Kontaminace příbřežních sedimentárních těles řeky Odry u Bohumína organickými polutanty
Roč.28,č.1-2(2021)
The aim of this study is to investigate present-day contamination levels of selected organic pollutants (POPs) in channel side bars and identify their sources. The studied area is located on the Odra River in the north-eastern part of the Czech Republic (at the border between the Czech Republic and Poland), between the city Bohumín and Odra´s confluence with Olše River. Sediment samples were taken directly from the channel side bars and subsequently measured for grain size analysis, concentrations of total organic carbon (TOC), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and specific biomarkers (terpenoids). Three main facies were recognized in channel side bars. Grain-size analysis showed the predominance of silt fraction, followed by variable sand contents, whereas the contents of clay fraction were almost stable. No statistically significant correlation was found between grain size and the concentrations of POPs except a weak correlation between PAHs, PCBs and sand fraction. POPs including PAHs, PCBs and OCPs showed high variability. In all samples, the sum of PAHs (maximum
value of 78.1 mg kg-1) greatly exceeded the Czech preventive limit for dry soil. The sources of PAHs were analysed by employing diagnostic ratios and plots of specific PAH compounds. The results showed a high degree of correspondence suggesting a petrogenic origin associated with direct input into the river system. Relatively high concentrations of PAHs are a consequence of the vicinity of the pollution source and location in natural river reach enabling sedimentation of polluted sediments. Concentrations of PCB, hexachlorobenzene and DDT metabolites were almost insignificant in most of the samples, except for several samples having higher PCB values (maximum value of 47.6 μg kg-1). Specific biomarker compounds were used as an indicator of the presence of fossil matter, and H29 17α(H),21β(H) hopane showed the highest concentrations. The homohopane index indicated petroleum and vehicle exhausts origin. TOC revealed a positive correlation with specific biomarkers (homo hopanes and 16 α(H)- phyllocladane, hexachlorbenzene and PCB.
Channel side bars; Grain size; Total organic carbon; Persistent organic pollutants; Emission sources; Specific biomarkers
Jan Sedláček
Katedra geologie přírodovědecká fakulta Palackého univerzita v Olomouci 17. listopadu 1192/12 Olomouc 771 46
Jitka Tolaszová
Fakulta životního prostředí, Univerzita J.E. Purkyně v Ústí nad Labem Králova výšina 3132/7, 400 96
Martin Žídek
Katedra geologie přírodovědecká fakulta Palackého univerzita v Olomouci 17. listopadu 1192/12 Olomouc
Ciazela, J., Siepak, M., Wojtowicz, P. (2018). Tracking heavy metal contamination in a complex river-oxbow lake system: Middle Odra Valley, Germany/Poland. – Science of the Total Environment, 616–617, 996–1006. https://doi.org/10.1016/j.scitotenv. 2017.10.219
Covaci, A., Gheorghe, A., Hulea, O., Schepens, P. (2006). Levels and distribution of organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in sediments and biota from the Danube Delta, Romania. – Environmental Pollution, 140, 136–149. https://doi.org/10.1016/j.envpol.2005.06.008
Geršlová, E., Schwarzbauer, J. (2014). Hydrocarbon-based indicators for characterizing potential sources of coal derived pollution in the vicinity of the Ostrava City. – Environmental Earth Sciences, 71, 3211–3222. https://doi.org/10.1007/s12665-013-2709-0
Hofmann, T., Pies, C., Yang, Y. (2007). Elevated polycyclic aromatic hydrocarbons in a river floodplain soil due to coal mining activities. – Water Supply, 7(3), 69–74. https://doi.org/10.2166/ws.2007.068
Holoubek, I., Klánová, J., Jarkovský, J., Kubík, V., Helesic, J. (2007). Trends in background levels of persistent organic pollutants at Kosetice observatory, Czech Republic. Part II. Aquatic and terrestrial environments 1996–2005. – Journal of Environmental Monitoring, 9, 564–571. https://doi.org/10.1039/B701096F
Janáková, I., Mucha, N., Fečko, P. (2010). Flotation of river-born sediment from the old ecological load of Černý příkop in Ostrava, Czech Republic. – Mineralia Slovaca, 42, 309–312.
Kleineidam, S., Schüth, C., Grathwohl, P. (2002). Solubility normalized combined adsorption-partitioning sorption isotherms for organic pollutants. – Environmental Science & Technology, 36, 21, 4689–4697. https://doi.org/10.1021/es010293b
Konat, J., Kowalewska, G. (2001). Polychlorinated biphenyls (PCBs) in sediments of the southern Baltic Sea—trends and fate. – Science of the Total Environment, 280, 1–15. https://doi.org/10.1016/S0048-9697(01)00785-9
Ministerstvo životního prostředí (2000). Statistická ročenka životního prostředí České republiky. – Cenia, Česká informační agentura životního prostředí, Praha.
Nehyba, S., Hilscherová, K., Jarkovský, J., Dušek, L., Kuchovský, T., Zeman, J., Klánová, J. (2010). Grain size, geochemistry and organic pollutants in modern fluvial deposits in eastern Moravia (Czech Republic). – Environmental Earth Sciences, 60, 591–602. https://doi.org/10.1007/s12665-009-0199-x
Oros, D. R., Simoneit, B. R. T. (2000). Identification and emission rates of molecular tracers in coal smoke particulate matter. – Fuel, 79, 515–536. https://doi.org/10.1016/S0016-2361(99)00153-2
Sedláček, J., Tolaszová, J., Kříženecká, S., Bábek, O., Zimová, K. (2020). Regional Contamination History Revealed in Coal-Mining-Impacted Oxbow Lake Sediments. – Water, Air, & Soil Pollution, 231, 208. https://doi.org/10.1007/s11270-020-04583-1
Seifert, W. K., Moldowan, J. M. (1978). Applications of steranes, terpanes, and monoaromatics to the maturation, migration, and source of crude oils. – Geochimica et Cosmochimica Acta, 42, 77–95. https://doi.org/10.1016/0016-7037(78)90219-3
Simoneit, B. R. T. (2005). A review of current applications of mass spectrometry for biomarker/molecular tracer elucidations. – Mass Spectrometry Reviews, 24, 719–765. https://doi.org/10.1002/mas.20036
Tobiszewski, M., Namiesnik, J. (2012). PAH diagnostic ratios for the identification of pollution sources. – Environmental Pollution, 162, 110–119. https://doi.org/10.1016/j.envpol.2011.10.025
Yang, Y., Ligoius, B., Pies, C., Grathwohl, P., Hofmann, T. (2008). Occurrence of coal and coal-derived particle-bound polycyclic aromatic hydrocarbons (PAHs) in a river floodplain soil. – Environmental Pollution, 151, 121–129. https://doi.org/10.1016/j.envpol.2007.02.020
Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. – Organic Geochemistry, 33, 489–515. https://doi.org/10.1016/S0146-6380(02)00002-5
Wang, C., Chen, B., Zhang, B., Guo, P., Zhao, M. (2014). Study of weathering effects on the distribution of aromatic steroid hydrocarbons in crude oils and oil residues. – Environmental Sciences: Processes Impacts, 16, 2408–2414.
Ward, P., Sharpless, C. M., Valentine, D. L., French-McCay, D. P., Aeppli, C., White, H. K., Rodgers, R. P., Gosselin, K. M., Nelson, R. K., Reddy, C. M. (2018). Partial photochemical oxidation was a dominant fate of Deepwater Horizon surface oil. – Environmental Science & Technology, 52, 1797–1805. https://doi.org/10.1021/acs.est.7b05948