligible correlations, indicating 
a substantial level of independence and diminishing concerns for multicollinearity within our 
dataset.

Building upon the insights from the Spearman correlation matrix, we employed the forward 
selection method to refine the variables for subsequent analysis. This technique involves gradually 
adding variables to an initial base model, ranking them according to the magnitude of their 
relationship with the dependent variable. The inclusion criterion for each variable is the statistical 
significance of its p-value. Adhering to conventional significance benchmarks, we incorporated 
variables exhibiting p-values below the 0.05 threshold. This rigorous selection process yielded 
a subset of variables strongly correlated with the attendance percentage, which are anticipated 
to enhance the predictive capacity of our machine learning model. After this selection process, 
17 variables remained, with the previous season‘s performance ranking as the most significant 
predictor. Table 3 displayed the detailed p-value for each variable considered. 

Table 3. Selected variables from forward selection process

Variable P-Value

home_last_playoffs 0.0000 

stadium_age 0.0000 

Personal_income 0.0000 

StadiumName 0.0000 

Capacity 0.0000 

home_winpc 0.0000 

distance 0.0000 

away_last_playoffs 0.0000 

Temperature 0.0000 

home_club_age 0.0000 

Unemployment_rate 0.0000 

round 0.0000 

Population 0.0000 

away_club_age 0.0000 

weekday 0.0012 

Rooftype 0.0042 

time 0.0090 
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Models’ selection and validation

Python 3.11.0 within the PyCharm Integrated Development Environment was deployed in this 
study. A suite of machine learning algorithms was chosen due to their distinct advantages and 
proven track records in domains similar to sports attendance forecasting:

Linear Regression: This method works well when there’s a direct, straight-line relationship 
between factors like how well a team is doing and the number of fans attending the games. It serves 
as an initial benchmark to ascertain the efficacy of alternative, more intricate methodologies under 
investigation, in order to assess their comparative performance in predicting attendance (Du et al., 
2022; King, 2017; King et al., 2018; King & Rice, 2018).

CART (Classification and Regression Trees): CART employs a binary tree structure; it extends the 
simplicity of linear regression through a hierarchical decision-making process (Lewis, n.d.). It 
systematically segments data based on singular variable criteria, which is instrumental in isolating 
pivotal determinants of attendance such as game-specific attributes and team participation. Its 
efficacy in delineating influential predictors has garnered recognition and application across 
related scholarly investigations (Du et al., 2022; Mueller, 2020).

Random Forest: This ensemble method, synthesizing a multitude of decision trees, stands out 
for its powerful defense against overfitting—common pitfall in forecast analytics. Random Forest 
effectively navigates our dataset’s multidimensional complexity, accommodating the abundance 
of variables without demanding feature reduction. Such an attribute is essential in the context of 
sports attendance, where a myriad of factors converge to influence outcomes (Du et al., 2022; King, 
2017; King et al., 2018; King & Rice, 2018; Mueller, 2020).

XGBoost: XGBoost is highly regarded for its rapid processing capabilities and precision in model 
outcomes (Chen & Guestrin, 2016). This algorithm’s flexibility renders it particularly compatible 
with the diverse nature of our dataset. The proven efficacy of XGBoost in similar applications 
supports its selection, offering a robust tool for accurately forecasting NFL game attendance (Du 
et al., 2022; King et al., 2018; King & Rice, 2018).

CatBoost: Research validated CatBoost’s superior performance, often in comparison with 
XGBoost and Random Forest, attesting to its effectiveness in forecast modeling (Hong, 2020; 
Huang et al., 2019; Jabeur et al., 2021). Its adeptness in gradient boosting is key to its rapid and 
accurate forecasting abilities (Prokhorenkova et al., 2018), excelling in handling datasets rich 
in categorical features, which makes it particularly well suited for our dataset of NFL game 
attendance forecasting.

In our analysis model, we partitioned the dataset into a training set, constituting 90% of the data, 
and a testing set, making up the remaining 10%. A total of 506 matches were randomly selected 
to form the testing subset. To thoroughly assess the efficacy of our forecasting model, we used a 
suite of five metrics designed to capture its performance dimensions. These metrics include Mean 
Absolute Error (MAE), Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), 
Root Mean Squared Error (RMSE), and R-squared. The initial four metrics quantify the deviation 
between the predicted and actual outcomes, with lower values indicative of a more accurate model. 
Conversely, the R-squared metric gauges the model‘s capacity to explain the variability of the data, 
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where a higher value denotes a stronger explanatory power. While MAE provides a direct measure 
of average error, it does not differentiate between underestimation and overestimation; hence, 
RMSE is utilized to offer an alternative measure by representing the square root of the average 
squared errors, thus highlighting larger errors more prominently.

RESULTS

Performance comparison of all models
Table 4 presents an assessment of the performance metrics for various models, evaluated using 
their default settings with no parameter optimization. For consistency across models, a random 
seed of 42 was employed during the analysis. 

Table 4. Models’ performance comparison

Model MAE MSE MAPE RMSE R²

Linear Regression 0.04904 0.00555 0.05846 0.07449 0.21452

CART 0.02718 0.00336 0.03199 0.05794 0.52465

Random Forest 0.02062 0.00174 0.02452 0.04171 0.75373

CatBoost 0.0236 0.00171 0.02763 0.04132 0.75823

XGBoost 0.02483 0.00195 0.02896 0.04412 0.72444

The Linear Regression model served as the foundational benchmark of this study, presenting 
a modest R² of 0.21452. While less sophisticated than the ensemble algorithms, its transparent 
structure provided a valuable preliminary insight and a baseline for comparison. 

Upon examining the ensemble methods, a marked improvement in prediction accuracy was 
observed. The CART model demonstrated enhanced explanatory power with an R² of 0.52465, 
indicating a considerable improvement over the baseline Linear Regression model. The Random 
Forest algorithm emerged as the superior performer within this comparison, achieving the R² of 
0.75373. This reflects an optimal balance of bias and variance, as further evidenced by the lowest 
observed scores in MAE (0.02062), RMSE (0.04171), and MAPE (0.02452). The Random Forest 
model showcased its effectiveness in managing the complexities of the dataset while avoiding 
overfitting. Both XGBoost and CatBoost models yielded impressive performances, with R² 
scores of 0.72444 and 0.75823, respectively. They adapted robustly to the dataset, with XGBoost 
displaying particular accuracy in predicting attendance figures, as indicated by its MAPE score 
of 0.02896. 

Detailed model analysis of the performance 
Upon obtaining preliminary outcomes, our investigation pivoted to examining the predictive 
efficacy of the Random Forest, CatBoost, and XGBoost models. The refinement of these models was 
conducted through Grid Search, a paramount hyperparameter optimization method in machine 
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learning. This procedure is essential for enhancing the accuracy of algorithmic predictions. Grid 
Search operates on the principle of exhaustively probing various hyperparameter configurations 
to discern the combination that optimizes model performance (Bergstra & Bengio, 2012). It 
methodically tunes hyperparameters, with each cycle meticulously calibrating the model’s learning 
process based on the given data. Utilizing cross-validation within this approach permits a well-
substantiated selection of hyperparameters, bolstering the model’s capacity for generalization and 
its predictive power. We applied a 3-fold cross-validation technique as part of the Grid Search 
to ascertain the dependability of our results. This tripartite validation scheme is instrumental 
in ensuring the reliability and robustness of the tuning process. Table 5 presents the optimized 
hyperparameters for each model.

Table 5. Optimized hyperparameters of all models

Random Forest CatBoost XGBoost

Hyperparameters Optimized Hyperparameters Optimized Hyperparameters Optimized

bootstrap False depth 5 n_estimators 400

max_depth 20 iterations 3000 max_depth 7

max_features sqrt l2_leaf_reg 1 learning_rate 0.1

n_estimators 400 border_count 128 subsample 0.7

min_samples_leaf 1 subsample 0.9 colsample_bytree 0.8

min_samples_split 5 learning_rate 0.1 lambda 2

- - - - alpha 0

Table 6 provides a detailed look at the improved performance of the models following 
hyperparameter tuning. This process has clearly led to enhanced precision and predictive strength 
across the models, as demonstrated by reductions in MAE, RMSE, MSE, and MAPE values. Such 
improvements suggest that the models‘ forecasts are more closely aligned with actual observations, 
thereby increasing the reliability of their predictions.

Table 6. Detailed performance of optimized models

Model MAE MSE MAPE RMSE R²

Random Forest 0.02062 0.00174 0.02452 0.04171 0.75373 

Random Forest Optimization 0.02035 0.00161 0.02404 0.04007 0.77268 

CatBoost 0.02360 0.00171 0.02763 0.04132 0.75823 

CatBoost Optimization 0.02286 0.00162 0.02650 0.04022 0.77098

XGBoost 0.02483 0.00195 0.02896 0.04412 0.72444 

XGBoost Optimization 0.02244 0.00175 0.02628 0.04185 0.75201 



Studia Sportiva, Vol. 18, No. 2, 2024 157

The optimized Random Forest model shows marginal advancements, most notably in MAPE, with 
an improved figure of 0.02404, and an MAE that is close to the smallest observed value at 0.02035. 
The CatBoost model, despite not surpassing the Random Forest in RMSE or MAE, exhibited a notable 
rise in the coefficient of determination, with its R² value reaching 0.77098, indicative of a strong fit 
to the dataset. The XGBoost model, on the other hand, displayed the most pronounced gains from 
the optimization, achieving lower RMSE at 0.04185 and MSE at 0.00175 post-optimization. It also 
showed a significant improvement in the R² value, increasing it to 0.75201, which underscores its 
enhanced capacity to explain the variation in NFL game attendance, cementing its position as a 
robust model in our analysis.

Fig. 2. Histograms of the distribution of forecast errors

Figure 2 illustrates histograms and kernel density estimates (KDE) for forecast errors generated 
by the Random Forest, CatBoost, and XGBoost models. The histograms reveal a clustering of errors 
around the zero mark for all three models, with the KDE peaks aligning closely with this central 
point. This aggregation near zero indicates that, on average, the models’ predictions are quite 
accurate.The width of the KDE peaks and the spread of the histograms reflect the variability of the 
forecasts. A slimmer peak suggests a tight grouping of errors around the mean error, signaling more 
consistent performance from the model. Among the three, the Random Forest model’s histogram 
is the narrowest, suggesting that its predictions are less varied and potentially more reliable than 
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the others. The CatBoost model exhibits a slightly wider distribution, indicating a small increase in 
the variability of its predictive accuracy. XGBoost demonstrates a level of forecast error variability 
similar to CatBoost, as seen in the spread of its histogram.

Overall, the Random Forest model shows the highest stability in its predictions. CatBoost 
and XGBoost, while presenting somewhat more variability in their forecasts, still maintain a 
commendable level of accuracy, with all models demonstrating a generally reliable predictive 
performance.

Fig. 3. Comparison of true and forecast values.

Figure 3 compares the actual versus predicted attendance values post-optimization for the three 
models. The diagram reveals a trend of underprediction within the lower attendance brackets, 
particularly within the 0.6 to 0.7 range on the x-axis. This recurrent underestimation points 
to a potential systematic bias or a deficiency in relevant predictive factors for this segment of 
attendance. In contrast, at higher attendance values—approaching the full capacity mark of 1.0 on 
the x-axis—the models’ predictions align more closely with reality, suggesting increased accuracy 
when forecasting games with typical or expected attendance levels. While there are a handful of 
significant deviations from the line of ideal prediction, these outliers are relatively sparse and may 
reflect exceptional circumstances or anomalies not accounted for in the model’s data inputs.

The spread of the data points across the chart highlights the models’ variable performance 
across the spectrum of attendance figures. Predictions for games with lower attendance figures 
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are less accurate, possibly due to a lack of comprehensive data or unconsidered factors, whereas 
forecasts for games with standard attendance figures seem to effectively capture the salient factors, 
yielding more precise predictions.

Feature importance analysis
In the final phase of our analysis, we evaluated the feature importance in the Random Forest, 
CatBoost, and XGBoost models to determine which variables hold the most influence in the 
forecasting process. Feature importance offers a quantitative measure of the variables that most 
significantly influence predictions of NFL game attendance. The corresponding visualizations 
display these importances, with the bar lengths representing the relative impact of each feature on 
predictive accuracy.

Fig. 4. Feature importance of the Random Forest model

Random Forest and XGBoost exhibited a consistent ranking in the order of feature 
importance. Despite the alignment in feature prioritization, Random Forest demonstrated a 
superior performance across several metrics, particularly in the optimized state, with a notable 
R² improvement from 0.75373 to 0.77268. This indicates that Random Forest not only identifies 
key features similarly to XGBoost but also utilizes them more effectively to capture the underlying 
patterns in NFL game attendance. CatBoost presented a slightly varied feature importance 
profile compared to Random Forest, but it showed comparable performance, with an R² closely 
matching that of the optimized Random Forest at 0.77098. This similarity in performance, despite 
the differences in feature prioritization, suggests that CatBoost may be handling the interactions 
between variables differently, yet still effectively.
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Fig. 5. Feature importance of the CatBoost model

In investigating the feature importance across Random Forest (see Fig. 4), CatBoost (see Fig. 
5), and XGBoost models (see Fig. 6), an observable trend emerged, emphasizing the key factors 
influencing attendance metrics. The evaluation of feature importance across the models reveals 
that economic factors—Personal Income, Unemployment Rate, and Population—stand out as 
significant determinants of NFL game attendance, consistently ranking among the top seven 
features in terms of influence. This underlines the critical role of local economic health in driving 
attendance figures, confirming the strong connection between economic vibrancy and sports 
engagement (Du et al., 2022). While there is slight variation in the order of feature importance 
across different models, four additional key predictors remain constant: the age of the home team, 
stadium name, the age of stadium and capacity. These elements point to the significance of stadium-
related factors in influencing attendance rates, with the stadium‘s brand recognition (captured by 
its name), seating capacity, and modernity (reflected in its age) being integral to drawing crowds. 
Furthermore, the age of the home club, indicative of its historical legacy and cultural heritage, 
is identified as another crucial factor. This suggests that a team‘s longstanding presence and the 
associated fan base cultivated over time considerably affect game attendance (Mueller, 2020). 

Overall, the analysis suggests a multifaceted set of factors that contribute to the forecast of 
NFL game attendance. The consistency of economic predictors across all models solidifies the 
importance of these variables in sports analytics. Meanwhile, the identification of club legacy 
and stadium attributes emphasizes the comprehensive nature of factors that should be considered 
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when predicting attendance, capturing both the tangible and intangible elements that appeal to 
NFL fans.

Fig. 6. Feature importance of the XGBoost model.

CONCLUSION

This research is distinctive as it covers the longest period compared to similar studies, providing 
unique insights into forecasting NFL game attendance by evaluating proven-effective machine 
learning models such as Linear Regression, CART, Random Forest, CatBoost, and XGBoost. We 
compiled a comprehensive dataset of over 5,055 regular-season NFL games from 2000 to 2019, 
incorporating a wide array of variables, including team performance metrics, economic indicators, 
stadium conditions, and weather patterns.

Our findings reveal that ensemble machine learning models, particularly Random Forest, 
achieved the best performance among all the models. The R² values for all three models — Random 
Forest, CatBoost, and XGBoost — exceeded 0.75 after tuning, with Random Forest reaching an 
impressive 0.773 and CatBoost also achieving a strong result at 0.771. Our model demonstrated 
notably low Mean Absolute Error (MAE) values of approximately 0.02. This contrasts with similar 
studies on NFL attendance, such as the one by Şahin and Uçar (2020), which reported Mean 
Absolute Percentage Error (MAPE) values around 0.1, reflecting a forecast error of about 10%. 
By comparing percentage errors, which provides a fairer assessment against actual attendance 
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numbers, our results show a fivefold reduction in forecast error. This significant improvement 
marks a considerable advancement in the field. Furthermore, it is noteworthy that Random 
Forest and CatBoost exhibited unique advantages in prediction accuracy. Visualizations of 
error distribution highlighted each algorithm’s strengths; Random Forest exhibited the most 
concentrated error distribution. Forecasts for attendance percentages between 0.6 and 0.7 were 
consistently over predicted. In terms of feature importance, ‘Stadium_Name,’ ‘personal_income,’ 
‘stadium_age,’ and ‘home_club_age’ were consistently identified as key predictors across all models. 
This finding highlights the considerable impact of factors such as stadium characteristics, local 
economic conditions, and team history on attendance rates. 

Managerial implications
The implications of these findings are significant for stakeholders of NFL, for instance, team 
managers, and sport investors. Accurate forecasts of game attendance can guide decisions 
regarding staffing, promotions, ticket pricing, and overall fan engagement strategies. Furthermore, 
understanding the crucial factors that drive attendance can help in tailoring marketing efforts and 
enhancing the overall game-day experience for fans. Our research provides a strategic template 
for similar analyses in other sports contexts.

Research limitations and future directions
While this study offers valuable insights into NFL game attendance forecasting, it is not without 
limitations. Firstly, the scope of our analysis was restricted to regular-season games, excluding 
playoff matches and games in atypical venues, which could exhibit different attendance dynamics. 
Additionally, our models’ forecast power may be limited by the availability and accuracy of 
external data sources, such as weather conditions. The inherent unpredictability of certain events, 
like extraordinary performance or unexpected team changes, also poses challenges to the models’ 
accuracy. Future research could expand on our work by including playoff games and exploring 
the impact of atypical venues on attendance. Investigating the effect of real-time social media 
sentiment or fan engagement metrics could also enrich the predictive model. Lastly, applying our 
methodology to other sports businesses or incorporating emerging machine learning techniques, 
such as deep learning, could offer broader insights into sports attendance dynamics.
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