ULTRABAZICKÉ HORNINY TĚŠÍNITOVÉ ASOCIACE V ZÁPADNÍ ČÁSTI SLEZSKÉ JEDNOTKY
Roč.20,č.1-2(2013)
The teschenite association occurring in southwest part of the Silesian Unit (Carpathian Flysch Belt) consists of several types of predominantly alkaline basic to ultrabasic intrusive and extrusive igneous rocks. Ultrabasic rocks such as peridotites and picrites represent geochemically relatively primitive melt. Primary magmatic mineral assemblages of ultrabasic rocks are characterized by a large amount of olivine (Fo 81–86 mol. %), clinopyroxene (predominantly diopside: XMg = 0.65–0.85, Na = 0.02–0.04 apfu; aegirine-augite sometimes forms small rims around diopside: XMg = 0.00–0.14, Na = 0.40–0.98 apfu) and rare chrome spinel to chromite with Cr/(Cr+Al) values 0.55–0.62 in peridotite or 0.26–0.69 in picrites. Olivine, linopyroxenes or spinelides in these rocks appear as suitable for calculation of PT conditions. The temperatures obtained using the olivine-clinopyroxene thermobarometry (1 294–1 322 °C; 8–11 kbar) are consistent with the appearance of these two minerals in the crystallization sequence of peridotite. However, the temperatures calculated for spinelide inclusions in olivine are ~ 500 °C lower than the experimentally derived liquidus for ultrabasic melt. This difference can be explained by subsolidus re-equilibration during cooling. Younger mineral assemblage in peridotite consists of phlogopite, pargasite, and magnetite.
Silesian Unit; ultrabasic rocks; teschenite association; mineralogy; petrology; thermometry
Ballhaus, C. – Berry, R. F. – Green, D. H. (1991): High pressure experimental calibration of the olivine-orthopyroxene-spinel-oxygen geobarometer: implications for the oxidation state of the upper mantle. – Contributions to Mineralogy and Petrology, 107, 27–40.
Barnes, S. J. (2000): Chromite in Komatiites, II. Modification during Greenschist to Mid-Amphibolite Facies Metamorphism. – Journal of Petrology, 41(3), 387–409. https://doi.org/10.1093/petrology/41.3.387
Buriánek, D. – Bubík, M. (2012): Horniny těšínitové asociace v okolí Valašského Meziříčí. – Acta Musei Moraviae, Scientiae geologicae, 97, 1, 105–127. Brno.
Dostal, J. – Owen, J. V. (1998): Cretaceous alkaline lamprophyres from northeastern Czech Republic: geochemistry and petrogenesis. – Geologische Rundschau, 87, 1, 67–77. https://doi.org/10.1007/s005310050190
Droop, G. T. R. (1987): A general equation for estimating Fe3+ in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria. – Mineralogical Magazine, 51, 431–437. https://doi.org/10.1180/minmag.1987.051.361.10
Eliáš, M. – Skupien, P. – Vašíček, Z. (2003). Návrh úpravy litostratigrafi ckého členění nižší části slezské jednotky na českém území (Vnější Západní Karpaty). – Sborník vědeckých prací Vysoké školy báňské – Technické univerzity Ostrava, Řada hornicko-geologická, 49, Monografi e 8, 7–13. Ostrava.
Farahat, E. S. (2008): Chrome-spinels in serpentinites and talc carbonates of the El Ideid-El Sodmein District, central Eastern Desert, Egypt: their metamorphism and petrogenetic implications. – Chemie der Erde – Geochemistry, 68(2), 193–205. https://doi.org/10.1016/j.chemer.2006.01.003
Foden, J. D. – Green, D. H. (1992): Possible role of amphibole in the origin of andesite: some experimental and natural evidence. – Contributions to Mineralogy and Petrology, 109, 479–493. https://doi.org/10.1007/BF00306551
Grabowski, J. – Krzemiński, L. – Nescieruk, P. – Starnawska, E. (2006): Palaeomagnetism of the teschenitic rocks (Lower Cretaceous) in the Outer Western Carpathians of Poland: constraints for tectonic rotations in the Silesian unit. – Geophysical Journal International, 166(3), 1077–1094. https://doi.org/10.1111/j.1365-246X.2006.03004.x
Herzberg, C. (1995): Generation of plume magmas through time: an experimental perspective. – Chemical Geology, 126 (1995), 1–16. https://doi.org/10.1016/0009-2541(95)00099-4
Hovorka, D. – Spišiak, J. (1988): Mezozoický vulkanizmus Západných Karpát. – 263 stran, Veda, Bratislava.
Ichiyama, Y. – Ishiwatari, A. – Kimura, J.-I. – Senda, R. – Kawabata, H., – Tatsumi, Y. (2012): Picrites in central Hokkaido: Evidence of extremely high temperature magmatism in the Late Jurassic ocean recorded in an accreted oceanic plateau. – Geology, 40(5), 411–414. https://doi.org/10.1130/G32752.1
Kamenetsky, V. S. – Crawford, A. J., – Meff re, S. (2001): Factors controlling chemistry of magmatic spinel : an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks, Journal of Petrology, 42, 655–671. https://doi.org/10.1093/petrology/42.4.655
Koehler, T. – Brey, G. P. (1990). Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. – Geochimica et Cosmochimica Acta, 54, 2375–2388. https://doi.org/10.1016/0016-7037(90)90226-B
Kretz, R. (1983): Symbols for rock-forming minerals. – American Mineralogis, 68, 277–279.
Kudělásková, M. – Kudělásek, V. – Matýsek, D. (1993): Chemické a petrologické studium pikritových hornin z podbeskydské oblasti. – Sborník vědeckých prací Vysoké školy báňské v Ostravě, 39, 63–72. Ostrava.
Leake, B. E. – Woolley, A. R. – Arps, C. E. S. – Birch, W. D. – Gilbert, M. C. – Grice, J. D. – Hawthorne, F. C. – Kato, A. – Kisch, H. J. – Krivovichev, V. G. – Linthout, K. – Laird, J. – Mandarino, J. – Maresch, W. V. – Nickel, E. H. – Rock, N. M. S. – Schumacher, J. C. – Smith, D. C. – Stephenson, N. C. N. – Ungaretti, L. – Whittaker, E. J. W. – Youzhi, G. (1997): Nomenclature of amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. – European Journal of Mineralogy, 9, 623–651. https://doi.org/10.1127/ejm/9/3/0623
Lehmann, J. (1983): Diff usion between olivine and spinel: application to geothermometry. – Earth and Planetary Science Letters, 64 (1), 123–138. https://doi.org/10.1016/0012-821X(83)90057-2
Lucińska-Anazkiewicz, A. – Villa, I. M. – Anazkiewicz, R. – Ślaczka, A. (2002): 40Ar/39Ar dating of alkaline lamprophyres from the Polish Western Carpathians. – Geologica Carpathica, 53, 45–52.
Morimoto, N. – Fabries, J. – Ferguson, A. K. – Ginzburg, I. V. – Ross, M. – Seifert, F. A. – Zussman, J. – Aoki, K. (1988). Nomenclature of pyroxenes. – Mineralogical Magazine 52, 535–550. https://doi.org/10.1180/minmag.1988.052.367.15
Narebski, W. (1990): Early rift stage in the evolution of western part of the Carpathians: geochemical evidence from limburgite and teschenite rock series. – Geologica Carpathica, 41, 521–528.
Nemčok, M. – Nemčok, J. – Wojtaszek, M. – Ludhova, L. – Oszczypko, N. – Sercombe, W. J. – Cieszkowski, M. – Paul, Z. – Coward, M. P. – Slaczka, A. (2001): Reconstruction of Cretaceous rifts incorporated in the Outer West Carpathian wedge by balancing. – Marine and Petroleum Geology, 18 (1), 39–64. https://doi.org/10.1016/S0264-8172(00)00045-3
O‘Neill, H. St. C. – Wall, V. J. (1987): Th e olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth‘s upper mantle. – Journal of Petrology, 28, 1169–1191. https://doi.org/10.1093/petrology/28.6.1169
Sato, K. – Katsura, T. – Ito, E. (1997): Phase relations of natural phlogopite with and without enstatite up to 8 GPa: implications for mantle metasomatism. – Earth and Planetary Science Letters, 146, 511–526. https://doi.org/10.1016/S0012-821X(96)00246-4
Schumacher, J. C. (1997): Appendix 2: the estimate of ferric iron in electron microprobe analysis of amphiboles. – Canadian Mineralogist, 35, 238–246.
Spišiak, J. – Hovorka D. (1997): Petrology of the Western Carpathians Cretaceous primitive alkaline volcanics. – Geologica Carpathica, 48, 113–121.
Ryan, C. G. – Griffi n, W. L. – Pearson, N. J. (1996): Garnet geotherms: pressure–temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks. – Journal of Geophysical Research 101, 5611–5625. https://doi.org/10.1029/95JB03207
Wlodyka, R. (2010): Ewolucja skladu mineralnego skal cieszynskej provincii magmovej. – Wydawnictwo Univ. Slaskiego, Katowice, 231 pp.