
DOI: 10.5817/FAI2015-2-1 No. 2/2015 
  

7 

Application of GARCH-Copula Model in Portfolio 

Optimization 

Aleš Kresta 

Vysoká škola Báňská – TU Ostrava 

Faculty of Economics, Department of Finance 

Sokolská tř. 33, Ostrava 

E-mail: ales.kresta@vsb.cz 

 
Abstract: Although the cornerstone of modern portfolio theory was set by 

Markowitz in 1952, the portfolio optimization problem is a never-ending research 

topic for both academics and practitioners. In this problem the future prediction 

of time series evolution plays an important role. However, it is rarely addressed in 

research. In the paper we analyze the applicability of the GARCH-copula model. 

To be more concrete we assume the investor maximizing Sharpe ratio while the 

future evolution of the time series is simulated by means of the AR(1)-

GARCH(1,1) model using the copula modelling approach. The bootstrapping 

technique is applied as a benchmark. From the empirical results we found out 

that the GARCH-copula model provides better forecasts of future financial time 

series evolution than the bootstrapping method. Assuming the investor is 

maximizing the Sharpe ratio, both the final wealth increases and maximum 

drawdown decreases when we apply the GARCH-copula model compared to the 

application of bootstrapping technique. 
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Introduction 

Although the cornerstone of modern portfolio theory was set by Markowitz in 

1952, the portfolio optimization problem is a never-ending research topic for both 

academics and practitioners. In this problem, the prediction of future time series 

evolution plays an important role. However, when we model the financial time 

series, there are some characteristic features which have to be taken into 

consideration. 

First, empirically observed returns of a financial time series are characterized by 

fatter tails compared to the Gaussian (normal) distribution, see e.g. Mandelbrot 

(1963). Next, empirical volatility of returns is not constant over time, but is 

rather clustered. Thus, for the same asset,  periods with high volatility (high 

gains/losses) can be seen as well as periods in which volatility is low (the 

gains/losses are close to zero). This issue can be tackled by volatility modeling. A 

typical tool which can be utilized is the GARCH model, see Bollerslev (1986). The 
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last issue one has to deal with is dependency within a particular time series. 

Generally, the returns are not correlated strongly when they are around zero, 

however in the tails the correlation increases. An appropriate tool for dependency 

modelling is the copula function, see Sklar (1973). Thus, the sound model of 

financial returns should be composed of a GARCH model and a copula function 

accompanied with some heavy-tailed marginal distributions. 

While in most papers, see e.g. Farinelli et al. (2008) among others, the 

parametric stochastic process for financial returns is not assumed and 

performance ratio is optimized on historically observed returns (bootstrapping 

technique), in our paper we apply the GARCH-copula model to simulate future 

returns. The results obtained by means of the bootstrapping method are utilized  

only as a benchmark. 

The aim of this paper is to analyze the applicability of the GARCH-copula model in 

portfolio optimization. To be more concrete, we assume an investor maximizing 

Sharpe ratio while the future time series is simulated by means of the GARCH-

copula model and by means of the bootstrapping technique. Applying the 

procedures on a rolling window basis, we compare the values of final wealth at 

the end of the analyzed period and maximum (percentage) drawdown during the 

analyzed period for both approaches. 

The paper is structured as follows: In the next section, the portfolio optimization 

model in the Markowitz mean-variance framework is described. Then, in the 

second section we present the application of the GARCH-copula model. In third 

and fourth sections the utilized dataset and obtained results are described. In the 

last section the discussion and conclusion are provided. 

1 Portfolio Optimization Problem 

The cornerstone of modern portfolio theory was established by pioneer work of 

Harry Markowitz in 1952 by his well know paper, see Markowitz (1952). Under 

the proposed assumptions, he assumed the returns to be normally distributed 

and the investor to be risk-averse, and that the rational investor wants to 

maximize the portfolio expected return and minimize its variance. However, the 

relationship between these two characteristics is generally positive – by 

decreasing the variance also the expected return decreases, see e.g. Lundblad 

(2007), and thus without the knowledge of the investor's level of risk aversion we 

can find only the set of (Pareto) efficient portfolios. The portfolio is identified as 

efficient if and only if there is no other portfolio with a lower risk delivering higher 

or equal expected return and no other portfolio with the higher expected return 
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and lower or equal risk. For further details of modern portfolio theory see e.g. 

Elton et al. (2014). 

Sharpe (1966) continued in the framework established by Markowitz and 

proposed the well-known Sharpe ratio (Sharpe index, the Sharpe measure or the 

reward-to-variability ratio) which he first defined as the ratio between the excess 

expected return (i.e. the expected return minus risk-free rate, also known as risk 

premium) and its volatility, 

, (1) 

where  is the observed (or predicted) distribution of returns or equiprobable 

realizations of this distribution and  is risk-free rate. The original ratio was 

revised by Sharpe (1994) substituting the risk-free rate by an applicable 

benchmark , which can change in time, 

. (2) 

Further in this paper we assume the original version of Sharpe ratio (1), which in 

fact is a special case of the revised version (2) in which . The Sharpe 

ratio defines the profile of an investor who prefers titles with higher expected 

excess returns for unity of volatility (standard deviation). When comparing two 

assets versus a common benchmark (in our case risk-free rate ), the one 

with a higher Sharpe ratio provides a better return for the same risk (or, 

equivalently, the same return for a lower risk). 

The Sharpe ratio is closely related to the Markowitz mean-variance framework as 

it focuses only on the first two moments of the probability distribution. However, 

as it is known, the empirical distribution of financial asset returns is characterized 

by heavy-tails and skewness. Thus, many researchers have proposed their own 

ratios, which take into account the kurtosis and skewness of the probability 

distribution. Among others, see for instance the Gini ratio (Shalit and Yitzhaki, 

1984), mean absolute deviation ratio (Konno and Yamazaki, 1991), mini-max 

ratio (Young, 1998), Rachev ratio (Biglova et al., 2004) and others. For the 

summary see e.g. Farinelli et al. (2008). 

In this paper we assume the investor maximizes Sharpe ratio, to solve the 

following portfolio optimization problem, i. e. he solves the following portfolio 

optimization problem, 
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 (3) 

in which  represents the vector of weights (portfolio composition) and  is the 

matrix of random realizations of returns (rows represent realizations with equal 

probability and columns represent particular assets the investor can include in the 

portfolio). The matrix  contains the random realizations of future returns, and 

thus is not directly observable but must be simulated. We describe the simulation 

procedure in the following section. Furthermore, the constraints of the 

optimization problem bound the weight of each asset between 0% (short selling is 

not allowed) and 25% (the portfolio is composed of at least four assets). 

2 Financial Asset Returns Modelling 

The evolution of financial asset returns over time is specific in the following ways, 

for further details see e.g. Cont (2001). Empirical volatility of returns is not 

constant over time, but is rather clustered. Thus, for the same asset, periods of 

high volatility (high gains/losses) can be seen as well as periods in which volatility 

is low (the gains/losses are low). This issue can be tackled using volatility 

modeling. In this paper, we apply the GARCH model for this purpose (Bollerslev, 

1986). Even after the correction of returns for volatility clustering, the residual 

time series still exhibits heavy tails. The conditional distribution, however, is less 

heavy-tailed than the unconditional distribution. In our paper we utilize joint 

Student distributions for residuals. Due to the estimation and simulation 

requirements, this joint distribution is decomposed into Student marginal 

distributions and the Student copula function in line with Sklar’s theorem (Sklar, 

1973). We address the obtained model as a GARCH-copula model, which was 

already applied in risk management by Huang et al. (2009), Wang et al. (2010) 

and others. 

Assume that we want to model the future returns of n assets. For each asset we 

assume AR(1)-GARCH(1,1) process, i.e. i-th asset returns can be modelled as 

follows, 

, (4) 
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where  and  are parameters of the conditional mean equation,  is the 

standard deviation (volatility) modelled by the GARCH model and  is a random 

number from Student probability distribution  (henceforth filtered residual). 

The Student distribution is applied for its ability to model fat tails (higher 

kurtosis) of a probability distribution, which are usually present in financial time 

series of returns. The volatility is modelled by means of the GARCH model 

(Bollerslev, 1986), an extension of the ARCH model (Engle, 1982). The applied 

model takes the following form, 

, (6)
 

where ,  and  are the parameters that must be estimated. Positive 

variance is assured if all the parameters are equal or greater than zero. The 
model is stationary if . 

In order to preserve the mutual dependence among the asset returns, the filtered 

residuals are joined together applying copula function modelling. Copula functions 

are projections of the dependency among particular distribution functions into 

, 

. (7) 

Basic reference for the theory of copula functions is Nelsen (2006), while Rank 

(2007) and Cherubini et al. (2004, 2011) target mainly on the application issues 

in finance. Actually, any copula function can be regarded as a multidimensional 

distribution function with marginals in the form of a standardized uniform 

distribution. Following the Sklar's theorem (Sklar, 1959), any joint distribution 

function, in our case the joint distribution function of filtered residuals 

, can be decomposed into marginal distributions and a selected 

copula function, 

. (8) 

The formulation above should be understood such that the copula function C 

specifies the dependency, nothing less, nothing more. In the paper we apply the 

Student copula function, which belongs to the family of elliptical copula functions, 
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where  is gamma function,  stands for degrees of freedom both in marginals 

and Student copula function and Q is a correlation matrix. Note that by 

accompanying Student copula function with Student marginals we obtain the 

joint-Student distribution. 

2.1 Parameters Estimation and Subsequent Returns Simulation 

In order to model the future evolution of financial time series by means of 

GARCH-copula model the following procedure should be undertaken, see Figure 1. 

First, the parameters of GARCH model are estimated for each particular return 

time series from past observations. When GARCH models are estimated, the 

residuals (observed in the past) can be obtained. These are put together into a 

matrix and the parameters of the copula function are estimated. There exist three 

main approaches to estimate parameters for copula function based dependency 

modelling: exact maximum likelihood method (EMLM), inference function for 

margins (IFM), and canonical maximum likelihood (CML). While for the EMLM all 

the parameters are estimated within one step, which might be very time 

consuming (mainly for high dimensional problems or complicated marginal 

distributions), the other two methods are based on the estimation of the 

parameters for the marginal distributions and parameters for the copula function 

separately – marginal distributions are estimated in the first step and the copula 

function in the second step. Following IFM the estimated marginals are utilized in 

the second step. For CML instead of estimated marginals the empirical 

distributions are utilized. In this paper we apply the IFM estimation method as it 

provides a reasonable trade-off between the accuracy and computational 

requirements. 

For the simulation the sequence is inverse. First, random numbers are simulated, 

while the dependency among them is maintained by means of the estimated 

copula function. Then, these simulated random numbers are transformed to the 

filtered residuals (by inverse distribution function), which are converted to the 

returns by means of estimated GARCH models. These returns can be then easily 

utilized for computation of expected portfolio return and/or its risk. 

Figure 1 GARCH-Copula model estimation/simulation procedure 

  

  

Source: Author 
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3 Dataset 

The utilized dataset consists solely of the stocks incorporated in one of the 

American stock market indices – Dow Jones Industrial Average (henceforth DJIA). 

We assumed all the components of the index as of October 6, 2014, except the 

stocks of The Goldman Sachs Group, Inc. (Yahoo Finance ticker GS) and Visa Inc. 

(Yahoo Finance ticker V). These two stocks were excluded from the dataset as we 

were not able to obtain sufficiently long historical data. Thus, the dataset consists 

of only the remaining 28 stocks.  

Historical data of the stocks were obtained from Yahoo Finance website1 over the 

period December 1, 1997 until December 31, 2014 (4,298 daily observations for 

each stock). However, we estimated the parameters from 250 observations, thus 

the backtesting was performed in the period from November 30, 1998 until 

December 31, 2014, leaving the first year of data for initial parameter estimation. 

The evolution of DJIA price index2 in the analyzed period is depicted in Figure 2. 

The index took the value of 9,116.55 on November 30, 1998 and 17,983.07 on 

December 31, 2014. Thus the average annual return (to be more specific the 

average return of 250 trading days) in the analysed period was 4.26% whereas 

the maximum drawdown over the analyzed period was 53.78%. 

Figure 2 Evolution of DJIA index in the analysed period 

 

Source: Author 

                                       
1 http://finance.yahoo.com 
2 Price index considers only price movements in the components, dividends are not 
considered. 
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4 Empirical Part and Results 

In the previous sections we proposed an optimization problem which can be 

applied to find the optimal portfolio. In this section we apply this portfolio 

optimization problem on a moving window basis. Starting with the initial wealth 

 at the beginning of the analyzed period, we can recursively compute the 

ex-post wealth path  over the analyzed period, 

, (10) 

where  are ex-post observed returns and  are the weights of particular 

assets at time t (portfolio composition). These weights were obtained by means 

of maximizing the Sharpe ratio, see problem (3). Under this set-up the matrix of 

random realizations of future returns ( ) was simulated for each day assuming 

the following two approaches: 

1. 100,000 simulated trials (rows) were calculated utilizing GARCH-copula 

model, which was estimated from 250 days prior to the examined day, 

2. taking last 250 observed returns prior to the examined day 

(bootstrapping method). 

Our goal is to analyse the soundness of GARCH-copula model to describe the 

return time series and moreover to predict their future evolution. The 

bootstrapping method, which represents a rather naïve model, is analysed only as 

a benchmark to the proposed GARCH-copula approach. 

In this section we present the results obtained by applying two above mentioned 

approaches for simulation of future returns. In our application we assumed the 

following values of risk-free rate: 0%, 1%, …, 6% and 10% p.a. for the Sharpe 

ratio (1). The reason to assume more values of the risk-free rate is to analyze the 

robustness of the proposed approach. 

All the computations were performed in Matlab. While doing so we utilized some 

algorithms already presented in Kresta (2015) while most of them had to be 

programmed. Nevertheless, all the algorithms, by which the results were 

obtained, are freely available upon an e-mail request to the author. 

4.1 Bootstrapping Method 

The ex-post wealth paths obtained by means of the bootstrapping method are 

depicted in Figure 3. In order to keep the clarity of the graph we plotted only the 

wealth paths for selected risk-free rates. As can be seen from the graph, the final 

wealth ranges between 2.5 (risk-free rate of 0% p.a.) and 3.6 (risk-free rate of 
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10% p.a.) and there is a clear relationship – the higher the risk-free rate the 

higher the final wealth. The relationship can be extended to the whole wealth 

paths – the wealth paths with higher risk-free rates dominate the ones with lower 

risk-free rates, except the period from December 2008 until April 2009 (in which 

there was a big drop in portfolio wealth due to the subprime crisis). Note that the 

risk-free rate is applied only in calculation of the Sharpe ratio, however, the 

investor is not allowed to invest into a risk-free asset, i.e. he always invests his 

whole wealth into risky assets, see portfolio optimization problem (3). Due to this 

reason, the wealth paths dropped in the period 2008-2009 as there was general 

decline of stocks' prices due to the subprime crisis. 

Figure 3 Ex-post wealth paths obtained by means of bootstrapping method 

 

Source: Author 

On the other hand, from the figure we can see that the higher the risk-free rate, 

the higher the volatility of the wealth paths and the drawdowns. However this is 

true only for the absolute values of the drawdowns. If we compare the maximum 

drawdowns (which actually took place in 2008-2009) stated relatively, we find out 

that there is no relationship between the values of risk-free rate and the 

maximum drawdown (in %), see Table 1. 
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Table 1 Final wealth and maximum drawdown of particular wealth paths 

Risk-free rate 0% 1% 2% 3% 4% 5% 6% 10% 

Final wealth 2.50 2.59 2.63 2.75 2.91 3.00 3.03 3.06 

Maximum 

drawdown 
44.1% 44.1% 44.0% 43.9% 43.6% 43.4% 43.7% 47.1% 

Source: Author 

Table 1 summarizes also the values of final wealth for all the risk-free rates 

assumed. We can see that the above discussed relationship between the values of 

risk-free rate and final wealth is valid for all analyzed risk-free rates. 

To sum up, we can conclude that the final wealth ranges between 2.5 (average 

annual return of 5.82%) and 3.06 (average annual return of 7.16%) and 

maximum drawdown over the analysed period fluctuates around 44%, except for 

10% risk-free rate. Although the strategies outperformed the passive investment 

into Dow Jones Industrial Average index (average annual return of 4.26% and 

maximum drawdown 53.78%) both in terms of profitability and maximum 

drawdown, the profitability after accounting for transaction costs is questionable. 

4.2 GARCH-Copula Model 

The ex-post wealth paths obtained by means of GARCH-copula model are 

depicted in Figure 4. From the graph we can observe two findings: the values of 

final wealth are higher than applying previous approach and the ex-post wealth 

paths evolved more closely to each other for different risk-free rates. Also in the 

case of GARCH copula model, the higher the risk-free rate the higher the value of 

final wealth. It is difficult to analyze the volatility of the wealth paths as they are 

close to each other.  

Table 2 summarizes the values of final wealth and maximum drawdown. We can 

see that the values of both the final wealth and the maximum drawdown grow as 

applied risk-free rate increases (this relationship is not strictly true for final 

wealth, but the general trend is obvious). Concerning the values, we can sum up 

that the final wealth ranges between 11.33 (average annual return of 16.18%) 

and 12.48 (average annual return of 16.88%) and maximum drawdown over the 

analyzed period is in range of 33%–35.3%. As it is obvious, the results are not 

significantly sensitive to applied values of the risk-free rate and the proposed 

methodology is robust. 
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Figure 4 Ex-post wealth paths obtained by means of GARCH-copula model 

 

Source: Author 

We can see that when applying the GARCH-copula model, the values of maximum 

drawdown are smaller and the values of final wealth are higher compared to the 

bootstrapping method. This approach is thus clearly superior to the previous one. 

However, note that the results are provided without deduction of transaction 

costs.  

Table 2 Final wealth and maximum drawdown of particular wealth paths 

Risk-free rate 0% 1% 2% 3% 4% 5% 6% 10% 

Final wealth 11.38 11.33 11.55 11.47 11.61 12.15 12.30 12.48 

Maximum 

drawdown 
33.2% 33.4% 33.7% 33.9% 34.2% 34.3% 34.5% 35.3% 

Source: Author 
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Conclusions 

The cornerstone of modern portfolio theory was set by Markowitz in 1952 and the 

portfolio optimization problem is in the constant focus of both academics and 

practitioners. Although, the prediction of future time series evolution plays an 

important role in the problem, it is rarely addressed in research. In the paper we 

analysed the applicability of the GARCH-copula model. To be more concrete we 

assumed the investor maximizing Sharpe ratio while the future time series are 

simulated by means of GARCH-copula model and by means of bootstrapping 

technique.  

In our paper we did not subtract the transaction costs. The reason is twofold. 

Firstly, they differ significantly – although they would represent high fraction of 

the gains for small private investors, for large institutional investors they would 

be of smaller values. Secondly, also the considered investments into DJIA index is 

connected with transaction costs which are caused by the changes in stock prices 

(and thus also changes in relative weights). We are also aware of another 

drawback of our analysis when considered for practical purposes – survivorship 

bias. Loosely speaking, by the survivorship bias we address the situation in which 

the decision making is influenced by the information which are not known at the 

moment we are making decision. In our analysis, the problematic point is the 

selection of dataset – we took the components of DJIA index as of October 6, 

2014, however this composition was not known during the whole analysed period 

(years 1998-2014). We didn't address this feature as we were mainly focused on 

the analysis of GARCH-copula model applicability for financial time series 

predictions. We compared the GARCH-copula approach to bootstrapping 

technique and applied the same dataset for both methods. By doing so, the 

results can be compared, however it would be tricky to make conclusions about 

profitability of strategies. 

From the empirical results we found out that GARCH-copula model provides 

better forecasts of future financial time series evolution than bootstrapping 

method. Assuming the investor, who is maximizing the Sharpe ratio, both the 

final wealth increased and maximum drawdown decreased. 
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