
2011] O. Kroeger: Why Are Software Patents so Elusive? 57

WHY ARE SOFTWARE PATENTS SO ELUSIVE? A
PLATONIC APPROACH

by

ODIN KROEGER*

Software patents are commonly criticised for being fuzzy, context-sensitive, and of-
ten granted for trivial inventions. More often than not, these shortcomings are said
to be caused by the abstract nature of software—with little further analysis offered.
Drawing on Plato’s Parmenides, this paper will argue (1) that the reason why
software patents seem to be elusive is that patent law suggests to think about al-
gorithms as paradigmatic examples and (2) that Plato’s distinction between two
modes of predication and the role of competence in his account of knowledge are
helpful not only for conceptualising knowledge of algorithms, but also for under-
standing the limits of software patent regimes.

KEYWORDS
Software patents, patent failure, computer-implemented inventions, algorithms, re-
ification, Plato, Bessen, Meurer

1. INTRODUCTION
Judging from the software patent debate, algorithms seem to be an elusive
matter. (1) James Bessen and Michael Meurer (2007), for instance, hold that
‘software patents have especially severe boundary problems’, because soft-
ware patent claims employ ‘functional language’, which is abstract and
therefore imprecise; what is more, they add (2008, p. 195) that software pat-
ent claims do not use ‘abstract terms’ by coincidence, but rather because
‘many of the standard terms of art [in software engineering] are themselves
abstract ideas’. (2) Sherly Abraham (2009, sec. 6), correspondingly, argues
that software patents trouble patent offices and courts alike because al-

* odin.kroeger@univie.ac.at

58 Masaryk University Journal of Law and Technology [Vol. 5:1

gorithms, which is what software consists of, may perform different func-
tions in different contexts.1 (3) Jan Bergstra and Paul Klint (2007, sec. 8.1), by
contrast, note that if the way in which algorithms are applied is not taken
into account, what is left may be too insignificant to qualify for patent pro-
tection; and indeed, many—Hartmut Pilch (2004, p. 290) even claims
‘most’—software patents appear to be trivial. More often than not, these dif-
ficulties are described as a consequence of the nature of algorithms: (1) al-
gorithms are abstract, thus their boundaries are fuzzy; (2) algorithms are
underdetermined, thus their function is context-dependent; (3) algorithms
express logical truths, thus they tend to be trivial. Put in a nutshell, we are
often told that algorithms are less than ideal candidates for patent protec-
tion because they are ideal objects.

Andrew Chin (2009, p. 200), however, points out two problems with this
explanation: (1) formulating patent claims is ‘an exercise in abstraction’ at
any rate, so that ‘it is not immediately clear why the abstract nature of soft-
ware should pose a special problem for the determination of patent scope’;
(2) computer scientists and engineers seem to be able to communicate pre-
cisely about algorithms, regardless of their abstract nature. That is not to say
that software patents work, the evidence gathered by Bessen and Meurer
(2008, sec. 9.1.1) establishes beyond doubt that they do not, but we need a
more complex explanation why algorithms seem to turn fuzzy, con-
text-sensitive, and trivial as soon as they are the subject of a patent law suit.
That being so, the purpose of this paper is to propose such an explanation;
starting from the assumption that the characteristics displayed by ideal ob-
jects, including algorithms, in the context of patent litigation depend,
among other factors, on the model of ideal objects that patent examiners
and judges employ.2 To be precise, in this paper ‘model of ideal objects’
refers to a set of—possibly implicit—assumptions about: (1) the functions of
ideal objects, (2) the way in which they perform these functions, and (3)
their ontological status in connection therewith.

So what model of ideal objects informs patent law? Rudolph Peritz
(2008, p. 249) argues that the US patent regime ‘seems to require a separa-
tion of inventions from ideas’, Jeffrey Lefstin (2008, note 210) makes the

1 Most of the literature on (1) and (2) focuses on the US, but should apply mutatis mutandis
to other jurisdictions.

2 This approach is inspired by Thomas Powers (2005), who argues that the ‘meandering of
case law’ (p. 99) regarding copyright is a consequence of judges holding different views
about the nature of ideal objects.

2011] O. Kroeger: Why Are Software Patents so Elusive? 59

similar observation that the US Patent Office appears ‘to have committed it-
self to a form of metaphysical realism’, and Ben Klemens (2008, pp. 6–7)
notes that algorithms in particular are often maintained to enjoy some kind
of independent existence. Put differently, patents seem to come bundled
with Platonism. More precisely, they seem to come bundled with Plato’s
theory of forms, which traditionally (see, e.g., Vlastos 1954) is taken to im-
ply that: (P1) ideal objects function as standards that are used to determine
whether real objects possess certain predicates (e.g., there is an ideal object
‘redness’, to which we compare real objects in order to determine whether
they are red); (P2) they perform that function by being paradigmatic in-
stances of the predicates the usage of which they regulate (e.g., ‘redness’ is
the paradigmatic red); (P3) in order for them to be able to perform that func-
tion, they need to be thought of as existing independently of real objects
(e.g., ‘redness’ exists besides red things, rather than inhering in them). Fol-
lowing Peritz, Lefstin, and Klemens, it seems safe to presume that patent ex-
aminers and judges alike draw on a model of ideal objects that is congruent
with the traditional reading of Plato’s theory of forms.

Thus, the objective of this article can now be stated more precisely as fol-
lows: to assess whether the fact that algorithms tend to appear as fuzzy,
context-sensitive, and trivial in the context of patent litigation can be ex-
plained in terms of the theory of forms. This will be done by drawing on
Plato’s Parmenides (1997), in which he not only discusses some weaknesses
of that theory, but also how these weaknesses could be addressed and why
we are inclined to think of ideal objects along the lines of the weak version
of that theory. Having said that, there is no scholarly consensus on how the
Parmenides should be interpreted; the reading employed here draws, among
others, on those of Constance Meinwald (1991; 1992) and Wolfgang Wieland
(1999). Since Plato’s arguments need to be brought to bear on an example,
the algorithm ‘Ron’s Code 4’ (RC4) will be outlined in the next section
(sec. 2). To this algorithm the so-called ‘Third Man Argument’, which—for
the purposes of this paper—is the most interesting criticism Plato brings
forward against his theory in the Parmenides (p. 132a–b), will then be ap-
plied (sec. 3). After that, the reasons that he identifies for which people tend
to make assumptions about ideal objects that correspond to the weak ver-
sion of the theory of forms (sec. 4) and the modifications that he proposes to
rectify this theory will be related to the patent system (sec. 5). To conclude,

60 Masaryk University Journal of Law and Technology [Vol. 5:1

the implications of these findings for current software patent regimes will
be discussed (sec. 6). With reference to James Bessen and Robert Hunt (2007,
p. 167), the term ‘software patents’ is used in this paper to refer to all pat-
ents that encompass ‘a logic algorithm for processing data that is implemen-
ted via stored instructions’; notably, this includes patents on computer-im-
plemented inventions.

2. RC4
RC4 is a cipher that encrypts a given plaintext by combining it with pseudo-
random numbers that are generated from a given key, it was developed by
Ronald Rivest in 1987 for RSA Laboratories (see Mantin 2001, sec. 1.2). What
makes RC4 such an apt example for the purposes of this article is that it can
be understood without too much prior knowledge in computer science or
mathematics—in contrast to more recent ciphers such as RC5 or RC6. What
may seem to render RC4 a somewhat odd example, however, is that it has
not been patented; but, in all likelihood, this is only because RC4 was leaked
to the general public in 1994, that is, before algorithms were established as
patentable subject matter in the US by the decision in State Street Bank and
Trust v. Signature Financial Group, 149 F.3d 1368 (1998). RSA Laboratories
has applied for and been granted patents for RC5 (US patent no. 5,724,428)
as well as RC6 (US patent no. 5,835,600), the successors of RC4.

How does RC4 work? Similar to many other ciphers, RC4 comprises two
components: a key scheduling algorithm (KSA), which initialises a pseudo-
random generation algorithm (PRGA). First, the KSA creates an ordered list
that ranges over all possible byte values, so that every value occurs once
and only once (i.e., it counts from 0 to 255). Then, it swaps the elements of
that list, where the elements that are to be swapped with each other are de-
termined by the key provided. This list is called the ‘substitution box’. Us-
ing that substitution box, the PRGA first swaps two elements of that box in
order to ensure that its output remains pseudo-random even for large
amounts of data and then selects another element of the box as pseudo-ran-
dom byte. Different to the KSA, the PRGA uses only the current state of the
substitution box to determine which elements are to be swapped. With the
PRGA initialised by the KSA, the plaintext is encrypted by xoring each of its
bytes with one pseudo-random byte generated by the PRGA (for more de-
tails see Thayer & Kaukonen 1999).

2011] O. Kroeger: Why Are Software Patents so Elusive? 61

To illustrate, the following code, written in the programming language
Python, implements RC4’s KSA (called ‘__init__’ in the example) and PRGA
(‘prga’):

class RC4:
S = range(256)
i = 0
j = 0

def __init__(self, key):
 j = 0

 for i in range(256):
 j = (j + self.S[i] + key[i % len(key)]) % 256
 self.S[i], self.S[j] = self.S[j], self.S[i]

def prga(self):
 self.i = (self.i + 1) % 256
 self.j = (self.j + self.S[self.i]) % 256

 self.S[self.i], self.S[self.j] = (self.S[self.j],
 self.S[self.i])

 return self.S[(self.S[self.i] + self.S[self.j]) % 256]
Listing 1: RC4 in Python

With this description of RC4 in mind, we may now turn to the later
Plato’s analysis of the weaknesses of his middle-period theory of forms and
see how this analysis applies to that algorithm.

3. ALGORITHMS AND THE THIRD MAN ARGUMENT
Plato’s Third Man Argument (TMA) discusses precisely the model of ideal
objects that has been argued to be employed by patent examiners and
judges. What the TMA, with reference to Andreas Graeser (2003), is meant
to show is that a model of ideal objects that includes the assumptions (P 1),
(P2), and (P3) is inapt to formulate definite description of any ideal object
(such a model will hereafter be referred to as ‘TMA-model’ for short).
Gregory Vlastos (1954) and S. Marc Cohen (1971), among others, have
shown that the TMA can be proven for more formalised versions of (P 1),
(P2), and (P3), but for the purposes of this paper a simplified account of the
TMA will do: (1) Suppose, there are two red flowers. (2) Since both of them
are red, there must be some kind of form they have in common, namely red-

62 Masaryk University Journal of Law and Technology [Vol. 5:1

ness. (3) Since redness is not particular to any single thing, redness must ex-
ist independently of those things. (4) Since, according to the TMA-model,
forms are thought of as paradigmatic instances, redness is the paradigmatic
red. (5) But might we then not just as well ask what those two flowers and
the ideal object ‘redness’ have got in common, that is, by virtue of what the
red flowers and redness are related? How does redness, when looked at
with ‘the mind’s eye’ (Parm., p. 132a), differ from the two red flowers? To
sum up, according to the TMA-model, ideal objects on the one hand func-
tion as standards that inform our judgements about real objects, but on the
other hand are understood to be so similar to real objects that one could
rightly ask why ideal objects should be any better in performing that func-
tion than real ones. What the TMA shows is that this question cannot be
answered on the basis of (P1), (P2), and (P3).

To illustrate, let us go through the TMA using RC4 rather than red as
our example. First, have a look at the following code, written in the pro-
gramming language Perl, which also implements RC4’s KSA (called ‘new’
in this example) and PRGA (‘prga’):

package RC4;

sub new {
 my ($class, $self, $j) = (shift, {S => [0 .. 255]});

 for(my $i=0; $i<256; $i++) {
$j = ($j + $self->{S}->[$i] + $_[$i % @_]) % 256;
($self->{S}->[$i], $self->{S}->[$j]) =
($self->{S}->[$j], $self->{S}->[$i]);

 }

 bless($self, ref($class) || $class); return $self;
}

sub prga {
 my $self = shift;
 $self->{i} = ($self->{i} + 1) % 256;
 $self->{j} = ($self->{j} + $self->{S}->[$self->{i}]) % 256;

($self->{S}->[$self->{i}], $self->{S}->[$self->{j}]) =
 ($self->{S}->[$self->{j}], $self->{S}->[$self->{i}]);

return $self->{S}->[($self->{S}->[$self->{i}] +
$self->{S}->[$self->{j}]) % 256];

}
Listing 2: RC4 in Perl

2011] O. Kroeger: Why Are Software Patents so Elusive? 63

Although the earlier piece of code (listing 1) and this one (listing 2) are
different, any person skilled in the art, in this case, a programmer who
knows Python as well as Perl, will be able to tell that both of them imple-
ment the same algorithm. Put differently, they share the same form. So how
can this form be spelled out? Usually, if the logical structure of an algorithm
shall be illustrated, programmers use so-called ‘pseudocode’, that is, a de-
scription of the algorithm in natural language that mimics the structure of
programming languages. Using such pseudocode, RC4’s KSA and PRGA
can be presented as follows:

class RC4
S := { 0, ..., 255 }

 i := 0
 j := 0

method ksa(key)
j := 0

for i := 0 to i = 255 do
 j := (j + self.S[i] + key[i mod length(key)]) mod 256
 swap i with j in self.S

method prga
 self.i := (self.i + 1) mod 256
 self.j := (self.j + self.S[self.i]) mod 256

 swap self.i with self.j in self.S

 return self.S[(self.S[self.i] + self.S[self.j]) mod 256]
Listing 3: RC4 in pseudocode

We may be tempted to say that any code that implements the structure
described above is an instance of RC4, but then we would have to explain
the difference between the earlier examples (listing 1 and 2) and the pseudo-
code above (listing 3) that renders the latter but not the former able to func-
tion as a standard—and that turns out to be difficult. For if somebody asked
‘what is the common logical structure of the pieces of code depicted in list-
ings 1, 2, and 3?’, then that question would appear to be no less justified
than the same question asked only for listings 1 and 2. That is, listing 3 fails
to answer that question in a satisfactory manner, but this is what we would
expect from a standard. Moreover, if we tried to answer what the listings 1,

64 Masaryk University Journal of Law and Technology [Vol. 5:1

2, and 3 have in common, all we would end up with is yet another descrip-
tion of RC4—for which yet another question of the same kind could be
posed. We could continue like this indefinitely, without ever arriving at a
description that could be used as standard of what counts as instance of
RC4.

How does this relate to software patent litigation? To answer this ques-
tion we need to review two interpretations of the TMA: Wieland (1999,
pp. 118–124) and Graeser (2003, sec. 4) agree that the regress just outlined
obtains because the TMA-model reifies ideas, which means in this case that
ideas are treated as objects, that is, as bearers of properties, that exist on
their own. Wieland argues that such a treatment implies that ideas (1) tend
to be removed from the contexts of their application, and that (2) know-
ledge of them is thought of as propositional, that is, as being structured sim-
ilarly to beliefs, which often can be expressed as a relation between an ob-
ject and a predicate (more on this in sec. 5).

This allows to account for the fact that algorithms tend to appear as (1)
fuzzy, (2) context-sensitive, and (3) at times trivial to patent examiners and
judges as a consequence of them relying on the TMA-model. (1) What the
TMA shows first and foremost is that descriptions of ideas as paradigmatic
instances need to be contextualised in order to be able to guide our judge-
ments, that is, they do so to a larger extent than ordinary descriptions used
in everyday life. Put simply, they seem to be fuzzy. For the same reason, (2)
attempts to describe an idea as paradigmatic instance not only fail to in-
clude the idea’s context of application, so that the resulting ideal objects will
be applicable to a wide range of contexts, but also (3) tend to be unable to
capture the inventive step needed to come up with a particular algorithm.
Take, for instance, the description of RC4 given by listing 3. To be sure,
there is nothing outstanding about any single instruction in that listing, sim-
ilar instructions can be found in many other algorithms, yet that does not
imply that RC4 is trivial. Quite to the contrary, the actual innovation of RC4
is that such a simple algorithm can encrypt data in a secure manner, but this
is nothing that can be seen from listing 3. Metaphorically speaking, if we are
looking for an innovation in such descriptions, then our ‘mind’s eye’ is
looking in the wrong direction.3

3 That is not to say that there are no trivial software patents, but that the impression that a
significant number of them is trivial might, at least in part, be caused by patent examiners,
judges, and others drawing on the TMA-model of ideal objects.

2011] O. Kroeger: Why Are Software Patents so Elusive? 65

Having said that, some may wonder why patent examiners and judges
would rely on such a dysfunctional model of ideal objects in the first place.
Plato does not address this explicitly, but some of his arguments provide
helpful clues, to which we will turn now.

4. WHY PATENT EXAMINERS AND JUDGES MAY BE
PLATONISTS
Plato, in spite of having shown that reifying ideas is fallacious, insists that
the assumptions that lead to that reification perform important functions, so
that they are difficult to avoid. To be precise, Plato advances two arguments
in the Parmenides that may explain why patent examiners and judges tend to
rely on the TMA-model: (1) We could not engage in any serious discussion,
if we did not have some kind of idea of the subject matter at hand, that is, if
we did not have a standard that allows us to assess each other’s arguments
as true or false, but in order to function as such a standard ideas must not
be subject to our whim and be shared by all participants of the discussion—
both of which suggests them to enjoy a certain degree of independence from
us (cf. p. 135a–c). (2) Without forms, that is, if we did not assume them to
somehow exist, statements about immaterial objects such as ‘Pegasus has
wings’ would be meaningless, for there is no such thing as a real horse with
wings that ‘Pegasus’ could refer to, yet such statements clearly are meaning-
ful. If they were not, we would not even be able to deny that Pegasus exists,
for in order to assert that nothing in the (material) world is Pegasus, we
need to know what ‘Pegasus’ refers to (cf. pp. 160b–164b). Plato finds these
two arguments to establish beyond doubt that we need to assume that there
are forms, regardless of the difficulties that seem to follow from this as-
sumption.

Wieland (1999, pp. 118–124) construes this result to imply that the way
in which we use ideas differs depending on whether we draw on them to
assess an argument or whether we make them the subject of an argument,
to wit, that doing the latter may compel us to think about that idea as some
kind of object, causing the regress described by the TMA; this is illustrated
by the following two sentences:

(S1) These roses are red.
(S2) Redness is a colour.

66 Masaryk University Journal of Law and Technology [Vol. 5:1

Whereas ‘red’ in (S1) functions as predicate, so that we will tend to think
of red as a property that some real objects happen to possess, ‘redness’ in
(S2) functions as subject, to the effect that we seem to treat redness as if it
were a proper object. What is more, expressing the content of (S 2) without
reifying the property ‘… is red’ to an ideal object ‘redness’ is tricky and the
result would sound fairly contrived, at least in Indo-European languages.
To put this differently, which assumptions about ideas (or ideal objects re-
spectively) are functional depends on the role an idea plays in our judge-
ments, that is, on whether that idea informs a judgement about something
else or is itself the subject matter about which a judgement is made.

We can now see why patent examiners and judges should find the TMA-
model appealing: the ideas embodied by patents are the subject matter not
the standard of their judgements, at least, insofar as these judgements con-
cern patents. For instance, how could one apply the doctrine of equivalents
without assuming, at least implicitly, that there is some kind of ideal object
that patent claims or inventions embody and that functions as a yardstick to
which the software accused of infringing on a patent can be compared?
What is more, for such a comparison to make sense, there must be some
kind of correspondence between the standard that is used to assess an ob-
ject and the object that is assessed, and intellectual property law in general
seems to suggest that this correspondence can be thought of as one that
holds between a pattern and its exemplifications. Put bluntly, being a Pla-
tonist is part of the job description of patent examiners and judges.

Graeser (2003, sec. 4), however, points out that the metaphysics of the
TMA-model is at odds with some of Plato’s other writings and regards this
as evidence that Plato intends the TMA to show that any reading of his the-
ory of forms that reifies ideas is misguided. So patent examiners and judges
may be able to be Platonists without subscribing to the TMA-model after
all. To assess this we will now review how Plato addresses the TMA.

5. RECTIFYING PLATO’S MODEL OF IDEAL OBJECTS
Plato, in the light of the TMA and other similar difficulties, (1) explores an
amendment to his theory of forms and (2) clarifies the functions that forms
can perform in different contexts, both of which are interesting avenues for
a possible reform of software patents.

(1) Meinwald (1991; 1992) construes the second part of the Parmenides
(pp. 135a–166c) to introduce a distinction between two modes of predica-

2011] O. Kroeger: Why Are Software Patents so Elusive? 67

tion: predications pros ta alla (in relation to others) are ordinary predications
(e.g., ‘this flower is red’ or ‘RC4 was invented by Ronald Rivest’), they ex-
press a relation between an object (e.g., the flower or RC4) and something
else (e.g., the colour red or Ronald Rivest); predications pros heauto (in rela-
tion to itself), by contrast, express the relation between natures of concepts
(e.g., ‘redness is a colour’, ‘RC4 is a cipher’), similar to a genus-species tree
(see illustration 1). Thus, Meinwald holds that the TMA obtains because the
theory of forms put forward by the middle-period Plato fails to distinguish
between these two modes of predication; in other words, descriptions of
ideal objects along the lines of the TMA-model are fuzzy because they ab-
stract from real objects, instead of focusing on the relation between an ideal
object and other ideal objects that occupy a higher position in its genus-spe-
cies tree.

Illustration 1: Genus species tree for RC4

(2) Wieland (1999) claims that Plato emphasises throughout all of his
writings that knowledge (which for Plato is always the knowledge of forms)
has two sides: on the one hand, knowing something about x implies having
a belief about x, that is, knowledge is structured similar to propositions
(know-that); on the other hand, knowing x implies being capable of making
judgements about x, that is, knowledge also requires a certain kind of com-
petence (know-how). Thus, knowledge cannot be reduced to being aware of
the truth of certain propositions, but also requires that one is competent in
how these propositions relate to different contexts. Wieland (pp. 118–124),

68 Masaryk University Journal of Law and Technology [Vol. 5:1

therefore, argues that the TMA ensues from employing the principles of the
theory of forms in the wrong way; there is no meaningful answer to the
question what two red flowers and the idea of redness must have in com-
mon in order for the two flowers to count as exemplifying redness, because
this confuses the normative and the descriptive function of ideas.

Neither of these two proposals, however, can be readily applied to soft-
ware patent litigation. (1) Of course, appreciating the pros ta alla/pros heato
distinction allows for more accurate descriptions of ideal objects, but doing
so requires some knowledge about the nature of the ideal object described,
and that knowledge may simply be unavailable. For example, the relation
between a key and the stream of pseudo-random numbers that RC4 gener-
ates from that key is part of the nature of RC4, that is, the way in which RC4
operates necessitates this relation, yet the fact that this stream of pseudo-
random numbers can easily be distinguished from truly random numbers
had not been realised until eight years after RC4 had been leaked to the gen-
eral public (see Mantin & Shamir 2002). Put simply, algorithms are a com-
plex subject matter, so that understanding their nature will require a fair
amount of research, but that research takes time and can begin only after
the algorithm has been published—and the patent claim already been filed.

(2) Making the ‘right’ use of ideas is easier said than done, especially if
you are a patent examiner or judge and giving grounds for which some
piece of software should or should not count as infringing on a patent claim
counts as ‘wrong’. Plato, at least according to Wieland, would argue that
such a giving of grounds must come to an end, and that people who truly
know the idea under consideration must at that point accept good grounds
simply by virtue of being competent to make good judgements regarding
that idea. To put this differently, Plato would argue that patent examiners
as well as judges (and lawyers for that matter) should refrain from discuss-
ing algorithms, unless they are competent to make good judgements about
their nature. That, of course, is quite high a demand to make, after all, most
judges and lawyers, are not computer scientists or mathematicians; put
bluntly, this is not part of their job description.

6. CONCLUSION
To sum up, it was shown above that algorithms appear as fuzzy, con-
text-sensitive, and trivial if they are described in accordance with the TMA-
model of ideal objects (sec. 3) and that there are good reasons to suppose

2011] O. Kroeger: Why Are Software Patents so Elusive? 69

that patent examiners and judges rely on that very model (sec. 4). Plato’s
proposals for avoiding the TMA-model, by contrast, were found to be diffi-
cult to apply to patent litigation (sec. 5). To be sure, refining the principles
of patent law, for instance, the doctrine of equivalents, in accordance with
the pros ta alla/pros heauto distinction or setting up specialist courts for soft-
ware patents may improve upon the status quo, but the way in which the
patent system works limits the prospects of those measures. Ultimately,
Samuel Beckett’s famous advice may be all that is in store for any attempt to
reform the software patent regime: ‘Ever tried. Ever failed. No matter. Try
again. Fail again. Fail better.’

REFERENCES
[1] Abraham, S. E., 2009. Software patents in the United States: A balanced ap-
proach. Computer Law & Security Review, 25(6), pp. 554–562.
[2] Bergstra, J. A. & Klint, P., 2007. About ‘trivial’ software patents: The IsNot case.
Science of Computer Programming, 64(3), pp. 264–285.
[3] Bessen, J. & Hunt, R. M., 2007. An empirical look at software patents. Journal of
Economics & Management Strategy, 16(1), pp. 157–189.
[4] Bessen, J. & Meurer, M. J., 2008. Patent failure: How judges, bureaucrats, and lawyers
put innovators at risk, Princeton, NJ: Princeton University Press.
[5] Bessen, J. & Meurer, M. J., 2007. What’s wrong with the patent system? Fuzzy
boundaries and the patent tax. First Monday, 12(6). Available at: http://first-
monday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1867.
[6] Chin, A., 2009. On abstraction and equivalence in software patent doctrine: A re-
sponse to Bessen, Meurer and Klemens. Journal of Intellectual Property Law, 16(2), pp.
197–240.
[7] Cohen, S. M., 1971. The Logic of the Third Man. The Philosophical Review, 80(4),
pp. 448–475.
[8] Graeser, A., 2003. Platons Parmenides, Stuttgart: F. Steiner.
[9] Klemens, B., 2008. The rise of the information processing patent. Boston Univer-
sity Journal of Science and Technology Law, 14, pp. 1–38.
[10] Lefstin, J. A., 2008. The formal structure of patent law and the limits of enable-
ment. Berkeley Technology Law Journal, 23, pp. 1141–1225.
[11] Mantin, I., 2001. Analysis of the stream cipher RC4. Master thesis. Rehovot, Israel:
Weizmann Institute of Science.
[12] Mantin, I. & Shamir, A., 2002. A practical attack on broadcast RC4. Lecture Notes
in Computer Science, 2355, pp. 87–104.
[13] Meinwald, C. C., 1992. Good-bye to the Third Man. In R. Kraut, ed. The Cam-
bridge Companion to Plato. Cambridge: Cambridge University Press, pp. 365–396.
[14] Meinwald, C. C., 1991. Plato's Parmenides, New York, NY: Oxford University
Press.

70 Masaryk University Journal of Law and Technology [Vol. 5:1

[15] Peritz, R. J. R., 2008. Freedom to experiment: Toward a concept of inventor wel-
fare. Journal of the Patent and Trademark Office Society, 90, pp. 245–267.
[16] Pilch, H., 2004. Why are software patents so trivial? In Patents, innovation and
economic performance. Paris: OECD, pp. 289–294.
[17] Plato, 1997. Parmenides. In J. M. Cooper & D. S. Hutchinson, eds. Complete
Works. Indianapolis, IN: Hackett, pp. 359–397.
[18] Powers, T. M., 2005. Ideas, Expressions, Universals, and Particulars: Metaphys-
ics in the Realm of Software Copyright Law. In R. Spinello & H. T. Tavani, eds. Intel-
lectual Property Rights in a Networked World: Theory and Practice. Hershey, PA: Inform-
ation Science Publishing, pp. 99–111.
[19] Thayer, R. & Kaukonen, K., 1999. A Stream Cipher Encryption Algorithm “Ar-
cfour”. IETF. Available at: http://tools.ietf.org/id/draft-kaukonen-cipher-arcfour-
03.txt [Accessed October 22, 2010].
[20] Vlastos, G., 1954. The Third Man Argument in the Parmenides. The Philosophical
Review, 63(3), pp. 319–349.
[21] Wieland, W., 1999. Platon und die Formen des Wissens 2nd ed., Göttingen:
Vandenhoeck & Ruprecht.

	by

