Vývoj metamorfních fluid pozdního stádia regionální metamorfózy v keprnické klenbě silezika

Roč.29,č.1-2(2022)

Abstrakt

Neo-Proterozoic rocks (Brunovistulian Unit) are dominant in the studied area of Silesicum, which have complex nappe, thick-skinned and thrust sheet geological structures. The Keprník Dome (Keprník nappe) represents the easternmost part of crystalline complexes of the Silesian domain and is dominated by various types of orthogneiss, gneiss, mica schist and phyllite, with a small occurrence of calc-silicate rocks. These rocks are affected by pre-Variscan and Variscan metamorphism, dominantly staurolite-sillimanite and garnet zone and late Variscan to Cenozoic brittle deformation. Hydrothermal Variscan quartz veins and surrounding rocks (biotite-bearing paragneiss and orthogneiss) were studied in the Keprník dome geological unit to confront the type of fluids enclosed in fluid inclusions and the intensity of metamorphism that affected the host rocks. The study of fluid inclusions in quartz veins was supplemented by Raman spectrometry and microscopic study of rocks, EMPA and mineral thermometry. Temperatures 616 to 643 °C obtained by the Ti-in-biotite method for biotite paragneisses are compatible with the peak metamorphic conditions estimated by previous authors. Thermometer for orthogneiss provided temperatures between 688 to 699 °C using the Ti-in-biotite thermometer. The lower temperatures (483 to 529 °C) obtained using magnetite-ilmenite thermometer document later retrogression.

Three types of fluids were found in the quartz of the Variscan hydrothermal veins based on the phases present, respectively components: I. L+V, H2O–NaCl ± K+ ± Mg2+ ± Ca2+, II. L+V+S±S2, H2O–NaCl–CaCl2 ± K+ ± Mg2+, III. L1+L2+V, H2O–NaCl–CO2 ± CH4 ± K+ ± Mg2+ ± Ca2+ (L – liquid, V – vapour, S – solid).

Type II inclusions contain aqueous fluids with high salinities, which would correspond to the post-Variscan systems found (Slobodník et al. 2010a, 2020) in the Silesicum area. On the other hand, they have high Th temperatures, reaching values of over 300 °C. Only results from type I could be used to calculate isochores and derive P-T conditions for the formation of Variscan veins, because in type III often occur fluid inclusion decrepitation and the impossibility of measuring total homogenization. Types I and III according to the structural position of fluid inclusion (uncertain or primary and pseudosecondary inclusions), microthermometric data and composition, they are considered to be metamorphic types of fluids generated by Variscan metamorphism. The evaluation of isochores of the first type of fluids using a lithostatic thermobaric gradient (50 °C/270 bar/km) indicates the entrapment of fluids, or formation of inclusions under conditions of 190–300 °C and 90–160 MPa. This type of fluid was very likely captured at a later stage of metamorphism, after the crystallization of magnetite and ilmenite, and represents a retrograde stage of metamorphism.


Klíčová slova:
Bohemian Massif; Silesicum; Keprník dome; quartz veins; fluid inclusions; microthermometry; P-T conditions; metamorphosis
Reference

Andersen, D. J., Lindsley, D. H. (1985). New (and final!) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer (abstract). – Transactions American Geophysical Union, 66, 18, 416.

Ayllón, F., Bakker, R. J., Warr, L. N. (2003). Re-equilibration of fluid inclusions in diagenetic-anchizonal rocks of the Ciñera-Matallana coal basin (NW Spain). – Geofluids, 3, 49–68. https://doi.org/10.1046/j.1468-8123.2003.00048.x

Bakker, R. J. (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk properties. – Chemical Geology, 194, 3–23. https://doi.org/10.1016/S0009-2541(02)00268-1

Bakker, R. J., Elburg, M. A. (2006). A magmatic-hydrothermal transition in Arkaroola (northern Flinders Ranges, South Australia): from diopside-titanite pegmatites to hematite-quartz growth. – Contributions to Mineralogy and Petrology, 152, 5, 541–569. https://doi.org/10.1007/s00410-006-0125-0

Bodnar, R.J. (1993). Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. – Geochimica et Cosmochimica Acta, 57, 683-684. https://doi.org/ 10.1016/0016-7037(93)90378-A

Borisenko, A. S. (1977). Study of the salt composition of solutions in gas-liquid inclusions in minerals by the cryometric method. – Soviet Geology and Geophysics, 18, 11–19 (in Russian).

Borisenko, A. S. (1982). Analysis of salt content of solutions in gas-liquid inclusions in minerals using cryometric methods. – In: Laverov, N. P. (ed.): Ispolzovaniye metodov termobarogeochimiyi pri poiskach i izucheniyi rudnych mestorozhdeniy. – Nedra, 37–46 (in Russian).

Buriánek D., Kropáč, K. (2009). Vznik metamorfní minerální asociace granátovců z desenské jednotky silezika. – Geologické výzkumy na Moravě a ve Slezsku, 16, 100–108. – Dostupné na: https://journals.muni.cz/gvms/article/view/4789/3855, 16. 10. 2022.

Davis, D. W., Lowenstein, T. K., Spencer, R. J. (1990). Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O and NaCl–CaCl2–H2O. – Geochimica et Cosmochimica Acta, 54, 591–601. https://doi.org/10.1016/0016-7037(90)90355-O

Diamond, L. W. (1994). Introduction to phase relations of CO2–H2O fluid inclusions. – In: De Vivo, B., Frezzotti, M. L. (eds): Fluid inclusions in Minerals: Methods and Applications, 131–158.

Dolníček Z., Fojt B., Mašek V. (2018). Podmínky vzniku mineralizace rudních sloupů ložiska Zlaté Hory-jih: pohled ze studia fluidních inkluzí. – Bulletin Mineralogie Petrologie, 26, 1, 64–73.

Ďurišová J. (1990). Charakteristika nerostotvorného prostředí na vybraných lokalitách Jeseníků na základě studia fluidních inkluzí. – Sborník geologických věd, ložisková geologie, mineralogie, 29, 167–186.

Fojt, B., Dolníček, Z., Hoffman, V., Škoda, R., Trdlička, Z., Zeman, J. (2007). Paragenetická charakteristika ložisek Zn-Pb rud v širším okolí Horního Města u Rýmařova. – Acta Musei Moraviae, Scientiae geologicae, 92, 1–2, 3–57.

Henry, D. J., Guidotti, Ch. V., Thomson, J. A. (2005). The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substition mechanisms. – American Mineralogist, 90, 2–3, 316–328. https://doi.org/10.2138/am.2005.1498

Cháb, J., Breitr, K., Fatka, O., Šimůnek, Z., Štorch, P., Vašíček, Z., Zajíc, J., Zapletal, J. (2008). Stručná geologie Českého masivu a jeho karbonského a permského pokryvu. – Česká geologická služba. Praha. 283 s.

Cháb, J., Mixa, P., Vaněček, M., Žáček, V. (1994). Geology of the NW part of the Hrubý Jeseník Mts. (the Bohemian massif, Central Europe). – Bulletin of the Czech Geological Survey, 69, 3, 17–26. Praha.

Chlupáč, I., Brzobohatý, R., Kovanda, J., Stráník, Z. (2002). Geologická minulost České republiky. – Academia. Praha. 436 s.

Kaindl, R., Hoinkes, G., Knoll, P., Abart R. (1999). Fluid inclusions related to Variscan and Alpine metamorphism in the Austroalpine Ötztal Basement, Eastern Alps. – Mineralogy and Petrology, 65, 29–49. https://doi.org/10.1007/BF01161575

Kontár, M. (2011). Kontrastní typy fluid v inkluzích křemenů alpské parageneze z oblasti sobotínského masivu. – Geologické výzkumy na Moravě a ve Slezsku, 18, 2, 138–142. – Dostupné na: https://journals.muni.cz/gvms/article/view/4702/3772, 16. 10. 2022.

Košuličová, M., Štípská, P. (2007). Variations in the transient prograde geothermal gradient from chloritoid-staurolite equilibria: a case study from the Barrovian and Buchan-type domains in the Bohemian Massif. – Journal of metamorphic Geology, 25, 1, 19–35. https://doi.org/10.1111/j.1525-1314.2006.00674.x

Kröner, A., Štípská, P., Schulmann, K., Jaeckel, P. (2000). Chronological constraints on the pre-Variscan evolution of the northeastern margin of the Bohemian Massif, Czech Republic. – Geological Society, 179, 175–197. https://doi.org/10.1144/GSL.SP.2000.179.01.12

Maluski, H., Rajlich, P., Souček, J. (1995). Pre-variscan, Variscan and Early Alpine thermo-tectonic history of the north-eastern Bohemia Massif: An 40Ar/39Ar study. – Geologische Rundschau, 84, 345–358. https://doi.org/10.1007/BF00260445

Menges, F. (2021). Spectragryph – optical spectroscopy software. – Dostupné na: https://www.effemm2.de/spectragryph/, 16. 10. 2022.

Mísař, Z., Dudek, A., Havlena, V., Weiss, J. (1983). Geologie ČSSR I. Český masív. – Statní pedagogické nakladatelství. Praha. 333 s.

Rajlich, P. (1993). Variská duktilní tektonika Českého masivu. – Vydavatelství Českého geologického ústavu. Praha. 172 s.

Roedder, E. (1984). Fluid inclusions. Reviews in Mineralogy, Volume 12. – Mineralogical Society of America. Washington D. C. 654 s.

Schmidt, C., Bodnar, R. J. (2000). Synthetic fluid inclusions: XVI. PVTX properties in the system H2O–NaCl–CO2 at elevated temperatures, pressures, and salinities, – Geochimica et Cosmochimica Acta, 64, 22, 3853–3869. https://doi.org/10.1016/S0016-7037(00)00471-3

Schroyen, K., Muchez, Ph. (2000). Evolution of metamorphic fluids at the Variscan fold-and-thrust belt in eastern Belgium – Sedimentary Geology, 131, 3–4, 163–180. https://doi.org/10.1016/S0037-0738(99)00133-5

Schulmann, K., Gayer, R. (2000). A model for continental accretionary wedge developer by oblique collision: the NE Bohemian Massif. – Journal of the Geological Society, 157, 401–416. https://doi.org/10.1144/jgs.157.2.401

Schulmann, K., Hartley, A., Cháb, J. (1995). Excursion guide. Post-conference excursion TMIDSR, Praha.

Shepherd, T. J., Rankin, A. H., Alderton, D. H. (1985). A Practical Guide to Fluid Inclusion Studies. – Blackie and Sons. 239 s.

Sindern, S., Meyer, F. M., Lögering, M. J., Kolb, J., Vennemann, T., Schwarzbauer, J. (2012). Fluid evolution at the Variscan front in the vicinity of the Aachen thrust. – International Journal of Earth Sciences (Geologische Rundschau), 101, 87–108. https://doi.org/10.1007/s00531-011-0662-2

Slobodník, M., Gadas, P., Všianský, D., Přichystal, A., Losos, Z. (2020). Regional low-temperature fluid flow indicated by quartz mineralization in Silesicum, NE Bohemian massif. – Geologica Carphatica, 71, 3, 233–248. https://doi.org/10.31577/GeolCarp.71.3.3

Slobodník M., Přichystal A., Gadas P., Kontár M., Morávek R. (2010a). Genetické aspekty vzniku křišťálů v sileziku, severní Morava. – Bulletin mineralogicko-petrologického oddělení Národního muzea v Praze, 18, 2, 32–42.

Slobodník, M., Přichystal, A., Morávek, R. (2010b). Geneze křemenných žil u Velké Kraše v sileziku. – Geologické výzkumy na Moravě a ve Slezsku, 17, 1–2, 166–169. Brno. – Dostupné na: https://journals.muni.cz/gvms/article/view/4757/3824, 16. 10. 2022.

Souček, J. (1978). Metamorphic Zones of the Vrbno and Rejvíz Series, the Hrubý Jeseník Mountains, Czechoslovakia. – Tschermaks Mineralogische Petrographische Mitteilungen, 25, 195–217.

Spencer, R. J., Möller, N., Weare, J. H. (1990). The prediction of mineral solubilities in natural waters: A chemical model for the Na–K–Ca–Mg–Cl–SO4–H2O system at temperatures below 25 °C. – Geochimica et Cosmochimica Acta, 54, 575–590. https://doi.org/10.1016/0016-7037(90)90354-N

Steele-MacInnis, M., Bodnar, R. J., Naden, J. (2011). Numerical model to determine the composition of H2O–NaCl–CaCl2 fluid inclusions based on microthermometric and microanalytical data. – Geochimica et Cosmochimica Acta, 75, 1, 21–40. https://doi.org/10.1016/j.gca.2010.10.002

Steinerová, L., Dolníček, Z. (2014). Fluidní inkluze v žilných mineralizacích z lomu Zámčisko (Hrubý Jeseník). – Bulletin mineralogicko-petrologického oddělení Národního muzea v Praze, 22, 2, 376–384. – Dostupné na: http://www.bullmineral.cz/paper/download/104/fulltext, 16. 10. 2022.

Sterner, S. M, Hall, D. L., Bodnar, R. J. (1988). Synthetic fluid inclusions. V. Solubility relations in the system NaCl–KCl–H2O under vapour-saturated conditions. – Geochimica et Cosmochimica Acta, 52, 989–1005. https://doi.org/10.1016/0016-7037(88)90254-2

Suess, F. E. (1912). Die Moravischen Fernster und ihre Beziuhung zum Grundgebirge des Hohen Gesenkes. – In: Hölder, A. (ed): Denkschriften der Mathematisch-Naturwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften, 88, 541–631. Wien.

Svoboda, J., Beneš, K., Dudek, A., Holubec, J., Chaloupský, J., Kodym ml., O., Malkovský, M., Odehnal, L., Polák, A., Pouba, Z., Sattran, V., Škvor, V., Weiss, J. (1964). Regionální geologie ČSSR, Český masív, Krystalinikum. – Ústřední ústav geologický. Praha. 377 s.

Štelcl, J. (1950). Příspěvek k poznání petrografie severovýchodní části keprnické klenby. – MS, disertační práce. Přírodovědecká fakulta Masarykovy univerzity. Brno.

Štípská, P., Schulmann, K., Thompson, A. B., Ježek, J., Kröner, A. (2001). Thermo-mechanical role of a Cambro-Ordovician paleorift during the Variscan collision: the NE margin of the Bohemian Massif. – Tectonophysics, 332, 239–253. https://doi.org/10.1016/S0040-1951(00)00259-6

Tarantola, A., Diamond, L.W., Stünitz, H., Thust, A., Pec, M. (2012). Modification of fluid inclusions in quartz by deviatoric stress. III: influence of principal stresses on inclusion density and orientation. – Contributions to Mineralogy and Petrology, 164, 537–550. https://doi.org/10.1007/s00410-012-0749-1

Urban, T. (2021). Metamorfní žíly a metamorfóza ve vrcholové části keprnické klenby. – MS, bakalářská práce. Přírodovědecká fakulta Masarykovy univerzity. Brno.

Van Breemen, O., Aftalion, M., Bowes, D. R., Dudek, A., Mísař, Z., Povondra, P., Vrána, S. (1982). Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe. – Transactions of the Royal Society of Edinburgh: Earth Sciences, 73, 2, 89–108. https://doi.org/10.1017/S0263593300009639

Metriky

0

Crossref logo

0


369

Views

109

pdf views

12

XML - appendix views

27

html views