Geological research (in Moravia and Silesia) https://journals.muni.cz/gvms <p>Časopis Geologické výzkumy je rozhodnutím Content Selection &amp; Advisory Board (CSAB) zařazen do <strong>databáze SCOPUS</strong> od roku 2017. Dnes je časopis již v několika databázích: CrossRef, SCOPUS, EBSCO a OpenAIRE. Od 31.ročníku (2024) časopis vychází jen v digitální podobě (on-line) ve formátu průběžného publikování v rámci jednotlivých ročníků.</p> <p>Význam časopisu „<strong>Geologické výzkumy</strong>“ spočívá v publikaci dobře zpracovaných faktů a základních dat nejen z regionu střední Evropy. Články mohou mít formát výzkumného článku běžného/standardního rozsahu a nebo "short communication", další formou jsou kvalitně zpracovaná review. Všechny články jsou publikovány v angličtině, češtině nebo slovenštině.</p> <p>K elektronické verzi článku můžeme připojovat doplňkové datové soubory, příp. i další kvalitní důležité dokumentační fotografie opatřené vlastním nezávislým vysvětlujícím textem. </p> cs-CZ <p>Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)<br />This is a human-readable summary of (and not a substitute for) the license. Disclaimer.<br />You are free to:<br />Share — copy and redistribute the material in any medium or format<br />The licensor cannot revoke these freedoms as long as you follow the license terms.<br />Under the following terms:<br />Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.</p> <p>NonCommercial — You may not use the material for commercial purposes.</p> <p>NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.</p> <p>No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.<br />Notices:<br />You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.<br />No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.</p> marek@sci.muni.cz (Marek Slobodník) kniza@sci.muni.cz (Martin Knížek) Po, 11 lis 2024 00:00:00 +0100 OJS 3.2.1.4 http://blogs.law.harvard.edu/tech/rss 60 Corkit z ložiska Zlaté Hory-Východ https://journals.muni.cz/gvms/article/view/37574 <p>Corkite, a Pb-Fe dominant member of the alunite supergroup, was found in the oxidation zone of the stratiform base metal deposit Zlaté Hory-Východ (Silesia, Czech Republic). It forms yellow-green coatings composed of microscopic botryoidal and globular aggregates in association with anglesite, cerusite, roentgenamorphic Mn-Pb oxides and plumbojarosite (which forms the cores of corkite aggregates but also occurs separatelly as cinnamon-brown coatings composed of microscopic rhomboedric crystals) in the cavities of quartz-limonite material. These aggregates are in polished section strongly zonal with a core made up of plumbojarosite with approx. 14 mol. % of (PO<sub>4</sub>)<sup>3-</sup> anion at structural position T and the peripheral parts made up of corkite. The chemical composition of corkite, determined by WDX microanalyses, is in relativelly good agreement with its theoretical formula, the anion sites are equally occupied by (SO<sub>4</sub>)<sup>2-</sup> and (PO<sub>4</sub>)<sup>3-</sup> groups or (SO<sub>4</sub>)<sup>2-</sup> slightly predominates. The arsenate anion is present only in trace amounts (below 0,01 apfu) which corresponds to the practical absence of As minerals in the primary ores of Zlaté Hory ore district. Problematic is the presence of silicium in all analyses which could be attributed either to anisomineral admixture or to the presence of (SiO<sub>4</sub>)<sup>4-</sup> at the anionic site of corkite structure. Analyses recalculated on the basis of two anion groups show excess of cations at both cation sites which could be due to the presence of unanalysed components at the anion site (probably (CO<sub>3</sub>)<sup>2-</sup> group. Structural position D is occupied virtually only by Pb with only subordinate amount of K. Substitution of Fe by Al at G site is very limited, Al together with Cu and Zn content is only minor. X-ray powder diffraction patterns (major lines 3.060 Å (100); 5.918 Å (75); 2.250 Å (47); 2.528 Å (34)) and calculated unit cell parameters of studied corkite are in good agreement with published data (Giuseppetti and Tadini 1987; Sato et al. 2009).</p> Tomáš Pek Copyright © 2024 Tomáš Pek https://creativecommons.org/licenses/by-nc-nd/4.0 https://journals.muni.cz/gvms/article/view/37574 Po, 11 lis 2024 00:00:00 +0100 Listvenit s výskytem minerálu gersdorffit-kobaltinové řady v lomu Dřínová u Tišnova (Morava) https://journals.muni.cz/gvms/article/view/38048 <p>Chromian illite-magnesite-dolomite-quartz rock (listvenite-like) containing Ni-Co mineralization was found in the Svratka orthogneisses from the Dřínová quarry. The main rock-forming minerals are Fe-rich magnesite, Fe-rich dolomite, Cr-illite and quartz, less frequently calcite. Accessory minerals include chromite (with 0.841–0.886 apfu Fe<sup>2+</sup> and 1.642–1.742 apfu Cr), gersdorffite-cobaltite (Ni<sub>0.45-0.92</sub>Fe<sub>0.01-0.34</sub>Co<sub>0.01-0.34</sub>As<sub>0.83-1.02</sub>Sb<sub>0.00-0.03</sub>S<sub>1</sub>), sulfides (pyrite, sphalerite), and apatite. The illite from the Dřínová quarry contains up to 3 wt. % of Cr<sub>2</sub>O<sub>3</sub>. Presence of the Cr-illite, accesory chromite, and Ni-Co sulfoarsenides represents origin from ultrabasic protolith, reflecting transformation to phyllosilicatecarbonate-<br />quartz listvenite.</p> Pavla Hršelová, Jiří Toman, David Buriánek, Dalibor Všianský Copyright © 2024 Pavla Hršelová, Jiří Toman, David Buriánek, Dalibor Všianský https://creativecommons.org/licenses/by-nc-nd/4.0 https://journals.muni.cz/gvms/article/view/38048 Po, 11 lis 2024 00:00:00 +0100 Revize paleontologických nálezů z lokality Úsobrno https://journals.muni.cz/gvms/article/view/38231 <p>The Úsobrno locality is known on the basis of fossil fauna findings, which were documented and published by Vašíček (1941). Field research has not been able to find the original locality yet. In this reason paleontological material which is deposited in the collections of ÚGV PřF MU was researched. We identified a total of 573 species which belonged mainly to the classes Gastropoda, Bivalvia, Anthozoa and Scaphopoda and compared with the original findings mentioned by Vašíček (1941). The age of the samples was determined to be the Lower Badenian.<br />Based on the findings, especially hermatypal corals, it can be assumed that the sea was warm (above 20 °C), well oxygenated with a soft and hard bottom and mostly shallow. Some findings of fauna from deeper marine areas (Ranella fragment, ahermatypal corals) indicate mixing or postmortem transport during sedimentation.</p> Taťána Fidlerová, Tomáš Turek, Nela Doláková Copyright © 2024 Taťána Fidlerová, Tomáš Turek, Nela Doláková https://creativecommons.org/licenses/by-nc-nd/4.0 https://journals.muni.cz/gvms/article/view/38231 Po, 11 lis 2024 00:00:00 +0100 Supergénny jarosit v metalydite na lokalite Betliar-Turecká (Slovenská republika) https://journals.muni.cz/gvms/article/view/39190 <p>Jarosite was identified for the first time in the metalydite of the Bystrý potok Formation of<br />the Gelnica Group in the Southern Gemeric Unit of the Western Carpathians (Slovakia) at<br />the locality Betliar-Turecká. In metalydite, jarosite forms granular aggregates with small<br />tabular to pseudocubic crystals, occurring as pseudomorphs after pyrite or as crystals<br />within muscovite interlayers. Pyrite was not preserved in the studied metalydite as it was<br />completely replaced by secondary jarosite. Pyrite is present as an accessory mineral in the<br />accompanying graphitic-muscovite phyllites, locally in the metalydite. The sulphur necessary<br />for jarosite formation comes from the breakdown of pyrite, while the source of potassium<br />is muscovite. During the supergene process, low pH fluids attack muscovite, releasing K<sup>+</sup><br />needed for jarosite formation. Chemical composition investigated by EPMA and based on<br />the Raman spectroscopy showed that, jarosite is typical with dominant Fe<sup>3+</sup> in the interval<br />of 2.86–2.97 apfu and K<sup>+</sup> in the range of 0.76–0.94 apfu. It contains minor amounts of Na<sup>+</sup><br />up to 0.13 apfu, H<sub>3</sub>O<sup>+</sup> up to 0.11 apfu, As<sup>5+</sup> up to 0.08 apfu and Pb<sup>2+</sup> up to 0.01 apfu. The<br />source of sodium in the jarosite is probably derived from muscovite, as no feldspars or clay<br />minerals have been identified in the metalydite. The arsenic in the jarosite is probably sourced<br />from arsenic-rich pyrite, while the source of lead may be attributed to galena, related<br />to hydrothermal processes within nearby metamorphic manganese mineralization. The<br />phosphorus in the jarosite likely originates from accessory apatite, which is found within<br />the surrounding acidic metavolcanoclastics and phyllites that host the metalydite horizons.</p> Peter Ružička Copyright © 2024 Peter Ružička https://creativecommons.org/licenses/by-nc-nd/4.0 https://journals.muni.cz/gvms/article/view/39190 Ne, 10 lis 2024 00:00:00 +0100 Paleoekologické vyhodnotenie fosiliferných vrstiev vrchného bádenu na lokalite Dubová (severozápadná časť Dunajskej panvy) https://journals.muni.cz/gvms/article/view/38933 <p>Miocénne sedimenty na úpätí Malých Karpát bývajú častokrát veľmi bohaté na fosílie,<br />napriek tomu dočasné odkryvy často nebývajú zdokumentované. V práci predstavujeme<br />výsledky získané zo záchranných prác z už nejestvujúceho odkryvu jz. od obce Dubová,<br />ktorý vznikol vďaka stavebnej činnosti. Veľmi podrobne sme zdokumentovali faunu a flóru<br />marginálnych morských sedimentov vrchného bádenu (spodný seraval) nanoplanktónovej<br />zóny NN6 a ekobiozóny <em>Ammonia beccarii</em>, ktorá je laterálnym ekvivalentom zóny<br />bulimino/bolivínovej. Na základe diverzifikovanej asociácie vápnitého nanoplanktónu,<br />dierkavcov, koralov, mäkkýšov a machoviek interpretujeme zmeny paleoprostredia počas<br />sedimentácie. Aj v krátkom časovom úseku, ktorý reprezentoval profil s hrúbkou 2,5 m, sme<br />odhalili rôzne typy paleoekologického prostredia, ktoré boli ovplyvnené zmenami salinity,<br />prínosom živín a dynamikou vodného prostredia. V celom profile predpokladáme veľmi<br />plytkovodné prostredie, maximálne do 40 m, striedanie epizód s nízkym obsahom kyslíka<br />(prevaha zástupcov rodu <em>Ammonia</em>), ktoré vznikali pravdepodobne v závislosti od energie<br />prostredia. Salinita sa počas sedimentácie menila postupne od morskej, dokumentovanej<br />schránkami dierkavcov (<em>Elphidium, Borelis</em>) a machoviek <em>Cupuladria</em> a <em>Reusirella</em>, po<br />hyposalínnu dokumentovanú mäkkýšmi rodov <em>Vitta</em> a <em>Pustulosia</em> smerom do nadložia.<br />Vodný stĺpec dokumentuje príbrežné prostredie vonkajšieho šelfu, vysoká abundancia redepozitov<br />vápnitého nanoplanktónu kriedového a paleogénneho veku umožňuje uvažovať<br />o riečnych prínosoch paleo-Váhu.</p> Ivana Koubová, Michal Jamrich, Radoslav Biskupič, Andrej Ruman, Kamil Zágoršek, Natália Hudáčková Copyright © 2024 Ivana Koubová, Michal Jamrich, Radovan Biskupič, Andrej Ruman, Kamil Zágoršek, Natália Hudáčková https://creativecommons.org/licenses/by-nc-nd/4.0 https://journals.muni.cz/gvms/article/view/38933 Čt, 12 pro 2024 00:00:00 +0100 Kyselé metavulkanity z okolí Táborských skal ve zlatohorském rudním revíru https://journals.muni.cz/gvms/article/view/38570 <p>Acidic metavolcanites from vicinity of Táborské skály in Zlaté Hory Ore District (Silesia,<br />Czech Republic) were identified as metamorhosed equivalents of rhyolites or alkali-rhyolites,<br />based on their modal composition and also on major and trace element analyses. Major<br />elements composition of so-called „problematic“ siliceous rocks, accompanying acidic<br />metavolcanites resembles more closely chemistry of sedimentary rocks, but their trace element<br />pattern is virtually identical with investigated metarhyolites; they probably represent<br />strongly altered volcanogenic (probably pyroclastic) rocks. Trace element distribution in<br />acidic metavolcanites is comparable with A-type granites. Based on A-type affinity of studied<br />rocks and position of their analyses in geotectonic discrimination plots after Pearce et al.<br />(1984), confinement of volcanism to divergent geotectonic environment is the most probable.</p> Tomáš Pek Copyright © 2024 Tomáš Pek https://creativecommons.org/licenses/by-nc-nd/4.0 https://journals.muni.cz/gvms/article/view/38570 Pá, 20 pro 2024 00:00:00 +0100