MUSKOVIT-BIOTITICKÝ GRANIT Z KALVÁRIE V JIHLAVĚ

Muscovite-biotite granite from the Kalvárie hill in the Jihlava town

Miloš René

Ústav struktury a mechaniky hornin Akademie věd ČR, v. v. i., V Holešovičkách 94/41, 182 09 Praha; e-mail: rene@irsm.cas.cz

(23-23 Jihlava)

Key words: Bohemian Massif, Moldanubian batholith, granite, petrology, geochemistry

Abstract

The fine-grained to medium-grained muscovite-biotite granite occurs on the Kalvárie hill in the Jihlava town. It contains quartz, K-feldspar ($Or7_{9-91}Ab_{9-21}An_{0-0.10}$), plagioclase (An_{11-20}), biotite and muscovite. Mn- bearing ilmenite, apatite, and alusite, zircon and monazite are accessories. Granites are peraluminous (A/CNK 1.12) and display relatively high K/Rb ratio (179–184). Compared to common S-type granites, rocks from the Kalvárie hill are poor in Mg (0.4 wt. % MgO), Ca (0.7–0.8 wt. % CaO), Rb (237–245 ppm), Zr (84–86 ppm) and bulk of REE (97 ppm). These granites could be ranged to the Bílý Kámen variety of the Moldanubian batholith.

Úvod

Na území města Jihlavy a v jejím bezprostředním okolí se vyskytuje několik drobnějších, ve směru SSV– JJZ lineárně protažených intruzí dvojslídných granitů, které svým minerálním a chemickým složením náležejí ke granitům centrálního moldanubického plutonu. Jedno z těchto granitových těles tvoří vrch Kalvárie na sv. okraji historického jádra Jihlavy, 1 100 m sv. od Masarykova náměstí. Petrografii, mineralogii a geochemii těchto granitů je věnován následující příspěvek.

Geologická pozice

V menším, opuštěném lomu na úpatí vrchu Kalvárie je odkrytá jedna z výše uvedených granitových intruzí (obr. 1). Granity jsou místy kataklasticky deformované a mladšími hydrotermálními roztoky částečně chloritizované a hematitizované. Zkoumané granity jsou drobnozrnné, stejnozrnné a svojí texturou a minerálním složením odpovídají varietě Bílý Kámen, která se vyskytuje v severní části centrálního moldanubického plutonu (Veselá et al. 1989).

Metodika

Pro výzkum minerálního a chemického složení byly vybrány dva reprezentativní, mladšími procesy nepostižené, vzorky granitů (tab. 1). Stanovení hlavních komponent bylo provedeno klasicky mokrou cestou v laboratoři ÚSMH AV ČR, v. v. i. (analytici P. Hájek, M. Hříbal, J. Chalupský, M. Malá a Z. Švec). Obsah SiO₂ byl stanoven vážkově, obsah Al₂O₃ a FeO byl stanoven titračně, obsah Fe₂O₃, TiO₂ a P₂O₅ byl stanoven spektrometricky, obsah MnO, CaO, MgO, K₂O a obsah Na₂O byl stanoven pomocí atomové absorpční spektrometrie (AAS). Stanovení obsahu vybraných stopových prvků bylo provedeno metodou induktivně vázaného plazmatu na hmotovém spektrome-

Obr. 1: Schematická geologická mapa okolí Jihlavy (podle Jenčeka 1989, upraveno autorem).

Fig. 1: Schematic geological map of the Jihlava town area (after Jenček 1989, modified by author).

tru (ICP MS) Perkin Elmer Sciex ELAN 6100 v laboratoři Actlabs v Kanadě (analytik D'Anna). Chemické analýzy horninotvorných minerálů (plagioklas, draselný živec, biotit) a vybraných akcesorických minerálů (ilmenit, rutil, apatit, zirkon, monazit) byly provedeny na elektronové mikrosondě Cameca SX 100 v laboratoři GLÚ AV ČR, v. v. i. v Praze (analytik Z. Korbelová) a ve společné laboratoři ÚGV MU–ČGS v Brně (analytik Š. Benedová). Analýzy horninotvorných minerálů, ilmenitu a rutilu byly provedeny za následujících podmínek: urychlovací napětí

hmot. %	Re-1028	Re-1029
SiO ₂	72,60	72,76
TiO ₂	0,18	0,18
Al ₂ O ₃	14,03	14,13
Fe ₂ O ₃	0,57	1,26
FeO	0,70	0,06
MnO	0,01	0,02
MgO	0,37	0,37
CaO	0,72	0,77
Na ₂ O	3,31	3,36
K ₂ O	5,29	5,26
P ₂ O ₅	0,21	0,21
H ₂ O ⁺	0,33	0,33
H ₂ O ⁻	0,35	0,31
F	0,12	0,03
Celkem	98,79	99,05
ppm		
Ва	436	439
Rb	245	237
Sr	103	102
Zr	84	86
Nb	11	9
Th	12	11
U	6	5
La	21,00	21,10
Ce	41,70	41,40
Pr	4,62	4,59
Nd	17,70	17,70
Sm	3,78	3,72
Eu	0,49	0,51
Gd	3,14	3,23
Tb	0,48	0,50
Dy	2,34	2,33
Но	0,34	0,35
Er	0,85	0,89
Tm	0,12	0,12
Yb	0,72	0,77
Lu	0,10	0,10
La _N /Yb _N	19,71	18,52
14 14		

Tab. 1: Chemické analýzy granitu z Kalvárie, Jihlava.

Tab. 1: Chemical analyses of granite from the Kalvárie hill, Jihlava.

15 kV, proud 10 nA, průměr elektronového svazku 1-5 µm. Analýzy apatitu, zirkonu a monazitu byly provedeny za následujících podmínek: urychlovací napětí 15 kV, proud 20 nebo 40 nA, průměr elektronového svazku 1-2 µm. Dobře definované homogenní minerály a syntetické fáze byly v obou případech použity jako standardy. Minerální vzorce jednotlivých minerálů byly vypočteny pomocí programu MINPET 2.0. Množství iontů v jednotkách na vzorec (apfu) bylo v případě živců počítáno na 32 atomů kyslíku, v případě slíd na 24 atomů kyslíku, v případě monazitu na 8 atomů kyslíku, v případě ilmenitu a rutilu na 3 atomy kyslíku a výpočet empirického vzorce zirkonu uvažuje 4 atomy kyslíku.

Petrografie

Muskoviticko-biotitický granit z Kalvárie je drobnozrnná až středně zrnitá hornina. Granit obsahuje křemen, K-živec, plagioklas, biotit a muskovit. Draselný živec $(Or_{79-91}Ab_{9-21}An_{0-0.10})$ tvoří ýrazně pertitická zrna (obr. 2).

hypidiomorfně omezená, výrazně pertitická zrna (obr. 2). Plagioklas (An_{11-20}) se vyskytuje v podobě hypidiomorfně

Obr. 3: Mikrofotografie andalusitu a mladší generace muskovitu, zkřížené nikoly.

Fig. 3: Microphotograph of partly altered and alusite in the younger muscovite aggregate, crossed polarizers.

omezených tabulkovitých zrn, obvykle polysynteticky lamelovaných. Biotit tvoří hypidiomorfně omezené tabulky. Je výrazně pleochroický, podle X je nažloutlý až světle okrově hnědý, podle Y a Z je hnědý až hnědočerný. Chemickým složením odpovídá Mg-siderofylitu [Fe/(Fe + Mg) = 0,67–0,71, ^{IV}Al = 2,29–2,47] (tab. 2). Muskovit se vyskytuje obvykle ve dvou generacích. Starší generace tvoří hypidiomorfně omezené tabulky nebo tabulkovité agregáty. Svým chemismem odpovídá muskovitu s malým obsahem fengitové a ferimuskovitové molekuly [Si 6,11–6,21 apfu, Fe/(Fe + Mg) 0,42–0,54] (tab. 2). Mladší generace muskovitu tvoří jemnozrnné agregáty vznikající obvykle na úkor akcesorického andalusitu (obr. 3).

Akcesorické minerály jsou zastoupené ilmenitem, apatitem, andalusitem, zirkonem a monazitem. Ilmenit obsahuje významný podíl pyrofanitové komponenty (5–20 mol. %). Andalusit tvoří drobná, sloupečkovitá, narůžovělá zrna. Apatit, zirkon a monazit jsou obvykle uzavírány v biotitu. Větší apatitová zrna obsahují často uzavřeniny zirkonu a monazitu. Ve výbrusu bylo nalezeno zrno zirkonu, které obsahovalo starší jádro převzaté z původního metasedimentu, obrůstané mladším mag-

Obr. 2: Mikrofotografie perthitického K-živce, zkřížené nikoly. Fig. 2: Microphotograph of the perthitic K-feldspar, crossed polarizers.

Obr. 4: BSE mikrosnímek dvou generací zirkonu. Fig. 4: BSE image of two zircon generations.

Tab. 2: Chemické analýzy vybraných minerálů. Tab. 2: Chemical analyses of selected minerals.

hmot. %	biotit	biotit	muskovit	muskovit	K-živec	K-živec	plagioklas	plagioklas
SiO ₂	35,18	34,56	45,76	46,19	64,09	64,17	64,89	61,88
TiO ₂	2,78	2,65	0,73	0,05	0,00	0,01	0,00	0,00
Al ₂ O ₃	19,64	19,62	35,57	34,80	18,32	17,99	21,34	23,65
Cr ₂ O ₃	0,02	0,00	0,06	0,00	0,00	0,00	0,00	0,00
FeO	20,50	22,35	1,05	1,08	0,17	0,13	0,01	0,05
MnO	0,38	0,20	0,00	0,02	0,00	0,00	0,00	0,00
MgO	5,71	5,68	0,53	0,83	0,00	0,01	0,00	0,00
BaO	0,15	0,00	0,06	0,04	0,84	0,05	0,04	0,00
CaO	0,00	0,00	0,00	0,00	0,03	0,00	2,53	4,44
Na ₂ O	0,16	0,14	0,74	0,68	2,35	1,44	10,47	9,64
K ₂ O	9,78	9,81	10,74	10,81	13,78	15,38	0,20	0,21
P ₂ O ₅	0,00	0,00	0,00	0,00	0,00	0,51	0,01	0,10
H_2O calc.	1,84	1,84	4,37	4,30	0,00	0,00	0,00	0,00
F	0,00	0,00	0,27	0,34	0,00	0,00	0,00	0,00
Cl	0,02	0,01	0,00	0,00	0,00	0,00	0,00	0,00
O=F, Cl	0,00	0,00	0,11	0,14	0,00	0,00	0,00	0,00
Celkem	96,16	96,86	99,77	99,00	99,58	99,69	99,49	99,97
0	24	24	24	24	32	32	32	32
apfu								
Si	5,709	5,617	6,107	6,207	11,914	11,897	11,501	10,997
Al ^{IV}	2,291	2,383	1,893	1,793	4,010	3,928	4,454	4,949
Ti	0,339	0,324	0,073	0,005	0,000	0,001	0,000	0,000
Al ^{vi}	1,463	1,372	3,697	3,714	0,000	0,000	0,000	0,000
Cr	0,003	0,000	0,006	0,000	0,000	0,000	0,000	0,000
Fe ²⁺	2,782	3,038	0,117	0,121	0,026	0,020	0,001	0,007
Mn	0,052	0,028	0,000	0,002	0,000	0,000	0,000	0,000
Mg	1,381	1,376	0,105	0,166	0,000	0,003	0,000	0,000
Ba	0,010	0,000	0,003	0,002	0,061	0,004	0,003	0,000
Ca	0,000	0,000	0,000	0,000	0,006	0,000	0,480	0,845
Na	0,050	0,044	0,191	0,177	0,847	0,518	3,598	3,322
K	2,025	2,034	1,829	1,853	3,268	3,638	0,045	0,048
Р	0,000	0,000	0,000	0,000	0,000	0,080	0,002	0,015
OH	1,994	1,997	3,886	3,856	0,000	0,000	0,000	0,000
F	0,000	0,000	0,228	0,289	0,000	0,000	0,000	0,000
Cl	0,011	0,006	0,000	0,000	0,000	0,000	0,000	0,000
XFe	0,67	0,69	0,53	0,42	0,000	0,000	0,000	0,000

matickým zirkonem. Starší jádro obsahuje velmi nízké koncentrace U (0,04 hmot. %), kdežto mladší zirkon obsahuje zvýšené koncentrace U (0,73–1, 41 hmot. % UO₂) (obr. 4). Zirkon obsahuje mimo Hf a Y v menším množství P, REE, U a Th. Obsah Hf v analyzovaných zrnech zirkonu se pohybuje v rozmezí 1,0–1,9 hmot. % HfO₂, obsah Y je v rozmezí 0,0–0,9 hmot. % Y₂O₃. Obsah ostatních izomorfních příměsí je nižší (0,23–0,92 hmot. % P₂O₅, HREE 0,12–0,74 hmot. % HREE₂O₃, U 0,04–1,41 hmot. % UO₃, Th 0,01–0,19 hmot. % ThO₃). Monazit-(Ce) obsahuje

9,2–17,9 mol. % cheralitové komponenty, 1,9–4,0 mol. % xenotimové komponenty a 0,1–1,4 mol. % huttonitové komponenty.

Geochemie

Analyzované granity jsou typické peraluminické granity s hodnotou A/CNK 1,12 (tab. 1). Je pro ně charakteristický vyšší obsah K₂O (5,3 hmot. %) a převaha K₂O nad Na₂O. Jedná se o Ca-chudé granity s obsahem CaO 0,7–0,8 hmot. %. Obsah Zr se v analyzovaných granitech pohybuje v rozmezí 84–86 ppm, obsah Th je v rozmezí 11–12 ppm. Obsah Rb kolísá v rozmezí 237–245 ppm. Relativně vysoký poměr K/Rb (164–166) dokládá nepříliš výraznou frakcionaci granitové taveniny. Z obsahu LREE a Zr (Watson a Harrison 1983, Montel 1993) lze odvodit pravděpodobnou teplotu granitové taveniny v rozmezí 736 až 762 °C.

Diskuze a závěr

Ve srovnání s typickými, vápníkem chudými S-granity (Chappell a Hine 2006) mají granity z Kalvárie nižší obsah Mg (0,4 hmot. % MgO), Rb (237-245 ppm) a Zr (84-86 ppm) a celkový obsah prvků vzácných zemin (ΣREE 97 ppm). Pro analyzované granity je typický vyšší poměr lehkých a těžkých vzácných zemin (La_N/Yb_N 19–20) a negativní europiová anomálie (Eu/Eu* 0,44-0,45). Ve srovnání s granity variety Mrákotín granity z Kalvárie neobsahují porfyrické vyrostlice K-živce a jsou drobnozrnnější. V analyzovaných granitech ve srovnání s granity typu Mrákotín je vyšší obsah Ba (436-439 ppm), nižší obsah Rb (237-245 ppm) a celkový obsah prvků

vzácných zemin (Σ REE 97 ppm). Granity svým minerálním a chemickým složením jsou podobné granitům variety Bílý Kámen, k nimž byly přiřazovány již dříve Veselou et al. (1989).

Poděkování

Předložená práce vznikla za finanční podpory MŠMT ČR v rámci projektu ME10083. Autor děkuje S. Houzarovi a anonymnímu recenzentovi za cenné připomínky, které významně přispěly ke zvýšení kvality původního rukopisu.

Literatura

Chappell, B. W. – Hine, R. (2006): The Cornubian batholith: an example of magmatic fractionation on a crustal scale. – Resource Geology, 56 (3): 203–244.

Jenček, J. (1989): Základní geologická mapa ČSSR 1 : 25 000 23–234 Jihlava. – Ústřední ústav geologický. Praha.

- Montel, J. M. (1993): A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chemical Geology, 110, 127–146.
- Veselá, M. Hrádek, M. Chrobok, J. Šalanský, K. (1989): Vysvětlivky k základní geologické mapě ČSSR 23–234 Jihlava. Ústřední ústav geologický Praha, 1–68.
- Watson, E. B. Harrison, T. M. (1983): Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304.