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Foreword

This is a collection of extended abstracts of the talks presented at the 12th Euro-
pean Conference on Combinatorics, Graph Theory and Applications 2023 (Eurocomb’23),
which was held in Prague from August 28 to September 1, 2023. This year’s Eurocomb
conference was organized by Charles University with support from colleagues from Masaryk
University. Continuing the tradition of the previous 11 conferences of the Eurocomb series,
Eurocomb’23 covered the full range of combinatorics and graph theory including applica-
tions in other areas of mathematics, computer science and engineering.
Combinatorics is witnessing a steady increase in its significance within contemporary re-
search, particularly in the fields of mathematics and computer science. However, its im-
pact is not limited to these areas alone. This is also reflected in the increasing interest
in Eurocomb conferences, which became an established forum of cutting-edge research in
combinatorics world-wide. This year’s Eurocomb attracted a total of 170 submissions.
Out of them, 115 were presented as talks at the conference, while additional 17 were pre-
sented as posters. In addition to the contributed presentations, the conference program
featured invited plenary talks by nine renowned experts - Gwenaël Joret (ULB), Eun Jung
Kim (LAMSADE, Paris-Dauphine), Matthew Kwan (IST Austria), Shoham Letzter (Uni-
versity College London), Rose McCarty (Princeton), Dhruv Mubayi (UI Chicago), Oleg
Pikhurko (Warwick), Luke Postle (Waterloo) and Martin Tancer (Charles University) -
who covered recent advancements across a wide range of topics encompassing extremal,
probabilistic, and structural combinatorics, as well as theoretical computer science.
Since Eurocomb’03, which was held in Prague 20 years ago, the European Prize in Com-
binatorics has been awarded to recognize groundbreaking contributions in combinatorics,
discrete mathematics, and their applications by young European researchers not older than
35. The prize is supported by the Centre for Discrete Mathematics, Theoretical Computer
Science and Applications (DIMATIA) of Charles University in Prague, the organizers of
Eurocomb, Elsevier and additional sponsors.
We would like to thank all participants of Eurocomb’23, particularly the presenters, for
contributing to the success of this year’s Eurocomb conference. We express our special
gratitude to the nine invited speakers for accepting our invitations to deliver plenary talks.
We would also like to acknowledge the remarkable dedication and hard work of the pro-
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gram committee members who contributed to creating an engaging conference program;
their commitment played a vital role in making the program appealing. Last but not least,
we would like to thank Zdeněk Dvořák, the chair of the organizing committee, together
with all organizing committee members for their tremendous efforts, ensuring the smooth
execution of the conference. Their commitment and meticulous planning significantly con-
tributed to the overall success of the event.

Dan Kráľ and Jaroslav Nešetřil
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On the number of tangencies among
1-intersecting curves

(Extended abstract)

Eyal Ackerman∗ Balázs Keszegh†

Abstract

Let C be a set of curves in the plane such that no three curves in C intersect at a
single point and every pair of curves in C intersect at exactly one point which is either
a crossing or a touching point. According to a conjecture of János Pach the number
of pairs of curves in C that touch each other is O(|C|). We prove this conjecture for
x-monotone curves.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-001

1 Introduction
We study the number of tangencies within a family of 1-intersecting x-monotone planar
curves. A planar curve is a Jordan arc, that is, the image of an injective continuous function
from a closed interval into R2. If no two points on a curve have the same x-coordinate,
then the curve is x-monotone. We consider families of curves such that every pair of curves
∗Department of Mathematics, Physics and Computer Science, University of Haifa at Oranim, Tivon

36006, Israel.
†Alfréd Rényi Institute of Mathematics and ELTE Eötvös Loránd University, Budapest, Hungary.

Research supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences,
by the National Research, Development and Innovation Office – NKFIH under the grant K 132696 and
FK 132060, by the ÚNKP-22-5 New National Excellence Program of the Ministry for Innovation and
Technology from the source of the National Research, Development and Innovation Fund and by the ERC
Advanced Grant “ERMiD”. This research has been implemented with the support provided by the Ministry
of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund,
financed under the ELTE TKP 2021-NKTA-62 funding scheme.
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intersect at a finite number of points. Such a family is called t-intersecting if every pair of
curves intersects at at most t points. An intersection point p of two curves is a crossing
point if there is a small disk D centered at p which contains no other intersection point
of these curves, each curve intersects the boundary of D at exactly two points and in the
cyclic order of these four points no two consecutive points belong to the same curve. If
two curves intersect at exactly one point which is not a crossing point, then we say that
they are touching or tangent at that point.

The number of tangencies is the number of tangent pairs of curves. If more than
two curves are allowed to intersect at a common point, then every pair of curves might
be tangent, e.g., for the graphs of the functions x2i, i = 1, 2, . . . , n, in the interval [−1, 1].
Therefore, we restrict our attention to families of curves in which no three curves intersect at
a common point. It is not hard to construct such a family of n (x-monotone) 1-intersecting
curves with Ω(n4/3) tangencies based on a famous construction of Erdős (see [14]) of n lines
and n points admitting that many point-line incidences. János Pach [13] conjectured that
requiring every pair of curves to intersect (either at crossing or a tangency point) leads to
significantly less tangencies.

Conjecture 1 ([13]). Let C be a set of n curves such that no three curves in C intersect at
a single point and every pair of curves in C intersect at exactly one point which is either a
crossing or a tangency point. Then the number tangencies among the curves in C is O(n).

Györgyi, Hujter and Kisfaludi-Bak [8] proved Conjecture 1 for the special case where
there are constantly many faces in the arrangement of C that together contain all the
endpoints of the curves. In this paper we show that Conjecture 1 also holds for x-monotone
curves.

Theorem 2. Let C be a set of n x-monotone curves such that no three curves in C intersect
at a single point and every pair of curves in C intersect at exactly one point which is either
a crossing or a tangency point. Then the number tangencies among the curves in C is
O(n).

We prove Theorem 2 by considering two types of tangencies according to whether a
tangency point is between two curves such that their projections on the x-axis are nested
or overlapping. In each case we consider the tangencies graph whose vertices represent the
curves and whose edges represent tangent pairs of curves. In the latter case we show that
it is possible to disregard some ratio of the edges using the pigeonhole principle and the
dual of Dilworth’s Theorem and then order the remaining edges such that there is no long
monotone increasing path with respect to this order. In the first case, we show that after
disregarding some ratio of the edges the remaining edges induce a forest. Due to space
limitations most of the details of the proof are omitted. The interested reader can find
them in [3].

Related Work. It follows from a result of Pach and Sharir [17] that n x-monotone
1-intersecting curves admit O

(
n4/3 (log n)2/3

)
tangencies. Note that this bound almost
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matches the lower bound mentioned above. It also follows from [17] that for bi-infinite x-
monotone 1-intersecting curves the maximum number of tangencies is Θ(n log n). Pálvölgyi
et nos [2] showed that there are O(n) tangencies among families of n 1-intersecting curves
that can be partitioned into two sets such that all the curves within each set are pairwise
disjoint. Variations of this bipartite setting were also studied in [1, 10, 19].

Pach, Rubin and Tardos [15, 16] settled a long-standing conjecture of Richter and
Thomassen [20] concerning the number of crossing points determined by pairwise inter-
secting curves. In particular, they showed that in any set of curves admitting linearly
many tangencies the number of crossing points is superlinear with respect to the number
of tangencies. This implies that for any fixed t every set of n t-intersecting curves ad-
mits o(n2) tangencies. Salazar [22] already pointed that out for such families which are
also pairwise intersecting. Better bounds for families of t-intersecting curves were found
in [5, 10]. Specifically, it follows from [10] that n 1-intersecting curves determine O(n7/4)
tangencies.

There are several other problems in combinatorial geometry that can be phrased in
terms of bounding the number of tangencies between certain curves, see, e.g., [4]. The most
famous of which is the unit distance problem of Erdős [6] which asks for the maximum
number of unit distances among n points in the plane. It is easy to see that this problem
is equivalent to asking for the maximum number of tangencies among n unit circles.

2 Proof of Theorem 2
Let C be a set of n x-monotone curves such that no three curves in C intersect at a single
point and every pair of curves in C intersect at exactly one point which is either a crossing
or a tangency point. By slightly extending the curves if needed, we may assume that
every intersection point of two curves is an interior point of both of them and that all the
endpoints of the curves are distinct.

Let p = (x1, y1) and q = (x2, y2) be two points. We write p <x q if x1 < x2 and we write
p <y q if y1 < y2. We mainly consider the order of points from left to right, so when we
use terms like ‘before’, ‘after’ and ‘between’ they should be understood in this sense. For
a curve c ∈ C we denote by L(c) and R(c) the left and right endpoints of c, respectively. If
p, q ∈ c, then c(p, q) denotes the part of c between these two points. We denote by c(−, p)
(resp., c(p,+)) the part of c between L(c) (resp., R(c)) and p. For another curve c′ ∈ C we
denote by I(c, c′) the intersection point of c and c′. We may also write, e.g., c(c′, q) instead
of c(I(c, c′), q)

Suppose that an x-monotone curve c1 lies above another x-monotone curve c2, that is,
the two curves are non-crossing (but might be touching) and there is no vertical line ` such
that I(c1, `) <y I(c2, `). Assuming the endpoints of c1 and c2 are distinct there are four
possible cases: (1) L(c1) <x L(c2) <x R(c2) <x R(c1); (2) L(c2) <x L(c1) <x R(c1) <x

R(c2); (3) L(c1) <x L(c2) <x R(c1) <x R(c2); and (4) L(c2) <x L(c1) <x R(c2) <x R(c1).
We denote by c2 ≺i c1 the relation that corresponds to case i, for i = 1, 2, 3, 4. It is not
hard to see that each ≺i is a partial order.
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Proposition 3. For every i = 1, 2, 3, 4 there are no three curves c1, c2, c3 ∈ C such that
c1 ≺i c2 ≺i c3.

We say that the tangency point of two touching curves c1, c2 ∈ C is of Type i if c1 ≺i c2.
We will count separately tangency points of Types 1 and 2 and tangency points of Types 3
and 4.

Lemma 4. There are O(n) tangency points of Type 1 or 2.

Proof. Since all the curves in C are pairwise intersecting and x-monotone there is a vertical
line ` that intersects all of them. By slightly shifting ` if needed we may assume that no
two curves intersect ` at the same point. We assume without loss of generality that at least
half of all the tangency points of Types 1 and 2 are to the right of `, for otherwise we may
reflect all the curves about `. We may further assume that at least half of the tangency
points of Types 1 and 2 to the right of ` are of Type 2, for otherwise we may reflect all
the curves about the x-axis. Henceforth, we consider only Type 2 tangency points to the
right of `.

By Proposition 3 a curve cannot touch one curve from above and another curve from
below at Type 2 tangency points. Thus, we may partition the curves into blue curves and
red curves such that at every tangency point a blue curve touches a red curve from below
(we ignore curves that contain no tangency points among the ones that we consider).

Proposition 5. Every pair of blue curves cross each other.

We proceed by marking the rightmost tangency point on every red curve. Clearly, at
most n tangency points are marked. Henceforth, we consider only unmarked tangency
points. Let G be the (bipartite) tangencies graph of the blue and red curves. That is, the
vertices of G correspond to the blue and red curves and its edges correspond to pairs of
touching blue and red curves (recall that we consider only unmarked tangency points of
Type 2 to the right of `). We will show that G is a forest and hence has at most n − 1
edges.

Suppose that G contains a cycle and let C = b0 − r0 − b1 − r1 − . . . − bk − rk − b0 be
a shortest cycle in G, such that bi corresponds to a blue curve and ri corresponds to a red
curve, for every i = 0, 1, . . . , k. We may assume without loss of generality that b1 has the
lowest intersection point with ` among the blue curves in C and that I(b0, `) <y I(b2, `).

Proposition 6. For every i ≥ 1 the curve ri intersects ` above r0 and intersects b0(−, `),
r0(b0,+) and b1(b0,+). See Figure 1 for an illustration.

It follows from Proposition 6 that rk intersects b0 to the left of ` and therefore (b0, rk)
cannot be an edge in G. Thus G is a forest and has at most n − 1 edges. This implies
that there are at most 2n− 1 Type 2 tangency points to the right of ` and at most 8n− 4
tangency points of Types 1 and 2.

Lemma 7. There are O(n) tangency points of Type 3 or 4.
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b1 b0

ℓ

r0ri

(a)

b1 b0

ℓ

r0ri

(b)

Figure 1: Illustrations for the statement of Proposition 6: ri intersects ` above r0 and
intersects b0(−, `), r0(b0,+) and b1(b0,+).

Proof. As in the proof of Lemma 4, we may assume that there is a vertical line ` that
intersects all the curves at distinct points and it is enough to consider only Type 4 tangency
points to the right of `.

By Proposition 3 a curve cannot touch one curve from above and another curve from
below at Type 4 tangency points. Thus, we may partition the curves into blue curves and
red curves such that at every tangency point a blue curve touches a red curve from below
(we ignore curves that contain no tangency points among the ones that we consider).

Clearly, there are no Type 4 tangencies among the blue curves, however, there might be
tangencies of other types among them. Next we wish to obtain a subset of the blue curves
such that every pair of them are crossing and they together contain a percentage of the
tangency points that we consider. It follows from Proposition 3 that the largest chain in
the partially ordered set of the blue curves with respect to ≺1 is of length two. Therefore,
by Mirsky’s Theorem (the dual of Dilworth’s Theorem) the blue curves can be partitioned
into two antichains with respect to ≺1. The blue curves of one of these antichains contain
at least half of the tangency points that we consider. By continuing with this set of blue
curves and applying the same argument twice more with respect to ≺2 and ≺3 we obtain
a set of pairwise crossing blue curves that together contain at least 1/8 of the tangency
points of Type 4 to the right of `. Henceforth we consider these blue curves and the red
curves that touch at least one of them at a Type 4 tangency point to the right of `.

Let G = (B ∪ R,E) be the (bipartite) tangencies graph of these blue and red curves.
That is, B corresponds to the blue curves, R corresponds to the red curves and E corre-
sponds to pairs of touching blue and red curves (at Type 4 tangency points to the right of
`). We order the edges of G according to the order of their corresponding tangency points
from left to right. We will show that G has linearly many edges using the following fact,
attributed to Rödl [21] in [7].

Proposition 8. Let G = (V,E) be a graph and let < be a total order of its edges. Let k
be an integer and suppose that G does not contain a monotone increasing path of k edges,
that is, a path e1 − e2 − . . .− ek such that e1 < e2 < . . . < ek. Then |E| <

(
k
2

)
|V |.
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Figure 2: n x-monotone pairwise intersecting 1-intersecting curves might determine 3n− 4
tangencies.

Recall that we order the edges of G according to the order of their corresponding
tangency points from left to right. The lemma follows from Proposition 8 and the next
claim.

Proposition 9. G does not contain a monotone increasing path of 7 edges starting at B.

We conclude from Propositions 8 and 9 that G has at most 28n edges. This in turn
implies that there are at most 8 · 2 · 2 · 28n = 896n tangency points of Types 3 and 4.

By Lemmata 4 and 7 there are at most 904n− 4 tangency points among the curves in
C. This concludes the proof of Theorem 2.

3 Discussion
We have shown that n x-monotone pairwise intersecting 1-intersecting curves determine
O(n) tangencies. The constant hiding in the big-O notation is rather large, since, for
simplicity, we did not make much of an effort to get a smaller constant. In particular,
our upper bound can be improved by considering more cases. It would be interesting to
determine the exact maximum number of tangencies among a set of n x-monotone curves
each two of which intersect at exactly one point. The best lower bound we came up with
is 3n− 4, see Figure 2.
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Abstract
We consider the following question. When is the random k-uniform hypergraph
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contain some graphs of maximum degree ∆ and degeneracy D on cN vertices at all.
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size-Ramsey problem for most k-uniform hypergraphs of bounded degree and degen-
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that for any graph F there exists N such that in any 2-edge-colouring of KN there is a
monochromatic copy of F . This is often indicated with the notation KN →2 F . The study
of the minimal value of N for which KN →2 F , which is denoted by R2(F ) and called
the Ramsey number of F , is one of the main topics of Ramsey theory. This question can
be easily generalised to a setting with r colours and a different host graph G: we write
G→r F if every r-colouring of E(G) contains a monochromatic copy of F .

Another line of research that generated a lot of attention was started by Erdős, Faudree,
Rousseau and Schelp [13]. The authors analysed other sparser structures for which we have
G→2 F and in particular, for fixed F and r ∈ N, they asked to determine what they called
the size-Ramsey number of the graph F , defined as R̂r(F ) := min {|E(G)| : G→r F}. We
remark that this well defined as KRr(F ) →r F .

One can also ask for a stronger property of G, namely that it is r-partition-universal for
a family F of graphs. We say that G is r-partition-universal for F if for every r-colouring of
E(G), there exists some colour χ such that a colour χ copy of every F ∈ F appears. Observe
that while G→r F for every F ∈ F is certainly necessary for r-partition universality, it is
not sufficient: it could be that for an r-colouring of E(G) different members of F appear
in different colours.

These questions have primarily been studied for graphs, but the above definitions nat-
urally extend to k-uniform hypergraphs with k ≥ 3. We will write k-graphs for k-uniform
hypergraphs.

2 Previous results
For several classes of ‘tree-like’ graphs, the size-Ramsey number is known to be linear in
the number of vertices. Beck [5] proved that R̂r(Pn) is linear in n. Trees were dealt with
by Friedman and Pippenger [14], and Haxell, Kohayakawa and Łuczak [17] proved it for
cycles. Much later, Clemens et al. [7] showed that the same holds for powers of paths with 2
colours (Han et al. [15] extended this to r colours), Berger et al. [6] and Kamčev, Liebenau,
Wood, and Yepremyan[18] for graphs of bounded maximum degree and treewidth.

For k-graphs for k ≥ 3, Han et al. [16] proved a linear bound for 3-uniform tight paths,
and Letzter, Pokrovskiy, Yepremyan [22] for all uniformities and more generally powers of
bounded degree hypertrees.

However, not all bounded degree graphs have linear size-Ramsey numbers. Rödl
and Szemerédi [25] proved that there is a family of graphs of maximum degree 3 whose
size-Ramsey numbers grow as n log1/60 n. Recently, Tikhomirov [27] improved this to
n exp

(
Ω(
√

log n)
)
. In k-graphs, Dudek, Fleur, Mubayi and Rödl [12] proved a lower bound

similar to that of Rödl and Szemerédi for k-graphs of maximum degree k + 1. It remains
a conjecture that these bounds can be improved to n1+ε (possibly for larger maximum
degrees).

In terms of general upper bounds, Kohayakawa, Rödl, Schacht and Szemerédi [21]
proved the first non-trivial upper bound O

(
n2−1/∆ log1/∆ n

)
on the size-Ramsey number of

any graph on n vertices and maximum degree ∆; this was recently improved by Draganić
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and Petrova [11] for ∆ = 3.
For k-graphs, the upper bound O(nk) follows from the linearity of the usual Ramsey

number, proved by Cooley, Fountoulakis, Kühn and Osthus [10]. The only improvement
over this, to O(nk−ε) for some (very) small ε > 0, was by Allen et al. [2].

All of the mentioned general upper bounds in fact are not only upper bounds on size-
Ramsey numbers, but actually give graphs which are r-partition universal for bounded
degree k-graphs.

3 Our result
If F is a k-graph, we write ∆(F ) for the maximum vertex degree of F , i.e. the maximum
number of edges which all contain a given vertex. We say F is D-degenerate if there is
an ordering of the vertex set of F such that each vertex v in the ordering is in at most D
edges whose other vertices are strictly before v. We prove the following main theorem.

Theorem 1. For all r,D,∆ ∈ N, k ≥ 2, and µ > 0, there is c > 0 such that for all
positive integers N and p = N−

1
D

+µ, the random k-graph Γ = G(k)(N, p) asymptotically
almost surely has the following property. For every r-edge-colouring there is a colour χ such
that, for any D-degenerate k-graph F of maximum degree at most ∆ with cN vertices, there
is a colour χ-monochromatic copy of F in Γ.

For k = 2 this appears in the preprint [1, Theorem 3] of the first two authors.
Theorem 1 is asymptotically sharp. Indeed, if F is a D-degenerate graph on cN vertices

with bounded maximum degree and approximately DcN edges (it is easy to construct such
graphs) a first moment method argument shows that G(k)(N, p) with p = o(N

1
D ) is likely

not to contain a copy of F (let alone if we adversarily colour the edges of G).

4 Outline of the proof of Theorem 1
We now sketch the proof of Theorem 1. Our argument is intricate. Hence, to simplify the
discussion here, we look at the case k = 2 first (and thus naturally refer to the lemmas
in [1]), and then outline the changes needed for k ≥ 3. For lack of space, we do not state
the lemmas required precisely here, but only give a general idea.

Given a typical Γ = G(N, p) and an adversarial r-colouring of its edges, we begin by
identifying the colour χ and a subgraph G of colour χ edges in Γ into which we will embed
our graph F . This G will be a h1-partite subgraph of Γ, where h1 is a reasonably large
constant (depending on D, ∆ and µ). We require that G has a property ‘few unpromising
subgraphs’ which we will explain shortly. The precise statement is [1, Lemma 19].

We now want to embed a fixed D-degenerate graph F on cN vertices of maximum
degree at most ∆ to G. A method of Nenadov [23], which we formulate as a lemma
in [1, Lemma 21], reduces this problem to that of finding ‘robust homomorphisms’ from
F to G. Roughly speaking, this means we need to find a way of constructing a sequence
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ψ0, ψ1, . . . , ψv(F ) of partial homomorphisms from F to G, each embedding one more vertex
than the previous, taken in the degeneracy order on G. The key property this sequence
must have is: at each step, the number of choices we have to embed the next vertex is
comparable to the number of choices we would have to embed it in the random graph Γ.
That is, if the next vertex y of F has d−(y) neighbours before it in the degeneracy order,
we should have Ω

(
pd

−(y)N
)
choices for our embedding of y. The advantage this gives us

is that we no longer have to care, when we construct our embedding of F , about avoiding
previously used vertices.

We now explain the property ‘few unpromising subgraphs’. Before we begin embedding
F , we assign its vertices to the parts of G, with the property that vertices of F which are
somewhat close together in graph distance will be assigned to different parts of G. When
we come to embed y, we have already embedded its d−(y) neighbours N−(y) preceding it.
In order to construct robust homomorphisms, we need many choices for our embedding of
y. That is, we need that these embedded neighbours have many G-common neighbours in
the part of G to which y is assigned. So the first idea is the following: we look at copies of
F
[
N−(y)

]
in G, and designate them as promising if they have sufficiently many common

neighbours in the correct part of G, and unpromising otherwise. For technical reasons—
to be explained shortly—we actually have to modify this slightly, looking at copies not of
F
[
N−(y)

]
but of a supergraph H ′0(y) which contains some additional vertices of F that are

within a (small) distance `0 of y. The property few unpromising subgraphs that we require
of G is then the following. For each of the (boundedly many) choices of H ′0 and parts to
which the vertices of H ′0 might be assigned, at most a tiny fraction of the embeddings of
H ′0 into G are unpromising.

Our embedding procedure will succeed if we are never forced to embed H ′0(y) to an
unpromising copy in G. To avoid this, we need to look ahead a (large) constant `1 number
of steps. That is, when we embed a vertex x of F preceding y, we look at the graph
distance from x to y. If it exceeds `1, we will not cross off for y any vertices to which
we could embed x. If it is at most `1, we will examine each candidate vertex v for x and
determine whether v is dangerous, i.e. assigning v to x makes it too hard in the future
to avoid embedding H ′0(y) to an unpromising copy. If it does, we will cross off v, which
means we will not choose to embed x to v. What we need to argue is that we will not need
to cross off many vertices at any given step.

To decide whether v is dangerous, we look at all the embeddings of H ′1(y) (all the
vertices at distance `1 or less from y that precede y) that are consistent with our current
embedding ψx−1. Some of these embed H ′0(y) to an unpromising copy, and we call these
unpromising extensions. If the fraction of unpromising extensions which embed x to v is
exceptionally large, then v is dangerous.

We can use a double-counting argument to show that for vertices at distance strictly less
than `1 from y, there can only be few vertices which are dangerous. For vertices at distance
exactly `1 from y, this argument fails. However we can show that the embeddings ‘mix
rapidly’ and there will in fact be no dangerous vertices in this case. This is [1, Lemma 20].

To complete this sketch, we require that before we begin to embed F , there are very
few unpromising extensions of H ′1(y). When H ′0(y) is carefully chosen—this is the technical
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reason mentioned above—this follows from a theorem of Spencer [26] counting rooted copies
of graphs in a random graph together with the few unpromising subgraphs property of G.

Putting the pieces together, when we use this embedding strategy we will (inductively)
have many candidates for each x preceding y, at most a few of which are crossed off for
y (or for any other vertex). When we embed x to a vertex which is not crossed off for v,
the fraction of unpromising extensions of H ′1(y) can increase, but since this fraction starts
tiny and is increased only by a bounded amount a bounded number of times, it will remain
small. In particular, we will end up embedding H ′0(y) to a promising subgraph, which
guarantees y has many candidates as we needed.

We briefly mention one place in this sketch where significant technical work is required.
This is in the construction of G, [1, Lemma 19]. To make this strategy work, the number
of unpromising subgraphs we can allow must be very tiny indeed. In particular, a standard
application of the Sparse Regularity Lemma [20] will not give sufficiently good control of
the constants, and we need instead to use a strengthened version of the Sparse Regularity
Lemma together with a ‘cleaning’ process. In order to obtain the required counting results,
we in addition need the ‘Counting KŁR’ results of Conlon, Gowers, Samotij and Schacht [8].

We should also note that the ‘mixing rapidly’ proof of [1, Lemma 20] relies on Spencer’s
theorem [26] on rooted copies.

We now sketch how this strategy can be modified to work for k ≥ 3. The object G
into which we embed F needs to be a k-complex (hypergraph with edges of size at most k)
with its edges of size k selected from edges of the same colour in Γ. In order to show that a
suitable G exists, we need to use a strengthened sparse version of the Strong Hypergraph
Regularity Lemma, proved by Allen, Parczyk and Pfenninger [4]. We need to develop a
hypergraph version of the Counting KŁR results of [8] for this setting of complexes. And,
finally, we need to use a rather more involved ‘cleaning’ process in order that we obtain
the required control of our constants for ‘few unpromising subgraphs’.

Apart from this, much of our strategy sketched above works in a broadly similar way
for hypergraphs. We need to use the polynomial concentration theorem of Kim and Vu [19]
replacing Spencer’s theorem. We need to view F as a complex by down-closure and hence
we need to consider edges of all uniformities up to k, not just of uniformity k, throughout.
In particular, although all edges of F of uniformity smaller than k are contained in edges
of uniformity k, this property is not preserved for the subgraphs H ′0(y) and H ′1(y); these
k-complexes can have edges of smaller uniformity that are not in any k-edge.
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Abstract

We give a new explicit construction of strong blocking sets in finite projective
spaces using expander graphs and asymptotically good linear codes. Using the re-
cently found equivalence between strong blocking sets and linear minimal codes, we
give the first explicit construction of Fq-linear minimal codes of length n and dimen-
sion k such that n is at most a constant times qk. This solves one of the main open
problems on minimal codes.
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1 Introduction
Blocking sets are sets of points in a finite projective or affine space that meet every hyper-
plane non-trivially. Studying these objects is a classical topic in finite geometry [15,17]. A
stronger notion of blocking sets is that of a set of points that meets every hyperplane in a
spanning set. For example, in a projective plane, the set of all points on a single line is a
blocking set while the set of all points on three non-concurrent lines is a strong blocking
set. These special kind of blocking sets have been studied under the names of generating
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sets [23, 25], cutting blocking sets [1, 12, 16] and strong blocking sets [21, 24]. It is the last
terminology that we use in this paper.

Strong blocking sets have recently been shown to be in one-to-one correspondence with
the notion of minimal codes [1,32]. Minimal codes are linear subspaces of Fnq such that the
support of any non-zero vector in the subspace does not contain the support of any other
non-zero vector of the subspace as a proper subset. These codes have been studied for
their application in decoding algorithms [27] and cryptography [18,29]. Recently, minimal
codes have also been linked to perfect hash families [14], which have important applications
in computer science. The main problem is to find minimal codes of dimension k and the
shortest possible length n as a function of k and the size of the underlying finite field
Fq [18]. It is known that any strong blocking set in the (k − 1)-dimensional projective
space obtained from Fkq , denoted by PG(k− 1, q), must have size at least (q+1)(k− 1) [3],
which implies that any minimal code of length n and dimension k over Fq must satisfy
n ≥ (q+1)(k− 1). Therefore, we would like to construct minimal codes whose length is at
most a constant times qk. It follows from [3, Theorem 2.8] that such a minimal code will
also be an asymptotically good error-correcting code, which provides another motivation
for the problem. While it is easy to show the existence of such short minimal codes using
the probabilistic method (for the best results, see [30] for q = 2 and [2, 14] for q > 2),
it is a challenging and central open problem to give explicit constructions [20]. Many
constructions of minimal codes have appeared in the last few years [1, 10, 20, 22, 23], and
the current best explicit construction has length n ∼ q4k/4 [11, 19].

In this paper, we give a new graph-theoretical construction of strong blocking sets,
and thus minimal codes. By using asymptotically good linear codes and constant-degree
expander graphs, we obtain an explicit construction of strong blocking sets of size cqk, in
the projective space PG(k − 1, q), for an absolute constant c.

A graph parameter known as the (vertex) integrity of a graph plays a crucial role
in our construction. We prove a new lower bound on the vertex integrity of d-regular
graphs in terms of their eigenvalues. Our lower bound implies that any expander graph of
bounded degree on n vertices has vertex integrity at least a constant times n. We combine
explicit constructions of such graphs with explicit constructions of asymptotically good
linear codes, to get explicit minimal codes.

There is a rich history of using expander graphs to construct asymptotically good linear
codes [6, 31, 33]. Our work contributes to this line of research by using these graphs in a
novel way to construct (asymptotically good) minimal codes. Our construction is the first
of its kind in finite geometry as it uses graphs to pick a subset of lines in a finite projective
space whose union has certain intersection properties with hyperplanes. This construction
has already led to explicit constructions of small affine blocking sets [14], and we expect
that it will lead to many new results in finite geometry.
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2 Preliminaries
Definition 2.1. The (Hamming) support of a vector v ∈ Fnq is the set σ(v) := {i : vi 6=
0} ⊆ [n]. The (Hamming) weight of v is wt(v) := |σ(v)|.

Definition 2.2. An [n, k, d]q code C is a k-dimensional subspace of Fnq , with d := min{wt(v) :

v ∈ C \ {~0}} is called the minimum distance of C. The elements of C are called codewords.
Moreover, a generator matrix for C is a matrix G ∈ Fk×nq such that C = {uG : u ∈ Fkq}.

Definition 2.3. Let {ni}i≥1 be an increasing sequence of positive numbers and suppose
that there exist sequences {ki}i≥1 and {di}i≥1 such that for all i ≥ 1 there exists an
[ni, ki, di]q code Ci. Then the sequence {Ci}i≥1 is called an (R, δ)q-family of codes, where
the rate R of this family is defined as R = lim infi→∞

ki
ni
, and the relative distance δ is

defined as δ = lim infi→∞
di
ni
.

One of the central problems on error-correcting codes is to understand the trade-off
between the rate and the relative distance of codes. A family of codes for which R > 0 and
δ > 0, is known as an asymptotically good code. An easy probablistic argument known as
the Gilbert-Varshamov bound shows the existence of such codes for every δ ∈ [0, 1− 1/q)
and R = 1 − Hq(δ), where Hq(x) := x logq(q − 1) − x logq(x) − (1 − x) logq(1 − x), is
the q-ary entropy function, defined on the domain 0 ≤ x ≤ 1 − 1/q. The first explicit
construction of asymptotically good codes was given by Justesen [28], who showed that for
every 0 < R < 1/2, there is an explicit family of codes with rate R and relative distance
δ ≥ (1 − 2R)H−1q

(
1
2

)
. Note that for any prime power q, H−1q

(
1
2

)
≥ H−12

(
1
2

)
> 0.11, and

thus there are absolute constants R, δ > 0, not depending on q, for which we have an
explicit construction of a family of Fq-linear codes with rate R and relative distance δ.

Definition 2.4. Let C be an [n, k, d]q code. A nonzero codeword v ∈ C is said to be minimal
(in C) if σ(v) is minimal with respect to the inclusion in the set σ(C) := {σ(u) : u ∈ C\{~0}}.
The code C is a minimal linear code if all its nonzero codewords are minimal.

For k > 1, the finite projective space of dimension k − 1 over the finite field Fq is
defined as PG(k− 1, q) :=

(
Fkq \ {0}

)
/ ∼, where u ∼ v if u = λv for some non-zero λ ∈ Fq

(in some circles the same object will be denoted by Pk−1(Fq)). The equivalence class that
a non-zero vector v belongs to is denoted by [v]. The 1-dimensional, 2-dimensional, . . . ,
(k−1)-dimensional vector subspaces of Fkq correspond to the points, lines, . . . , hyperplanes
of PG(k−1, q). We denote the span of a subset S of points in a projective space by 〈S〉 and
the dimension dim(〈S〉) is one less than the vector space dimension of the corresponding
vector subspace. For example, the span of two distinct points P,Q in a projective space,
which we will also denote by 〈P,Q〉, is a 1-dimensional projective subspace corresponding
to a 2-dimensional vector subspace, and we refer to it as the line joining P and Q in
PG(k − 1, q).

Definition 2.5. A projective [n, k, d]q system is a (multi)set of n points,M⊆ PG(k−1, q),
such that 〈M〉 = PG(k − 1, q) and d = n−max{|H ∩M| : H is a hyperplane}.
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A projective [n, k, d]q system is simply a dual interpretation of a nondegenerate [n, k, d]q
code, that is, codes with no identically zero entry in all the codewords. If G is the k × n
generator matrix of the code, then the columns of G correspond to a multiset of n points
in PG(k−1, q) with the property that the maximum intersection with a hyperplane of this
multiset is equal to n− d. This process can clearly be reversed.

Definition 2.6. A setM⊆ PG(k−1, q) is said to be a strong blocking set if 〈H∩M〉 = H,
for every hyperplane H of PG(k − 1, q).

Theorem 2.7 (see [1], [32]). Let C be a nondegenerate [n, k, d]q code and let G = (g1 |
. . . | gn) ∈ Fk×nq be any of its generator matrices. The following are equivalent:

1. C is a minimal code;

2. M = {[g1], . . . , [gn]} is a strong blocking set in PG(k − 1, q).

All known explicit constructions of strong blocking sets are obtained as union of lines
in the projective space. This is mainly due to the fact that with such a structure it is easy
to control their intersections with subspaces. In particular, the main feature that these
constructions possess is the following stronger property than being a strong blocking set.

Definition 2.8. A set L of lines in a projective space satisfies the avoidance property if
there is no codimension-2 space meeting every line ` ∈ L.

The relation between these sets of lines and strong blocking sets is the observation
of Fancsali and Sziklai [23, Theorem 11] that if a set L of lines satisfying the avoidance
property, then the point-set B := ∪`∈L` is a strong blocking set.

For our explicit construction of strong blocking sets we will need explicit constructions
of constant-degree expander graphs. Informally, expander graphs have the property that
for any vertex subset which is not too large, its boundary is at least a constant times its
size. Expansion in graphs can be measured by their spectral properties (see [26]). For a
graph G we denote the eigenvalues of its adjacency matrix by λ1 ≥ λ2 ≥ · · · ≥ λn. If G is
d-regular, then λ1 = d. Moreover, if it is also connected then λ2 < d. A graph G is called
an (n, d, λ)-graph if it is a d-regular graph on n vertices with |λi| ≤ λ for all i > 1. The
smaller the value of λ, the larger is the expansion of an (n, d, λ)-graph. Asymptotically, the
smallest possible value is close to 2

√
d− 1, and the graphs achieving that bound are known

as Ramanujan graphs. We will use the following result of Alon on explicit constructions
of almost Ramanujan graphs.

Theorem 2.9 (see [5, Theorem 1.3]). For every positive integer d, and every ε > 0, there
is an n0(d, ε), such that for all n ≥ n0(d, ε), with nd even, there is an explicit construction
of an (n, d, λ)-graph Gε

n,d with λ ≤ 2
√
d− 1 + ε
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3 Integrity of a graph
We will need the following graph parameter, known as the (vertex) integrity of a graph,
which was introduced in the late 1980s as a measure of the robustness of the connectivity
of a network under vertex deletion [7, 9].

Definition 3.1. Let G = (V,E) be a simple connected graph. For any subgraph H, let
κ(G) denote the largest size of a connected component in H. The integrity of G is the
integer

ι(G) := min
S⊆V

(|S|+ κ(G− S)) .

It is a challenging problem to determine the integrity of graphs precisely, or even asymp-
totically (see [7] for an old survey and [8, 13] for some recent bounds on different families
of graphs). We prove new lower bounds on the vertex integrity of (n, d, λ)-graphs. First,
we relate the integrity of a graph to another graph parameter.

Definition 3.2. For a graph G, let z(G) denote the largest integer z so that there are two
disjoint sets of vertices in G, each of size z, with no edge connecting them.

Proposition 3.3. For every graph G = (V,E) on n vertices,

n− 2z(G) ≤ ι(G) ≤ n− z(G).

Theorem 3.4. For any (n, d, λ)-graph G, we have ι(G) ≥
(
d−λ
d+λ

)
n.

Proof. Let z(G) be the maximum integer z such that the vertices of a graph G contains
two disjoint parts of size z each with no edge between them. A direct application of the
expander mixing lemma implies that

z(G) ≤ λn

d+ λ
.

Applying the lower bound ι(G) ≥ n − 2z(G) from Proposition 3.3, implies ι(G) ≥ n −
2 λ
d+λ

n = d−λ
d+λ

n.

4 Constructing Strong Blocking Sets from Graphs
Definition 4.1. Let M = {P1, . . . , Pn} be a set of n points in PG(k − 1, q) and let
G = (M, E) be a graph with vertex set equal toM. We define the following sets of lines

L(M, G) := {〈Pi, Pj〉 : PiPj ∈ E}

and the following set of points

B(M, G) :=
⋃

`∈L(M,G)

`,

obtained fromM and G.
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We make the following crucial observation relating the properties of the graph G and
the projective sets defined above.

Proposition 4.2. Let M = {P1, . . . , Pn} be a set of points in PG(k − 1, q) and let
G = (M, E) be a graph whose set of vertices is M. If for every S ⊆ M there exists
a connected component C in G − S such that 〈S ∪ C〉 = PG(k − 1, q), then the set
L(M, G) = {〈Pi, Pj〉 : PiPj ∈ E} satisfies the avoidance property, that is, no codimension-
2 subspace of PG(k − 1, q) meets every line of L(M, G).

Lemma 4.3. LetM be a projective [n, k, d]q system and let G = (M, E) be a graph such
that ι(G) ≥ n− d+ 1. Then L(M, G) satisfies the avoidance property, and thus B(M, G)
is a strong blocking set in PG(k − 1, q) of size at most n+ (q − 1)|E|.

Proof. Let S be an arbitrary subset ofM. Since ι(G) ≥ n−d+1, there exists a connected
component C in G− S such that |S|+ |C| ≥ n− d+ 1. From the definition of projective
systems, it follows that every hyperplane meets M in at most n − d points. Therefore,
S ∪ C ⊆M is not contained in any hyperplane of PG(k − 1, q), thus implying 〈S ∪ C〉 =
PG(k − 1, q). From Proposition 4.2, we conclude that L(M, G) satisfies the avoidance
property, and thus B(M, G) is a strong blocking set. Each line in L(M, G) contains
exactly q + 1 points, of which at most q − 1 are non-vertices. As there are |E|-many lines
in this set, we get |B(M, G)| ≤ n+ (q − 1)|E|.

Finally, we prove the main result of our paper.

Theorem 4.4. There is an absolute constant c such that for every prime power q, there
is an explicit construction of strong blocking sets of size at most cqki in PG(ki − 1, q), for
some increasing infinite sequence {ki}i∈N.

Proof. Let R be any constant satisfying 0 < R < 1/2 and let δ = (1− 2R)0.11. LetMi be
projective [ni, ki, di]q systems given by the Justesen construction [28]. Then limi→∞ ki/ni =
R and limi→∞ di/ni ≥ (1 − 2R)H−1q (1/2) > δ. Therefore, there exists an i0 such that for
all i ≥ i0, we have di/ni ≥ δ and ki/ni ≥ R/2. For the rest of this proof let i0 be
large enough. Let {Gi}i≥i0 be an explicit family of (ni, d, λ)-graphs, where d and λ are
positive constants for which (d− λ)/(d+ λ) ≥ 1− δ + 1/ni. From Theorem 2.9, it follows
that such an explicit construction of graphs is always possible. By Theorem 3.4, we have
ι(Gi) ≥ (1 − δ)ni + 1 ≥ ni − di + 1. Therefore, by Lemma 4.3, B(Mi, Gi) is a strong
blocking set in PG(ki − 1, q) of size at most

ni + (q − 1)
dni
2

<
d

2
qni ≤

d

R
qki.

This concludes the proof with c = d
R
.

In the expanded version of this short abstract [4], we obtain the optimal value of the
constant c by using algebraic-geometric codes, and in particular, we show that we can take
c = 20 for large enough q. Moreover, for any fixed q ≥ 7, and k → ∞, we show that our
explicit construction is better than [11].



Expander graphs, strong blocking sets and minimal codes 25

References
[1] G. N. Alfarano, M. Borello, and A. Neri. A geometric characterization of minimal codes

and their asymptotic performance. Advances in Mathematics of Communications,
16(1):115–133, 2022.

[2] G. N. Alfarano, M. Borello, and A. Neri. Outer strong blocking sets. preprint
arXiv:2301.09590, 2023.

[3] G. N. Alfarano, M. Borello, A. Neri, and A. Ravagnani. Three combinatorial per-
spectives on minimal codes. SIAM Journal on Discrete Mathematics, 36(1):461–489,
2022.

[4] N. Alon, A. Bishnoi, S. Das, and A. Neri. Strong blocking sets and minimal codes
from expander graphs. arXiv:2305.15297, 2023.

[5] Noga Alon. Explicit expanders of every degree and size. Combinatorica, pages 1–17,
2021.

[6] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M Roth. Construction
of asymptotically good low-rate error-correcting codes through pseudo-random graphs.
IEEE Transactions on Information Theory, 38(2):509–516, 1992.

[7] K. S. Bagga, L. W. Beineke, W. D. Goddard, M. J. Lipman, and R. E. Pippert. A
survey of integrity. Discrete Applied Mathematics, 37:13–28, 1992.

[8] József Balogh, Tamás Mészáros, and Adam Zsolt Wagner. Two results about the
hypercube. Discrete Applied Mathematics, 247:322–326, 2018.

[9] Curtis A Barefoot, Roger Entringer, and Henda Swart. Vulnerability in graphs-a
comparative survey. Journal of Combinatorial Mathematics and Combinatorial Com-
puting, 1(38):13–22, 1987.

[10] D. Bartoli and M. Bonini. Minimal linear codes in odd characteristic. IEEE Trans-
actions on Information Theory, 65(7):4152–4155, 2019.

[11] Daniele Bartoli and Martino Borello. Small strong blocking sets by concatenation.
SIAM Journal on Discrete Mathematics, 37(1):65–82, 2023.

[12] Daniele Bartoli, Antonio Cossidente, Giuseppe Marino, and Francesco Pavese. On
cutting blocking sets and their codes. Forum Mathematicum, 34(2):347–368, 2022.

[13] D Benko, C Ernst, and Dominic Lanphier. Asymptotic bounds on the integrity of
graphs and separator theorems for graphs. SIAM Journal on Discrete Mathematics,
23(1):265–277, 2009.

[14] A. Bishnoi, J. D’haeseleer, D. Gijswijt, and A. Potukuchi. Blocking sets, minimal
codes and trifferent codes. arXiv:2301.09457, 2023.



Expander graphs, strong blocking sets and minimal codes 26

[15] A. Blokhuis, P. Sziklai, and T. Szonyi. Blocking sets in projective spaces. Current
research topics in Galois geometry, pages 61–84, 2011.

[16] Matteo Bonini and Martino Borello. Minimal linear codes arising from blocking sets.
Journal of Algebraic Combinatorics, 53:327–341, 2021.

[17] A. E Brouwer and A. Schrijver. The blocking number of an affine space. Journal of
Combinatorial Theory, Series A, 24(2):251–253, 1978.

[18] H. Chabanne, G. Cohen, and A. Patey. Towards secure two-party computation from
the wire-tap channel. In International Conference on Information Security and Cryp-
tology, pages 34–46. Springer, 2013.

[19] G. Cohen, S. Mesnager, and H. Randriam. Yet another variation on minimal linear
codes. Advances in Mathematics of Communications, 10(1):53–61, 2016.

[20] G. D. Cohen, S. Mesnager, and A. Patey. On minimal and quasi-minimal linear codes.
In IMA International Conference on Cryptography and Coding, pages 85–98. Springer,
2013.

[21] A. A. Davydov, M. Giulietti, S. Marcugini, and F. Pambianco. Linear nonbinary
covering codes and saturating sets in projective spaces. Advances in Mathematics of
Communications, 5(1):119–147, 2011.

[22] C. Ding. Linear codes from some 2-designs. IEEE Transactions on Information
Theory, 61(6):3265–3275, 2015.

[23] S. Fancsali and P. Sziklai. Lines in higgledy-piggledy arrangement. Electronic Journal
of Combinatorics, 21, 2014.

[24] T. Héger and Z. L. Nagy. Short minimal codes and covering codes via strong blocking
sets in projective spaces. IEEE Transactions on Information Theory, 68(2):881–890,
2021.

[25] T. Héger, B. Patkós, and M. Takáts. Search problems in vector spaces. Designs, Codes
and Cryptography, 76(2):207–216, 2015.

[26] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

[27] Tai-Yang Hwang. Decoding linear block codes for minimizing word error rate (cor-
resp.). IEEE Transactions on Information Theory, 25(6):733–737, 1979.

[28] Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE Trans-
actions on Information Theory, 18(5):652–656, 1972.

[29] J. L. Massey. Minimal codewords and secret sharing. In Proceedings of the 6th joint
Swedish-Russian international workshop on information theory, pages 276–279, 1993.



Expander graphs, strong blocking sets and minimal codes 27

[30] D Miklós. Linear binary codes with intersection properties. Discrete Applied Mathe-
matics, 9(2):187–196, 1984.

[31] Michael Sipser and Daniel A Spielman. Expander codes. IEEE Transactions on
Information Theory, 42(6):1710–1722, 1996.

[32] C. Tang, Y. Qiu, Q. Liao, and Z. Zhou. Full characterization of minimal linear codes
as cutting blocking sets. IEEE Transactions on Information Theory, 67(6):3690–3700,
2021.

[33] R Tanner. A recursive approach to low complexity codes. IEEE Transactions on
Information Theory, 27(5):533–547, 1981.



Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications
EUROCOMB’23

Prague, August 28 - September 1, 2023

Moderate Deviations of Triangle Counts
– the lower tail

(Extended abstract)

José D. Alvarado∗ Gabriel D. do Couto† Simon R. Griffiths‡

Abstract

Two recent papers [11] and [19] study the lower tail of triangle count deviations in
random graphsG(n,m) with positive density t := m/

(
n
2

)
∈ (0, 1). Let us writeD4(G)

for the deviation of the triangle count from its mean. Results of [11] and [19] deter-
mine the order of magnitude of the log probability log(P

(
D4(G(n,m)) < −τ

(
n
3

))
)

for the ranges n−3/2 � τ � n−1 and n−3/4 � τ � 1 respectively. Furthermore,
in [19] it is proved that the log probability is at least Ω(τ2n3) in the “missing” range
n−1 � τ � n−3/4, and they conjectured that this result gives the correct order of
magnitude. Our main contribution is to prove this conjecture.
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1 Introduction
The study of subgraph count deviations, and especially triangle count deviations has been
a very active area of research in recent decades. In particular, a great many results have
been proved regarding small deviations (of the order of the standard deviation) beginning
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with Ruciński [22], see also [2, 14, 13, 15, 17, 20, 21]. There have also been many results
which focus on large deviations (of the order of the mean) including the seminal articles of
Vu [23] and Janson and Ruciński [16] in the early 2000s, and continuing with Chatterjee
and Varadhan [4] who related these deviations to solutions to variational problems, which
were resolved in certain cases by Lubetzky and Zhao [18] and Zhao [24]. The survey of
Chatterjee [3] and the references therein give a detailed overview. Further developments
related to these techniques may be found in [1, 5, 9]. A major breakthrough by Harel,
Mousset and Samotij [12] essentially resolved the large deviation (upper tail) problem for
triangles.

There has also been some interest in deviations of intermediate value, which we call
moderate deviations. These deviations are considered in the G(n, p) model in [7, 8, 10].
It is argued by the third author, together with Goldschmidt and Scott [11] that for many
moderate deviation problems the G(n,m) model is more appropriate as it is possible to
study finer causes of deviatons, and that, in any case, one may deduce results for G(n, p)
by a simple conditioning argument. See also [6], which extends these results to sparser
random graphs.

Let us now consider the model Gm ∼ G(n,m), in which Gm is selected uniformly
from graphs with n vertices and m edges. Suppose that t ∈ (0, 1) is fixed and that
our random graphs have density t, that is t = m/

(
n
2

)
. Let N4(G) be the number of

triangles in the graph G and let D4(Gm) be the deviation of the triangle count in Gm, i.e.,
D4(Gm) := N4(Gm) − E [N4(Gm)].

We also remark that the majority of results previously mentioned have focussed on the
upper tail, whereas we shall focus on the lower tail. That is, we consider the question of
how likely it is that a random graph has many fewer triangles than expected.

By the main results of [11] and Neeman, Radin and Sadun [19] respectively, we have

− log

[
P
(
D4(Gm) < −τ

(
n

3

))]
=

{
Θ(τ 2n3) n−3/2 � τ � n−1

Θ(τ 2/3n2) n−3/4 � τ � 1

Furthermore, Neeman, Radin and Sadun [19] obtained the bounds

exp(−Cτ 2/3n2) 6 P
(
D4(Gm) < −τ

(
n

3

))
6 exp(−cτ 2n3)

in the “missing” range n−1 � τ � n−3/4, for some constants c, C > 0. They conjectured
that the final quantity is the correct probability of this deviation, up to the choice of the
constant C. We prove this conjecture, thus completing the understanding of the order
of magnitude of deviations in the lower tail across essentially the entire range of possible
deviations.

Theorem 1. Let t ∈ (0, 1). There exists a constant c > 0 such that the following holds.
Suppose that n is sufficiently large and c−1n−1 6 τ 6 cn−3/4 then

P
(
D4(Gm) < −τ

(
n

3

))
> exp(−cτ 2n3) .
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2 Preliminaries
As we are claiming a lower bound on the deviation probability we must justify that there
is a certain reasonably likely “cause” of this deviation. In works that consider the upper
tail this is often a fixed subgraph (such as a clique or hub) which occurs with a certain
probability. As Neeman, Radin and Sadun [19] discovered, the situation is more subtle
for the lower tail. In the range of slightly larger deviations they showed that the likeliest
“cause” corresponds to a deviation event of the smallest eigenvalue.

We shall give a quite different “cause” of the triangle deficit. Roughly speaking, we
consider running the majority of the process, and then, near the end, we select a certain
set of pairs (non-edges) which have small codegree. If in the rest of the process we select
many more of these pairs than expected then this causes a deficit of triangles in the final
graph Gm. We show that this cause has a cost of exp (−Θ(τ 2n3)), thus proving Theorem 1.

In fact, to implement this approach we have to be slightly more careful about the set
of pairs of low co-degree, which we will call F−. It will be useful that F− is close to
regular. We therefore introduce a concept of synergy, which we use instead of codegree
when defining F−.

Notation

We write du(G) for the degree of a vertex u in G and duv(G) for the codegree of the pair
u, v.

We now define synergy. The synergy of u and v with respect to G is

Synuv(G) := duv(G)− tdu(G)− tdv(G) + t2(n− 2).

The synergy of a pair of vertices can be thought of as how well their neighbourhoods
intersect. As we are dealing with well behaved graphs, i.e. graphs with high probability
properties, if a pair has positive synergy, then a high proportion of the neighbourhoods of
its vertices intersect, and the opposite is true for negative synergy.

As we said, our proof involves revealing Gm into two parts, which we call G0
m and

G1
m. The first part will correspond to the first m0 := (1− η)m edges added to Gm, where

η ∈ (0, 1). We note that G0
m ∼ G(n, (1 − η)m), and we shall assume at various points in

the proof that G0
m has the standard properties which hold with high probability in such

random graphs.
The negative deviation of triangles will come with the selection of G1

m. We note that
G1
m corresponds to the last m1 := ηm edges of the random process.
Let (fi) be the sequence of non-edges of G0 with non-decreasing order of synergies. The

set of non-edges of low synergy is

F− :=

{
fi : i ∈

{
1, . . . ,

(
n
2

)
−m0

2

}}
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and the set of non-edges of high synergy is

F+ :=

{
fi : i ∈

{(
n
2

)
−m0

2
+ 1, . . . ,

(
n

2

)
−m0

}}
.

Discussion of our approach

Let us first ask: What is the expected value of |F− ∩ E(G1
m)|? Since F− and F+ have the

same size, we have that E [|F− ∩ E(G1
m)|] = E [|F+ ∩ E(G1

m)|] = m1

2
= η

2
m. Moreover,

the same equalities holds if we replace the expectation by the conditional expectation
(given G0

m). With this in mind, we define the event

Definition 2 (The Event E(α)). Let α ∈ (0, 1) be a parameter. We denote by E(α) the
event defined by “|F− ∩ E(G1

m)| = (1 + α)m1/2”.

Note that this event relies on first revealing G0
m, as F− is defined as a function of G0

m.
Since pairs of low synergy tend to have smaller codegree, there ought to be a relation
between selecting more edges of G1

m in F− and a deficit of triangles in the final random
graph Gm. This idea is central to our approach.

3 Main result
As we will simply provide a proof overview here, some of the details will be left somewhat
vague. For example, it is useful to have a graph property P0 such that PG0(P0) = 1+o(1).
This graph property consist of various properties which hold with high probability in
random graphs. We note that, by monotony and conditioning, and the fact that E(α) is
independent of G0

m (and so also P0) we have

P (N4(G) < E [N4(G)]− a) >

(1 + o(1))P (E(α)) P
(
N4(G) < E [N4(G)]− a

∣∣ E(α),P0

)
.

Given this inequality, it suffices to prove the following two lemmas:

Lemma 3. Let α := αn with n−1 � αn � n−1/4. Then

P (E(α)) > exp
(
−Ot,η(α

2n2)
)
. (3.1)

Lemma 4. There exists C > 0 such that the following holds. If n is sufficiently large and
αn5/2 > Ca then

P
(
N4(G) < E [N4(G)]− a

∣∣ E(α),P0

)
= n−Ot,η(1) = eo(n) . (3.2)
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We remark that Lemma 3 follows easily from known bounds on the tail of the hyperge-
ometric distribution. The proof of Lemma 4 is more involved. However, the result clearly
follows from the following statement (and Markov’s inequality)

E [N4(G) | E(α),P0] 6 E [N4(G)] − 2a . (3.3)

To prove (3.3) we consider the various types of triangle which occur in the final graph. We
divide the triangle count into four categories: three edges from G0

m, 4(3,0), two edges from
G0
m and one from G1

m, 4(2,1), one edges from G0
m and two from G1

m, 4(1,2) and three edges
from G1

m, 4(0,3). The idea is that the number of edges of type (3, 0) is predictable, as G0
m

is a random graph; the number of type (2, 1) is significantly less than one would expect,
because we are conditioning on the event E(α); and we shall prove that the conditioning
does not change the expected number of types (1, 2) and (0, 3) by very much.

The following result states that conditioning on E(α) does indeed have the effect of
reducing the expected number of triangles of type (2, 1). The result mentions µ− and µ+

which are defined to be the average codegree of pairs in F− and F+ respectively. One of
the properties in P0 is that µ+ − µ− = Ω(n1/2).

Lemma 5.
E
[
4(2,1)|P0, Eη(α)

]
= EG0

m
[4(2,1)] + αmη(µ− − µ+)

The alert reader may question why we chose to define F− in terms of synergy, rather
than simply taking F− to be those pairs with smaller codegree. Indeed, Lemma 5 would
work just as well with this alternative definition. However, the problem arises when trying
to control the effect that conditioning (on E(α)) has on the expected number of triangles
of types (1, 2) and (0, 3). We are able to prove sufficiently strong bounds

E
[
4(1,2)|P0, Eη(α)

]
= O(αηmn1/2) and

E
[
4(0,3)|P0, Eη(α)

]
= O(αηmn1/2)

using the fact that F− is close to regular. (These bounds are seen to be sufficient by taking
the constant η sufficiently small.) We remark that our proofs of these bounds rely on the
fact that F− is close to regular, and so would fail if F− was defined directly in terms of
codegrees.

In order to prove F− is close to regular we actually prove the following stronger state-
ment about the set of synergies Synuw(G0

m) : w ∈ V \Nu between a fixed vertex u and its
non-neighbours w. Let σ denote the standard deviation of Synuw(G0

m) (which is of order
n1/2). The following result states an approximate central limit theorem for the empirical
distribution of synergies.

Lemma 6. There exists a constant C > 0 such that, with high probability the following
holds simultaneously for all vertices u ∈ V (G0

m):∣∣{w ∈ V \Nu : Synuw(G0
m) 6 aσ}

∣∣ =
(
Φ(a) ± Cn−1/4

)
(n− du(G0

m)) .

Using this approximation of the distribution of synergies together with other concen-
tration bounds and tools such as Goodman’s theorem it is possible to control the expected
number of triangles of type (1, 2) and (0, 3) and thereby prove (3.3).
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4 Remarks
As we said, Neeman, Radin and Sadun [19] showed that their construction for the lower
bound holded even for the missing range. Their construction involved partitioning the
graph into two parts in which the smaller part (much smaller than the other) have a
lower density of edges. Hence, they focused on partitioning the vertex and we, instead,
partitioned the edges, which should be more effective for G(n,m) type of graphs since their
structure is more rigid.

There are a number of questions which remain open. For example, is it possible to
extend these results, and the results of [19] to sparser random graphs, as [6] did with the
results of [11]. One may also ask whether stronger bounds may be proved. Perhaps it is
possible to determine the log probability asymptotically, rather than up to a multiplicative
constant. It seems possible to divide our construction further into finer steps with scaling
tendencies towards low synergy pairs to get optimal results.

Finally, it would be interesting to investigate other graphs. We remark that the results
we prove here correspond to a regime which simply doesn’t exist for odd cycles of length
at least 5. Surprisingly [19] showed that the log probability exhibits a large discontinuity
when considering odd cycles of length at least 5.
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Abstract

Starting with the empty graph on [n], at each round, a set of K = K(n) edges
is presented chosen uniformly at random from the ones that have not been presented
yet. We are then asked to choose at most one of the presented edges and add it to
the current graph. Our goal is to construct a Hamiltonian graph with (1 + o(1))n
edges within as few rounds as possible.

We show that in this process, one can build a Hamiltonian graph of size (1+o(1))n
in (1 + o(1))(1 + (log n)/2K)n rounds w.h.p. The case K = 1 implies that w.h.p. one
can build a Hamiltonian graph by choosing (1 + o(1))n edges in an online fashion as
they appear along the first (0.5 + o(1))n log n rounds of the random graph process.
This answers a question of Frieze, Krivelevich and Michaeli. Observe that the number
of rounds is asymptotically optimal as the first 0.5n log n edges do not span a Hamilton
cycle w.h.p. The case K = Θ(log n) implies that the Hamiltonicity threshold of the
corresponding Achlioptas process is at most (1+o(1))(1+(log n)/2K)n. This matches
the (1−o(1))(1+(log n)/2K)n lower bound due to Krivelevich, Lubetzky and Sudakov
and resolves the problem of determining the Hamiltonicity threshold of the Achlioptas
process with K = Θ(log n).

We also show that in the above process one can construct a graph G that spans a
matching of size bV (G)/2)c and (0.5+o(1))n edges within (1+o(1))(0.5+(log n)/2K)n
rounds w.h.p.

Our proof relies on a robust Hamiltonicity property of the strong 4-core of the bi-
nomial random graph which we use as a black-box. This property allows it to absorb
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paths covering vertices outside the strong 4-core into a cycle.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-005

1 Introduction
Let G0, G1, ..., GN , N =

(
n
2

)
be the random graph process. That is, G0 is the empty graph

on [n] and Gi+1 is formed by adding to Gi an edge chosen uniformly at random from the
non-present ones, for 0 ≤ i < N . Equivalently let e1, e2, ..., eN be a permutation of the
edges of the complete graph Kn chosen uniformly at random and set Gi = ([n], {e1, ..., ei}),
0 ≤ i < N . Let τ2 be the minimum i such that Gi has minimum degree 2 and τH
be the minimum i such that Gi is Hamiltonian. Building upon work of Pósa [13] and
Korshunov [11], Bollobás [6] and independently Ajtai, Komlós and Szemerédi [1] proved
that τ2 = τH = 0.5n(log n+ (1 + o(1)) log log n) w.h.p.1 Thus, to achieve Hamiltonicy, one
has to wait until the minimum degree becomes 2. Unfortunately, this necessary condition
is satisfied w.h.p. only by graphs of the random graphs process that have at least 0.5n log n
edges, while a Hamilton cycle uses only n of them. This raises the following question. Can
one built a Hamiltonian subgraph of Gt that spans (1 + o(1))n edges in an online fashion
for some t = (1 + o(1))τ2?

Frieze, Krivelevich and Michaeli studied a generalization of this question in the following
setting [9]. Once again let e1, e2, ..., eN be a permutation of E(Kn) chosen uniformly at
random. The sequence e1, e2, ..., eN is revealed, one edge at a time. Starting with the empty
graph on [n], as soon as an edge is revealed we must decide, immediately and irrevocably,
whether to choose and add it to our graph. Let Bi be the graph constructed after the
ith edge has been revealed. Let B′HAM be the set of pairs (t, b) for which there exists an
algorithm that builds a Hamiltonian graph of size at most b within the first t rounds of the
above process w.h.p. Clearly, as Bi ⊆ Gi for all i and τ2 > 0.5n log n w.h.p., a necessary
condition for (t, b) ∈ B′HAM is that t ≥ 0.5n log n and b ≥ n. Frieze, Krivelevich and
Michaeli proved that for every ε > 0 there exists C > 0 such that if t ≥ (0.5+ ε)n log n and
b ≥ 9n or t ≥ Cn log n and b ≥ (1+ε)n then (t, b) ∈ B′HAM . They also asked whether there
exist ε > 0 and a pair t, b such that t ≤ (0.5 + ε)n log n, b ≤ (1 + ε)n and (t, b) /∈ B′HAM .
Theorem 1.1 answers this question.

A second way to generalize our question is within the framework of the Achlioptas pro-
cesses. Inspired by the “power of two choices" paradigm Achiloptas proposed the following
process. Starting with the empty graph on [n], at each round, a set of K = K(n) edges is
presented chosen uniformly at random from the ones that have not been presented yet (or
from all

(
n
2

)
possible ones). We are then asked to choose one of them to add to the current

graph, immediately and irrevocably. The aim of the Achlioptas process is to accelerate or
delay a given graph property. For example, Bohman and Frieze proved that there exist
ε > 0 and a strategy that w.h.p. ensure that one can construct a graph with no component

1We say that a sequence of events {En}n≥1 holds with high probability if limn→∞Pr(En) = 1− o(1).



Constructing Hamilton cycles and perfect matchings efficiently 38

of size Ω(n) after (1 + ε)n/2 rounds, thus delaying the appearance of the giant [4]. Kriv-
elevich, Lubetzky and Sudakov studied τH(K)′, the minimum number of rounds needed to
construct a Hamiltonian graph in the above process [12]. They proved that w.h.p.

(1 + o(1))

(
1 +

log n

2K

)
n ≤ τH(K) ≤ (1 + o(1))

(
3 +

log n

K

)
n. (1)

To obtain the upper bound, they constructed a random 3-out graph which is known to
be Hamiltonian [5]. For the lower bound they proved that for any algorithm A and any
ε > 0, after (1− ε)(1+0.5 log n/K)n rounds there exist nε/2 vertices of degree smaller than
2 w.h.p. Their argument goes as follows. After 0.5(1− ε)n rounds, the graph constructed
so far by A contains at least εn vertices of degree smaller than 2, deterministically. From
those vertices, at least nε/2 will not be incident to any edge that will be presented in the
next 0.5(1 − ε)n(log n)/K rounds w.h.p. Any such vertices have degree at most 1 in the
graph constructed so far.

Krivelevich, Lubetzky and Sudakov also proved that the lower bound in (1) is the correct
one, in the sense that it is equal to (1 + o(1))τH(K) w.h.p., in the regimes K = o(log n)
and K = ω(log n). In these regimes the lower bound reduces to (1 + o(1))(n log n)/2K and
(1 + o(1))n respectively. Theorem 1.1 implies that the lower bound in (1) is always the
correct one. The problem of improving the bounds in (1) is also stated as Problem 43 in
Frieze’s bibliography on Hamilton cycles in random graphs [7].

Formally the process that we consider is the following one. Starting with the empty
graph on [n], at each round, a set of K = K(n) edges is presented chosen uniformly at
random from the ones that have not been presented yet. We are then asked to choose at
most one of them to add to the current graph immediately and irrevocably. We let Bi

be the graph constructed after i rounds. We let BHAM = BHAM(K) be the set of pairs
(t, b) = (t(K), b(K)) for which there exists an algorithm that builds a Hamiltonian graph
of size at most b within the first t rounds of the above process w.h.p. Similarly, we let
BPM = BPM(K) be the set of pairs (t, b) for which there exists an algorithm that builds a
graph of size at most b that spans a matching of size bn/2c within the first t rounds of the
above process w.h.p.

Theorem 1.1. Let K = K(n) = O(log n). Then,((
1 +

250

log log n

)(
1 +

log n

2K

)
n,

(
1 +

11

log log n

)
n

)
∈ BHAM .

The case K = ω(log n) of the above theorem follows from Theorem 1.2 of [12]. Once
again, as Gt has minimum degree 0 for t ≤ 0.5n log n w.h.p., one has that (t, b) ∈ BPM
only if t ≥ 0.5n log n and b ≥ n/2.

Theorem 1.2.((
1 +

250

log log n

)(
0.5 +

log n

2K

)
n,

(
0.5 +

11

log log n

)
n

)
∈ BPM .
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Ramark 1.3. Frieze, Krivelevich and Michaeli gave an alternative proof to Theorem 1.2
for the case K = 1 ( See Theorem 4 of [9]).
Ramark 1.4. One may consider the variations of the process where at every round, the
K edges that are presented are chosen uniformly at random from all

(
n
2

)
possible edges or

from the ones that are missing from the graph that is constructed so far. Theorems 1.1 and
1.2 as stated also hold for these variations.

In this note we sketch the proof of Theorem 1.1. Theorem 1.2 can be proven in a similar
manner. Both proofs are based on structural properties of the strong 4-core of a random
graph which we describe in the next section.

2 The strong k-core
For a graph G we define the strong k-core of G to be the maximal subset S of V (G)
with the property that every vertex in S ∪ N(S) has at least k neighbors in S. By N(S)
we denote the set of vertices in V (G) \ S that are adjacent to S. Observe that if the
sets S1, S2 ⊂ V (G) have this property, then so does the set S1 ∪ S2. Thus the strong
k-core of a graph is well-defined. It also naturally partitions the vertex set of a graph G
into 3 sets which we denote by Vk,black(G), Vk,blue(G) and Vk,red(G) where Vk,black(G) is the
strong k-core of G, Vk,blue(G) is its neighborhood and Vk,red(G) is the rest i.e. Vk,red(G) =
V (G) \ (Vk,black(G) ∪N(Vk,black(G)). In our knowledge, the strong 3-core was first used in
[3] for finding the longest cycle in sparse random graphs while the concept of the strong
k-core was first formalized in [2]. There it was observed that the strong 4-core of G(n, c/n)
is robustly Hamiltonian for c ≥ 20 as described below. For a graph G and U ⊆ V (G)
denote by G[U ] the subgraph of G induced by U . By G(n, p) we denote the binomial
random graph i.e., the random graph on [n] where every edge appears independently with
probability p.
Theorem 2.1 (Theorem 3.3 of [2]). Let G ∼ G(n, c/n), c ≥ 20. Let G′ be the subgraph of
G induced by V4,black(G) ∪ V4,blue(G). Then for every U ⊆ V4,blue(G) and matching M on
V4,blue \ U w.h.p. we have that G′[V (G′) \ U ] ∪M has a Hamilton cycle that spans M .

Theorem 2.1 enable us to use the strong 4-core of G(n, 20/n) as an absorber for finding
large cycles. Indeed, assume that a graph G contains G′ ∼ G(n, 20/n) as a subgraph. In
addition assume that there exists a set of vertex disjoint paths P that do not intersect
V4,black(G

′) ∪ V4,blue(G′) internally and whose endpoints lie in V4,blue(G
′). Then, given G′

and P , one can contract each path of P into an edge. This results to a matching M on
V4,blue(G

′). Theorem 2.1 then gives that G′ ∪M spans a Hamilton cycle which spans all
the edges in M . Replacing the edges in M with the corresponding paths in P gives a cycle
of G whose vertex set consists of V4,black(G′), V4,black(G′) and the set of vertices spanned by
the paths in P . This will be our main strategy in proving Theorem 2.1.

The next lemma will also be used in the proof of Theorem 1.1. For its proof see Lemma
3.3 of [2].
Lemma 2.2. Let G ∼ G(n, c/n), c ≥ 20. Then |V4,blue(G)| ≥ 0.1 · (2c)3e−2cn w.h.p.
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3 Constructing a Hamilton cycle online, efficiently
We now sketch the proof of Theorem 1.1. To simplify its description we only consider the
case K = 1. Thus at round i we are presented with an edge ei chosen uniformly at random
from the ones that have not been presented yet, for i ∈ [N ]. For its proof we describe an
algorithm A that chooses (1 + 11/ log log n)n edges within the first (1 + 250/ log log n)(1 +
log n/2)n rounds and constructs a Hamiltonian graph w.h.p. Let

n′ =
n

log log n
, tε =

(
50

log log n

)(
1 +

log n

2

)
n,

t0 = 0, t1 = tε, t2 = t1 + tε + n, t3 = t2 + tε, t4 = t3 + tε + n(log n/2) and t5 = t4 + tε. A
consists of 5 phases. Its ith phase starts when eti−1+1 is presented and ends once A decides
whether to keep the edge eti .

During its first phase, A picks the first 10n′ edges that are spanned by [n′]. Let G1 be
the graph A constructed during Phase 1 of A, U = V4,black(G)∪V4,blue(G′), W = V4,blue(G

′)
and Z = [n] \ U . Lemma 2.2 implies that |U | = Ω(n′) w.h.p. The rest of the phases of A
aim to cover the vertices in Z by a set P ′ of vertex disjoint paths with endpoints inW that
do not internally intersect U . To do so, during its second phase, A greedily covers Z with
at most n/(log log n)2 vertex disjoint paths, each of length at most log n. Here we allow
paths of length 0 which correspond to single vertices. Let P be the set of these paths.
Then, during Phase 3, A greedily matches the endpoints of the paths in P to W , each
path P ∈ P is therefore potentially extended to a path with a pair of unique endpoints in
W . Let End(P) be the set of endpoints of paths in P that lie in Z (are left unmatched).
During Phase 4, A attempts to match the vertices in End(P) to log0.8 n many vertices
in the interior of distinct paths in P . This is possible as t4 − t3 = tε + 0.5n log n, which
implies that each vertex in End(P) is incident to ω(log0.8 n) edges in {et3+1, ..., et4} whose
other endpoint lies in [n] \ U . Finally, during Phase 5, using the edges selected during
Phase 4, A reroutes the paths in P with an endpoint in End(P) through the rest of the
paths. Such a rerouting may look as follows. Let Q = v1, v2, ..., vk and P = u1, u2, ..., ur be
vertex disjoint paths with v1, vk, ur ∈ W and u1 ∈ Z. In such a case, adding the edges u1vi
and vi+1v with v ∈ W , 1 ≤ i ≤ k − 1 (selected during phases 4 and 5 respectively) and
removing the edge vivi+1 from E(P ) ∪ E(Q) results to 2 vertex disjoint paths that cover
V (P ) ∪ V (Q) and have their endpoints in W .

One may show that the set of edges selected during the last 4 phases span a set P ′ of
vertex disjoint paths with endpoints in W that do not internally intersect U w.h.p. Given
G1 and P , one may appeal to Theorem 2.1, as discussed in the previous section, to show
the existence of a Hamilton cycle spanned by the constructed graph. Finally note that
the edges selected during phases 2 and 3 span a set of paths, thus there are at most n.
Therefore, in total, A selects 10n′+n+ |End|(log0.8 n+ 2) which is equal to (1 + o(1))n in
the high probability event that |End(P)| = o(n/ log n).
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1 Introduction
Complementation is a very fundamental graph operation and modifying a graph by comple-
menting an induced subgraph to satisfy certain properties is a natural algorithmic problem
on graphs. The operation of complementing an induced subgraph, known as subgraph
complementation, is introduced by Kamiński et al. [1] in connection with clique-width of
graphs. For a class G of graphs, the objective of Subgraph Complementation to G
is to find whether there exists a subset S of the vertices of the input graph G such that
complementing the subgraph induced by S in G results in a graph in G. Fomin et al. [2]
studied this problem on various classes G of graphs. They obtained that the problem can be
solved in polynomial-time when G is bipartite, d-degenerate, or co-graphs. In addition to
this, they proved that the problem is NP-complete when G is the class of all regular graphs.
Antony et al. [3] studied this problem when G is the class of H-free graphs (graphs without
any induced copies of H). They proved that the problem is polynomial-time solvable when
H is a complete graph on t vertices. They also proved that the problem is NP-complete
when H is a star graph on at least 6 vertices or a path or a cycle on at least 7 vertices.
Later Antony et al. [4] proved that the problem is polynomial-time solvable when H is
paw, and NP-complete when H is a tree, except for 41 trees of at most 13 vertices. It has
been proved [3,4] that none of these hard problems admit subexponential-time algorithms
(algorithms running in time 2o(n)), assuming the Exponential Time Hypothesis.

Fomin et al. [2] proved that the problem is polynomial-time solvable not only when
G is the class of d-degenerate graphs but also when G is any subclass of d-degenerate
graphs recognizable in polynomial-time. This implies that the problem is polynomial-time
solvable when G is the class of r-regular graphs or the class of graphs with maximum
degree at most r (for any constant r). They asked whether the problem can be solved
in polynomial-time when G is the class of graphs with minimum degree at least r, for a
constant r. We resolve this positively and obtain a stronger result - a simple quadratic
kernel for the following parameterized problem: Given a graph G and an integer k, find
whether G can be transformed into a graph with minimum degree at least k by subgraph
complementation (here the parameter is k). The result follows from an observation that if
G has more than 2k2 − 2 vertices, then it is a yes-instance of the problem.

When G is the class of graphs without any induced copies of the star graph on t + 1

vertices (for any fixed t ≥ 3) and the diamond ( ), we obtain a polynomial-time
algorithm. When t = 3 this graph class is known as linear domino and is the class of line
graphs of triangle-free graphs. Cygan et al. [5] have studied the polynomial kernelization
of edge deletion problem for this target graph class. When t = 4, the graph class is the line
graphs of linear hypergraphs of rank 3. The technique that we use is similar to that given
in [3] and [4] for obtaining polynomial-time algorithms when G is H-free, for H being a
complete graph on t vertices or a paw. Our result is in contrast with the result by Antony
et al. [3] that the problem is NP-complete and cannot be solved in subexponential-time
(assuming the Exponential Time Hypothesis) when H is a star graph on t+ 1 vertices, for
every constant t ≥ 5.
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Preliminaries

A diamond is the graph , and a star graph on t + 1 vertices, denoted by K1,t, is
the tree with t degree-1 vertices and one degree-t vertex. The degree-t vertex of a star is
known as the center of the star. For example, K1,3, also known as a claw, is the graph

. A complete graph on t vertices is denoted by Kt. By G we denote the complement
graph of G. The open neighborhood and closed neighborhood of a vertex v are denoted by
N(v) and N [v] respectively. The underlying graph will be evident from the context. For
a subset S of vertices of G, by G[S] we denote the graph induced by S in G. For a given
graph G and a set S ⊆ V (G), we define the graph G⊕S as the graph obtained from G by
complementing the subgraph induced by S, i.e., an edge uv is in G ⊕ S if and only if uv
is a nonedge in G and u, v ∈ S, or uv is an edge in G and {u, v} \ S 6= ∅. The operation
is called subgraph complementation. Let H be a set of graphs. We say that a graph G is
H-free if G does not have any induced copies of any of the graphs in H. If H = {H}, then
we say that G is H-free. The general definition of the problem that we deal with is given
below.

SC-to-G : Given a graph G, find whether there is a set S ⊆ V (G) such that G⊕S ∈ G.
In a parameterized problem, apart from the usual input, there is an additional integer

input known as the parameter. A graph problem is fixed-parameter tractable (FPT) if
it can be solved in time f(k)nO(1), where n is the number of vertices and f(k) is any
computable function. A parameterized problem admits a kernel if there is a polynomial-
time algorithm which takes as input an instance (I ′, k′) of the problem and outputs an
instance (I, k) of the same problem so that |I|, k ≤ f(k) for some computable function
f(k), and (I ′, k′) is a yes-instance if and only if (I, k) is a yes-instance (here, k′ and k are
the parameters). A kernel is a polynomial kernel if f(k) is a polynomial function. It is
known that a problem admits an FPT algorithm if and only if it admits a kernel. An FPT
algorithm implies that there is a polynomial-time algorithm to solve the problem when the
parameter is a constant. We refer to the book [6] for further exposition on these topics.

2 Algorithms
We obtain our results in this section. Let Gk be the class of graphs with minimum degree
at least k. We prove that a no-instance of SC-to-Gk cannot be very large.

Lemma 2.1. Let G be a graph with more than 2k2 − 2 vertices. Then G is a yes-instance
of SC-to-Gk.

Proof. Let M be the set of vertices in G with degree less than k. Clearly, M ⊆ S for every
solution S (i.e., G ⊕ S ∈ Gk). Let |M | = m. Let M ′ be the set of vertices in V (G) \M
adjacent to at least one vertex in M . As each vertex in M has degree at most k − 1, we
obtain that |M ′| ≤ m(k − 1).

Let M ′′ = V (G) \ (M ∪M ′). Let X be the set of vertices in M ′′ having degree at least
2k−m− 1 in G. If |X| ≥ k, then G⊕ (M ∪X ′) ∈ Gk, where X ′ is any subset of k vertices
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of X - note that degree of every vertex in X ′ is at least (2k−m− 1) +m− (k− 1) = k, in
G⊕ (M ∪X ′). Therefore, assume that |X| ≤ k− 1. Every vertex in M ′′ \X has degree at
most 2k −m− 2 in G. Then, every maximal independent set in M ′′ \X has size at least
|M ′′ \ X|/(2k −m − 1). Therefore, if |M ′′ \ X| ≥ k(2k −m − 1), then for any maximal
independent set I of M ′′ \X, G⊕ (M ∪I) ∈ Gk. Hence assume that |M ′′ \X| ≤ k(2k−m−
1)−1. Therefore, if G is a no-instance of SC-to-Gk, then the number of vertices in G is at
most |M |+ |M ′|+ |X|+ |M ′′\X| ≤ m+m(k−1)+(k−1)+k(2k−m−1)−1 = 2k2−2.

Lemma 2.1 gives a polynomial-time algorithm for the problem: If G has more than
2k2 − 2 vertices, then return YES, and do an exhaustive search for a solution otherwise.
Lemma 2.1 also gives a simple quadratic kernel for the problem parameterized by k: For
an input (G, k) if G has more than 2k2 − 2 vertices, then return a trivial yes-instance,
and return the same instance otherwise. By a result from [3], SC-to-G and SC-to-G are
polynomially equivalent. Therefore, we obtain a polynomial-time algorithm for SC-to-G
when G is the class of graphs with maximum degree at most n−k, for a constant k. It also
implies a quadratic kernel for the problem parameterized by k. It remains open whether
the following problem is NP-complete: Given a graph G and an integer k, find whether G
can be subgraph complemented to a graph with minimum degree at least k. We note that,
the problem is NP-complete if the objective is to make the input graph k-regular [2].

Destroying stars and diamonds

Let G be the class of {K1,t, diamond}-free graphs, for any fixed t ≥ 3. We give a polynomial-
time algorithm for SC-to-G. The concept of (p, q)-split graphs was introduced by Gyár-
fás [7]. For p ≥ 1, and q ≥ 1, if the vertices of a graph G can be partitioned into two sets
P and Q in such a way that the clique number of G[P ] and the independence number of
G[Q] are at most p and q respectively (i.e., G[P ] is Kp+1-free and G[Q] is (q + 1)K1-free),
then G is called a (p, q)-split graph and (P,Q) is a (p, q)-split partition of G.

Proposition 2.2 ([3, 8, 9]). For any fixed constants p ≥ 1 and q ≥ 1, recognizing a (p, q)-
split graph and obtaining all (p, q)-split partitions of a (p, q)-split graph can be done in
polynomial-time.

Algorithm for SC-to-G, where G is {K1,t, diamond}-free graphs, for any constant
t ≥ 3.
Input: A graph G.
Output: If G is a yes-instance of SC-to-G, then returns YES; otherwise returns NO.

Step 1 : Let S be the set of all degree-2 vertices of all the induced diamonds in G. If
G⊕ S ∈ G, then return YES.

Step 2 : Let r be the center of any induced K1,t in G and let I be the set of isolated
vertices in the subgraph induced by N(r) in G. For every subset S ⊆ I such that
|S| ≥ |I| − t + 2, if G⊕ S ∈ G, then return YES.



Algorithms for subgraph complementation to some classes of graphs 46

Step 3 : For every edge uv in G, do the following:

1. If N(u) \ N [v] or N(v) \ N [u] does not induce a (t − 1, t − 1)-split graph,
then continue with Step 3.

2. Compute L(uv), the list of all (t − 1, t − 1)-split partitions of the graph
induced by N(u) \N [v].

3. Compute L(uv), the list of all (t − 1, t − 1)-split partitions of the graph
induced by N(v) \N [u].

4. Compute L(uv), the list of all partitions of the graph induced byN(u)∩N(v)
into an independent set of size at most t− 1 and the rest.

5. For every (S1, T1) ∈ L(uv), for every (S2, T2) ∈ L(uv), for every (S3, T3) ∈
L(uv), do the following:

(a) Let S = S1 ∪ S2 ∪ S3 ∪ {u, v}. If G⊕ S ∈ G, return YES.
(b) For every vertex w ∈ N [u] ∩ N [v], let S = S1 ∪ S2 ∪ S3 ∪ {u, v, w}. If

G⊕ S ∈ G, return YES.
(c) For every edge xy in the graph induced by N [u] ∩ N [v], if the graph

induced by J = N [x] ∩ N [y] ∩ N [u] ∩ N [v] is not a split graph then
continue with the current step. Otherwise, for every split partition
(S4, T4) of the graph induced by J , let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ {u, v}.
If G⊕ S ∈ G, then return YES.

Step 4 : Return NO.

Lemma 2.3 and 2.4 deals with the case when G is a yes-instance having a solution which
is an independent set, the case handled in Step 1 and 2 of the algorithm.

Lemma 2.3. Assume that G is not diamond-free. Let S ⊆ V (G) such that G ⊕ S ∈ G
and S is an independent set. Then S is the set of all degree-2 vertices of all the induced
diamonds in G.

Proof. Since S is an independent set and G ⊕ S ∈ G, both the degree-2 vertices of every
induced diamond in G must be in S. Assume for a contradiction that S has a vertex v
which is not a degree-2 vertex of any of the induced diamonds in G. Let D = {d1, d2, d3, d4}
induces a diamond in G, where d1 and d2 are the degree-2 vertices of the diamond. Clearly,
S ∩D = {d1, d2}. We know that v 6= d1 and v 6= d2. If v is not adjacent to d3 in G, then
{v, d1, d2, d3} induces a diamond in G⊕S, which is a contradiction. Therefore, v is adjacent
to d3. Similarly, v is adjacent to d4. Then {v, d1, d3, d4} induced a diamond in G, where v
and d1 are the degree-2 vertices, which is a contradiction.

Lemma 2.4. Assume that G has no induced diamond but has at least one induced K1,t.
Let S ⊆ V (G) such that G⊕S ∈ G and S is an independent set. Let r be the center of any
induced K1,t in G. Let I be the set of isolated vertices in the subgraph induced by N(r) in
G. Then S ⊆ I and |S| ≥ |I| − t + 2.
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Proof. If r ∈ S, then none of the vertices in N(r) is in S - recall that S is an independent
set. But then, none of the induced K1,t centered at r is destroyed in G ⊕ S. Therefore,
r /∈ S. Since G is diamond-free, N(r) induces a cluster (graph with no induced path of
length 3) J in G. Since r is the center of an induced K1,t in G, there are at least t cliques
in J . Since G ⊕ S is K1,t-free, S must contain all vertices of at least two cliques in J .
Since S is an independent set, S contains at least two isolated vertices, say s1 and s2, in
J . First we prove that S ⊆ N(r). For a contradiction, assume that there is a vertex v ∈ S
such that v is not adjacent to r. Then {v, s1, s2, r} induces a diamond in G⊕ S, which is
a contradiction. Therefore, S ⊆ N(r). Next we prove that S ⊆ I. For a contradiction,
assume that there is a vertex v ∈ S \ I. Then v is part of a clique J ′ of size at least 2 in J .
Let v′ be any other vertex in J ′. Since S is an independent set, v′ /∈ S. Then {v, v′, s1, r}
induces a diamond in G⊕S, which is a contradiction. Therefore, S ⊆ I. If |S| < |I|−t+2,
then there is a K1,t centered at r in G⊕ S, which is a contradiction.

Let G be a yes-instance of SC-to-G. Let S ⊆ V (G) be such that |S| ≥ 2, G⊕ S ∈ G,
and S be not an independent set. Let u, and v be two adjacent vertices in S. Then with
respect to S, u, v, we can partition the vertices in V (G) \ {u, v} into eight sets as given
below, and shown in Figure 1.

(i) NS(uv) = S ∩N(u) ∩N(v)

(ii) NS(ūv̄) = S ∩N [u] ∩N [v]

(iii) NS(uv̄) = S ∩ (N(u) \N [v])

(iv) NS(ūv) = S ∩ (N(v) \N [u])

(v) NT (uv) = (N(u) ∩N(v)) \ S

(vi) NT (ūv̄) = (N [u] ∩N [v]) \ S

(vii) NT (uv̄) = (N(u) \N [v]) \ S

(viii) NT (ūv) = (N(v) \N [u]) \ S

We notice that S = NS(uv) ∪NS(ūv̄) ∪NS(uv̄) ∪NS(ūv) ∪ {u, v}.

NS(ūv̄)

NS(uv)

NS(uv̄) NS(ūv)
NT (uv̄) NT (ūv)

NT (uv)

NT (ūv̄)

u v

Figure 1: Partitioning of vertices of G based on S and two adjacent vertices u, v ∈ S. The
bold lines represent the adjacency of vertices u and v [3].

Observation 2.5. Then the following statements are true.

(i) N(u) \N [v] induces a (t− 1, t− 1)-split graph with a (t− 1, t− 1)-split partition of
(NS(uv), NT (uv)).

(ii) N(v) \N [u] induces a (t− 1, t− 1)-split graph with a (t− 1, t− 1)-split partition of
(NS(vu), NT (vu)).
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(iii) NT (uv) induces an independent set with at most (t− 1) vertices.

(iv) NS(ūv̄) induces a clique. If xy is an edge of the clique, then N [x]∩N [y] in N [u]∩N [v]
induces a split graph with one split partition being (NS(ūv̄), (N [x] ∩ N [y] ∩ N [u] ∩
N [v]) \ (NS(ūv̄))).

Proof. If NS(uv) has a Kt, then v along with the vertices of the Kt induce a K1,t in G⊕S.
If NT (uv) has an independent set of size t, then u along with the vertices of the independent
set induce a K1,t in G⊕S. Therefore, (i) holds true. Similarly we can prove the correctness
of (ii). If there are two adjacent vertices x and y in NT (uv), then {x, y, u, v} induces a
diamond in G⊕S. Therefore, NT (uv) is an independent set. If it has at least t vertices then
there is an induced K1,t formed by those vertices and u in G⊕S. Therefore, (iii) holds true.
If there are two nonadjacent vertices x and y in NS(ūv̄), then there is a diamond induced
by {x, y, u, v} in G ⊕ S. Therefore, NS(ūv̄) is a clique. Assume that x, y ∈ NS(ūv̄). If x
and y have two adjacent common neighbors x′ and y′ in NT (ūv̄), then {x, y, x′, y′} induces
a diamond in G⊕ S. Therefore, N [x] ∩N [y] ∩N [u] ∩N [v] is a split graph with one split
partition being (NS(ūv̄), (N [x] ∩N [y] ∩N [u] ∩N [v]) \ (NS(ūv̄))).

Lemma 2.6. G is a yes-instance of SC-to-G if and only if the algorithm returns YES.

Proof. Since the algorithm returns YES only when a solution is found, the backward direc-
tion of the statement is true. For the forward direction, let G be a yes-instance. Assume
that there exists a solution S which is an independent set. Further, assume that G has
an induced diamond. Then by Lemma 2.3, S is the set of all degree-2 vertices of the
induced diamonds in G. Then Step 1 returns YES. Assume that G is diamond-free. Then
by Lemma 2.4, S ⊆ I, where I is the set of isolated vertices in the graph induced by the
neighbors of r, for a center r of an induced K1,t in G. Further |S| ≥ |I| − t+ 2. Then Step
2 returns YES. Let S be a solution which is not an independent set. Let uv be an edge
in the graph induced by S. The algorithm will discover uv in one iteration of Step 3. By
Observation 2.5, we know that the graph induced by N(u) \ N [v] is a (t − 1, t − 1)-split
graph with a (t−1, t−1)-split partition (NS(uv), NT (uv)). Similarly, the graph induced by
N(v)\N [v] is a (t−1, t−1)-split graph with a (t−1, t−1)-split partition (NS(uv), NT (uv)).
Further, NT (uv) is an independent set of size at most t − 1. Therefore, in one iteration
of Step 3.5, we obtain S1 = NS(uv), S2 = NS(uv), and S3 = NS(uv). If NS(ūv̄) is empty,
then Step 3.5(a) returns YES. If NS(ūv̄) is a singleton set, then Step 3.5(b) returns YES.
Assume that |NS(ūv̄)| ≥ 2. By Observation 2.5, NS(ūv̄) is a clique and for every edge xy
in it, the common neighborhood of x and y in N [u]∩N [v] is a split graph with a partition
being NS(ūv̄) and the rest. The algorithm will discover such an edge xy in one of the
iterations of Step 3.5(c) and NS(ūv̄) will be discovered as S4. Then YES is returned at
Step 3.5(c).

By Proposition 2.2, (t− 1, t− 1)-split graphs can be recognized in polynomial-time and
all (t− 1, t− 1)-split partitions of a (t− 1, t− 1)-split graph can be found in polynomial-
time. Therefore, each step in the algorithm runs in polynomial-time. Then we obtain
Theorem 2.7 from Lemma 2.6.



Algorithms for subgraph complementation to some classes of graphs 49

Theorem 2.7. Let G be the class of {K1,t, diamond}-free graphs for any constant t ≥ 3.
Then SC-to-G can be solved in polynomial-time.

It remains open whether the problem is polynomial-time solvable when G is H-free for
an H ∈ {K1,3, K1,4, diamond}.
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1 Introduction
The r-colour Ramsey number Rr(k) is defined to be the minimum n ∈ N such that every
r-colouring χ : E(Kn) → {1, . . . , r} of the edges of the complete graph on n vertices con-
tains a monochromatic clique of size k. These numbers (and their extensions to general
graphs, hypergraphs, etc.) are among the most important and extensively-studied objects
in combinatorics, see for example the beautiful survey article [4].

In this paper we will study the following generalisation of the r-colour Ramsey numbers.

Definition 1.1. The set-colouring Ramsey number Rr,s(k) is the least n ∈ N such that
every colouring χ : E(Kn)→

(
[r]
s

)
contains a monochromatic clique of size k, that is, a set

S ⊂ V (Kn) with |S| = k and a colour i ∈ [r] such that i ∈ χ(e) for every e ∈
(
S
2

)
.

That is, we assign a set χ(e) ⊂ [r] = {1, . . . , r} of s colours to each edge of the complete
graph, and say that a clique is monochromatic if there exists a colour i ∈ [r] that is assigned
to every edge of the clique. Note that when s = 1 this is simply the usual r-colour Ramsey
number. The study of set-colouring Ramsey numbers was initiated in the 1960s by Erdős,
Hajnal and Rado [5], who conjectured that Rr,r−1(k) ≤ 2δ(r)k for some function δ(r) → 0
as r → ∞. This conjecture was proved by Erdős and Szemerédi [6] in 1972, who showed
that

2Ω(k/r) ≤ Rr,r−1(k) ≤ rO(k/r).

For more general values of s, the first significant progress was made only recently, by
Conlon, Fox, He, Mubayi, Suk and Verstraëte [2], who showed that

exp

(
c′k(r − s)3

r2

)
≤ Rr,s(k) ≤ exp

(
ck(r − s)2

r
log

r

min{s, r − s}

)
(1)

for absolute constants c, c′ > 0. While the exponents in the lower and upper bounds differ
by only a factor of log r when r − s = Ω(r), they diverge much more significantly when
(r − s)/r → 0. We remark that the range s = r − o(r) was of particular interest to the
authors of [2], who were motivated by an application to hypergraph Ramsey numbers [3].

The main result of this paper is the following improved lower bound, which allows us
to determine Rr,s(k) up to a poly-logarithmic factor in the exponent for essentially all r,
s, k.

Theorem 1.2. There exist constants C > 0 and δ > 0 such that the following holds. If
r, s ∈ N with s ≤ r − C log r, then

Rr,s(k) ≥ exp

(
δk(r − s)2

r

)
(2)

for every k ≥ (C/ε) log r, where ε = (r − s)/r.

Note that the bound (2) matches the upper bound (1) on Rr,s(k), proved in [2], up to a
factor of O(log r) in the exponent for all s ≤ r−C log r. When s ≥ r−C log r our method
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does not provide a construction, but in this case the bounds from [2] only differ by a factor
of order (log r)2 in the exponent, the lower bound coming from a simple random colouring.

The lower bound on k in Theorem 1.2 is also not far from best possible, since if k ≤ 1/ε
then the most common colour has density at least 1 − 1/k, and therefore Rr,s(k) ≤ k2,
by Turán’s theorem. A simpler version of the construction described in this paper (taking
complete (k−1)-partite graphs instead of blow-ups of random graphs) extends Theorem 1.2
to a wider range of s and k, as stated in the following corollary. We omit its proof for
space reasons.

Corollary 1.3. Let r > s ≥ 1 and δ > 0, and set ε = (r−s)/r. We have Rr,s(k) = 2Θ̃(ε2rk)

for every k ≥ (1 + δ)/ε+ 1.

2 The construction
In this section we will define the (random) colouring that we use to prove Theorem 1.2,
and prove that it has the desired properties with high probability. The idea behind our
construction, to let each colour be a random copy of some pseudorandom graph, was intro-
duced in the groundbreaking work of Alon and Rödl [1] on multicolour Ramsey numbers,
and has been used in several recent papers in the area [7, 8, 10, 9]. However, our approach
differs from that used in these previous works in several important ways; in particular, we
will not count independent sets, and it will be important that our colour classes are chosen
(almost) independently at random.

Fix a sufficiently small1 constant δ > 0, and set C = 1/δ3. Recall that r − s = εr, and
let

m = 2δ
2εk and n = 2δ

4ε2rk.

Note that ε
√
m ≥ k, since k ≥ (C/ε) log r and ε ≥ 1/r, and by our choice of C.

Set p = 1− 5δε, and for each colour i ∈ [r], let

• Hi be an independently chosen copy of the random graph G(m, p), and

• φi : [n]→ [m] be an independently and uniformly chosen random function.

Now define Gi to be the (random) graph with vertex set [n] and edge set

E(Gi) =
{
uv : {φi(u), φi(v)} ∈ E(Hi)

}
,

that is, a random blow-up of Hi, with parts given by φi. Define a colouring χ′ of Kn by
χ′(e) =

{
i ∈ [r] : e ∈ E(Gi)

}
, and define the set of bad edges to be

B =
{
e ∈ E(Kn) : |χ′(e)| < s

}
. (3)

We will also say that an edge e = uv ∈ E(Kn) is i-crossing if φi(u) 6= φi(v), and define

κ(e) =
{
i ∈ [r] : e is i-crossing

}
.

We can now define the colouring that we will use to prove Theorem 1.2.
1In fact taking δ = 2−5 would suffice, but we will not make any attempt to optimise the value of δ.
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Definition 2.1. For each e ∈ E(Kn), we define the set of colours χ(e) ⊂ [r] by

χ(e) =

{
χ′(e) if e 6∈ B,
κ(e) if e ∈ B.

Our task is to show that with high probability |χ(e)| ≥ s for every e ∈ E(Kn), and
moreover that χ contains no monochromatic copy of Kk. We start with the former.

Lemma 2.2. With high probability, |χ(e)| ≥ s for every e ∈ E(Kn).

Proof. Note that for each i ∈ [r] we have Pr(i 6∈ κ(e)) = 1/m all independently, by the
definition of the functions φi. By the union bound over the set of r−s = εr missed colours,

Pr
(
|χ(e)| < s

)
≤ Pr

(
|κ(e)| < s

)
≤
(
r

εr

)(
1

m

)εr
≤
(
e

εm

)εr
≤ 2−δ

3ε2rk ≤ 1

n3

since k ≥ (C/ε) log r and C = δ−3 imply that εm ≥
√
m = 2δ

2εk/2. Applying Markov’s
inequality and taking an union bound over edges then proves the lemma.

To prove that χ contains no monochromatic copy of Kk, we split into two cases, the
easier case being the following. Let t = δεk2.

Lemma 2.3. With high probability, the colouring χ contains no monochromatic k-clique
with at most t bad edges.

Proof. Suppose χ contains a monochromatic clique S = {v1, . . . , vk} of colour i ∈ [r] such
that at most t of the edges e ∈

(
S
2

)
are bad. For each j ∈ [k], let wj = φi(vj) ∈ V (Hi), and

observe that the set W = {w1, . . . , wk} has size k, since by Definition 2.1, and noting that
χ′(e) ⊂ κ(e), every edge e ∈ E(Kn) such that i ∈ χ(e) is i-crossing.

Now, if e = vjv` ∈
(
S
2

)
is not a bad edge, then i ∈ χ(e) = χ′(e), and hence wjw` ∈ E(Hi).

Since there are at most t bad edges in
(
S
2

)
, it follows that e

(
Hi[W ]

)
≥
(
k
2

)
−t > p

(
k
2

)
+δεk2,

since p = 1−5δε and t = δεk2. Since Hi[W ] ∼ G(k, p), it follows from Chernoff’s inequality
that this event has probability at most e−δ2εk2 . By the union bound, the probability that
χ contains a monochromatic clique with at most t bad edges is at most

r

(
m

k

)
e−δ

2εk2 ≤ r
(
2δ

2εk · e−δ2εk
)k
.

Since δ3εk ≥ log r, the right-hand side tends to zero as k →∞, as required.

Our remaining task is to show that, with high probability, no graph F of the family

F =
{
F ⊂ Kn : v(F ) = k and e(F ) = t

}
is such that F ⊂ B.2 We will not be able to prove this using a simple first-moment
argument, summing over all graphs F ∈ F , since the probability of the event {F ⊂ B} is
not always sufficiently small. Instead, we will identify a ‘bottleneck event’ for each F ∈ F .

2Here, and below, we abuse notation slightly by treating the set of bad edges B as a graph.
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To do so, choose a total ordering ≺F on the vertices of F such that u ≺F v implies
dF (u) ≥ dF (v). In other words, we order the vertices according to their degrees in F ,
breaking ties arbitrarily. Now, define

Qi(F ) =
{
v ∈ V (F ) : ∃ u ∈ V (F ) with u ≺F v such that φi(u) = φi(v)

}
to be the set of vertices which share a part of φi with another vertex of F that comes earlier
in the order ≺F . We remark that if u ≺F v, then u 6= v. In the following two lemmas, we
will bound the probability in two different ways, depending on the size of

XF =
r∑
i=1

∑
v∈Qi(F )

dF (v).

Lemma 2.4. With high probability, there does not exist F ∈ F with XF ≤ εrt/2 and
F ⊂ B.

Proof. We first reveal the random functions φ1, . . . , φr, and therefore the sets Qi(F ) (and
hence also the random variable XF ) for each F ∈ F . To prove the lemma we will only use
the randomness in the choice of H1, . . . , Hr. More precisely, we will consider the set

Y =
{

(uv, i) ∈ E(F )× [r] : u, v 6∈ Qi(F )
}

of pairs (e, i) ∈ E(F )× [r] such that neither endpoint of e is contained in Qi(F ), and

Z =
∑

(e,i)∈Y

1
[
e 6∈ E(Gi)

]
,

the number of such pairs for which i 6∈ χ′(e). Note that, for each i ∈ [r], the graph
{e : (e, i) ∈ Y } is contained in a clique with at most one vertex in each part of φi. The events
{e ∈ E(Gi)} for (e, i) ∈ Y are therefore independent, and hence Z ∼ Bin(|Y |, 1−p). Since
|Y | ≤ rt, Z is dominated by a binomial random variable with expectation (1−p)rt = 5δεrt.

If F ⊂ B, then for each edge e ∈ E(F ), there are at least εr colours i ∈ [r] such that
e 6∈ E(Gi). Thus

r∑
i=1

∑
e∈E(F )

1
[
e 6∈ E(Gi)

]
≥ εrt.

Therefore, if XF ≤ εrt/2, then Z ≥ εrt/2, since for each vertex v ∈ Qi(F ) we remove
at most dF (v) edges from Y . By Chernoff’s inequality, it follows that for a fixed F ∈ F
we have Pr(XF ≤ εrt/2 and F ⊂ B) ≤ e−δεrt. Taking a union bound and recalling that
t = δεk2, it follows that the probability that there exists F ∈ F with XF ≤ εrt/2 and
F ⊂ B is at most (

n

k

)((k
2

)
t

)
e−δεrt ≤

(
en

k

( e
δε

)δεk
e−δ

2ε2rk

)k
→ 0,

as claimed, where in the final step we used our choice of n = 2δ
4ε2rk, the bound ε ≥ (log r)/r,

which holds by our assumption that s ≤ r − C log r, and our choice of C = 1/δ3.
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Finally, we will use the randomness in φ1, . . . , φr to show that XF is always small.

Lemma 2.5. With high probability, XF ≤ εrt/2 for every F ∈ F .

Proof. For each graph F ∈ F , and each j ∈
{

1, . . . , dlog2 ke
}
, define

Aj(F ) =
{
v ∈ V (F ) : 2−jk ≤ dF (v) < 2−j+1k

}
and sj(F ) =

r∑
i=1

|Aj(F ) ∩Qi(F )|.

Note that the random functions φ1, . . . , φr determine Q1(F ), . . . , Qr(F ), and hence sj(F ).
The key step is the following claim, which provides us with our bottleneck event.

Claim. If XF ≥ εrt/2, then there exists ` ∈
{

1, . . . , dlog2 ke
}

satisfying the inequality
s`(F ) > δεr

∑`
j=1 |Aj(F )|.

Proof of claim. Observe that

εrt

2
≤ XF =

r∑
i=1

∑
v∈Qi(F )

dF (v) ≤
r∑
i=1

dlog2 ke∑
j=1

k

2j−1
· |Aj(F ) ∩Qi(F )| =

dlog2 ke∑
j=1

k

2j−1
· sj(F ).

Thus, if the conclusion of the claim fails to hold for every ` ∈
{

1, . . . , dlog2 ke
}
then we

have

t

4δk
≤ 1

δεr

dlog2 ke∑
`=1

s`(F )

2`
≤
dlog2 ke∑
`=1

1

2`

∑̀
j=1

|Aj(F )|

=

dlog2 ke∑
j=1

|Aj(F )|
dlog2 ke∑
`=j

1

2`
≤
dlog2 ke∑
j=1

|Aj(F )|
2j−1

≤ 2

k

∑
v∈V (F )

dF (v) =
4t

k
.

Since δ < 2−4, this is a contradiction, and so the claim follows.

Fix ` ∈
{

1, . . . , dlog2 ke
}

such that the conclusion of the claim holds, and set A :=
∪`j=1Aj(F ) and a := |A|. Now, if we reveal φi for the vertices of F one vertex at a time
using the order ≺F , then for each vertex v ∈ Qi(F ) we must choose φi(v) to be one of the
(at most k) previously selected elements of [m]. The expected number of sets A such that
the conclusion of the claim holds is thus at most

k∑
a=1

na
(
ar

δεar

)(
k

m

)δεar
≤

k∑
a=1

(
n ·
(
e

δε
· k
m

)δεr)a
→ 0

as k →∞, as required, since n = 2δ
4ε2rk and εm/k ≥

√
m = 2δ

2εk/2.

Proof of Theorem 1.2. Combining Lemmas 2.2, 2.3, 2.4 and 2.5, we see that, with high
probability, the random colouring χ satisfies |χ(e)| ≥ s for every e ∈ E(Kn) and contains
no monochromatic Kk. Therefore Rr,s(k) > n = 2δ

4ε2rk, as desired.
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symbols. We say that A is a substructure of B and write A ⊆ B if the identity map is
an embedding A → B. Let K be a class of L-structures. We say that K is hereditary
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Given L-structures A and B, we denote by
(
B
A

)
the set of all embeddings from A to

B. We write C −→ (B)Ak,l to denote the following statement: for every colouring χ of
(
C
A

)
with k colours, there exists an embedding f : B→ C such that χ does not take more than
l values on

(
f(B)
A

)
. For a countably infinite L-structure B and its finite substructure A, the

big Ramsey degree of A in B is the least number D ∈ N∪{∞} such that B −→ (B)Ak,D for
every k ∈ N. We say that L-structure B has finite big Ramsey degrees if the big Ramsey
degree of every finite substructure A of B is finite. In general, we are interested in the
following question: Given a hereditary class of L-structures K, do K-universal L-structures
in K have finite big Ramsey degrees? Notice that if one K-universal L-structure in K has
finite big Ramsey degrees then all of them do. The study of big Ramsey degrees originated
in 1960’s Laver’s unpublished proof that the big Ramsey degrees of the order of rationals
are finite. This result was refined and a precise formula was obtained by Devlin [8]. This
area has recently been revitalized with a rapid progress regarding big Ramsey degrees of
structures in finite binary languages (see e.g. recent survey [10]).

We call an L-structure A irreducible if for every pair of vertices u, v ∈ A there exist a
relational symbol R ∈ L and a tuple ~t ∈ RA such that u, v ∈ ~t. Given set of L-structures
F , L-structure A is F-free if there there is no F ∈ F with an embedding F → A. The
class of all (finite and countably infinite) F -free L-structures is denoted by Forbe(F). With
these definitions we can state a recent result:

Theorem 1.1 (Zucker [21]). Let L be a finite binary relational language, and F a finite
set of finite irreducible L-structures. Then every Forbe(F)-universal L-structure has finite
big Ramsey degrees. (In other words, for every finite substructure A of U there exists finite
D = D(A) such that U −→ (U)Ak,D for every k > 1.)

This result can be seen as an infinitary variant of well known Nešetřil–Rödl theorem
(one of the fundamental results of structural Ramsey theory) which can be stated as follows:

Theorem 1.2 (Nešetřil–Rödl theorem [17, 18]). Let L be a relational language, F a set
of finite irreducible L-structures. Then for every finite A ∈ Forbe(F) there exists a finite
integer d = d(A) such that for every finite B ∈ Forbe(F) and finite k > 0 there exists a
finite C ∈ Forbe(F) satisfying C −→ (B)Ak,d.

To see the correspondence of Theorems 1.1 and 1.2 choose F as in Theorem 1.1 and
a finite F -free L-structure A. By Theorem 1.1 there is a finite D = D(A) such that
every Forbe(F)-universal L-structure U satisfies U −→ (U)Ak,D for every k > 0. By
Forbe(F)-universality of U for every F -free L-structure B we have U −→ (B)Ak,D and by
compactness there exists a finite substructure C of U such that C −→ (B)Ak,D. In general,
D(A) (characterised precisely in [1]) differs from d(A), the number of linear orderings of
A. However, the proof of Theorem 1.1 can be used to recover precise bounds on d(A).

Comparing Theorems 1.1 and 1.2, it is natural to ask whether the assumptions about
finiteness of F , finiteness of the language L, and relations being only binary can be dropped
from Theorem 1.1. It is known that the first condition can not be omitted: Sauer [19] has
shown that there exist infinite families F of finite irreducible L-structures where Forbe(F)-
universal structures have infinite big Ramsey degrees of vertices. This is true even for
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language L containing only one binary relation (digraphs). The latter two conditions
remain open.

Until recently, most bounds on big Ramsey degrees were for L-structures in binary
languages only. Techniques to give bounds on big Ramsey degrees of 3-uniform hypergraphs
have been announced in Eurocomb 2019 [4] and published recently [5]; they were later
extended to languages with arbitrary relational symbols [6]. Extending links between
the Hales–Jewett theorem [12], Carlson–Simpson theorem [7] and big Ramsey degrees
established in [15], a Ramsey-type theorem for trees with successor operations has been
introduced [3] which extends to all known big Ramsey results on L-structures. However,
the following problem remains open:

Problem 1.3. Let L = {E,H} be a language with one binary relation E and one ternary
relation H. Let F be the L-structure where F = {0, 1, 2, 3}, RF = {(1, 0), (1, 2), (1, 3)}, H =
{(0, 2, 3)}. Denote by K the class of all L-structures A such that there is no monomorphism
F→ A. Do K-universal L-structures have finite big Ramsey degrees?

Thise problem demonstrates unforeseen obstacles on giving a natural infinitary gener-
alization of the Nešetřil–Rödl theorem. We give a new approach which avoids this issue
and which suggests perhaps the proper setting for big Ramsey degrees.

Finite structural Ramsey results are most often proved by refinements of the Nešetřil–
Rödl partite construction [18]. This technique does not generalize to infinite structures
due to essential use of backward induction. Upper bounds on big Ramsey degrees are
based on Ramsey-type theorems on trees (e.g. the Halper–Läuchli theorem [13], Milliken’s
tree theorem [16], the Carlson–Simpson theorem [7], and their various refinements [21, 9,
11]). This proof structure may seem unexpected at first glance but is justified by the
existence of unavoidable colourings (based on idea of Sierpiński) which are constructed by
assigning colors according to subtrees of the tree of 1-types (see e.g. [2, 10]). The exact
characterisations of big Ramsey degrees can then be understood as an argument that this
proof structure is in a very specific sense the only possible: the trees used to give upper
bounds are also encoded in the precise characterisations of big Ramsey degrees.

We briefly review the construction of tree of 1-types. Recall that a (model-theoretic) tree
is a partial order (T,≤) where the down-set of every x ∈ T is a finite chain. An enumerated
L-structure is simply an L-structure U whose underlying set is the ordinal |U|. Fix a
countably infinite enumerated L-structureU. Given vertices u, v and an integer n satisfying
min(u, v) ≥ n ≥ 0, we write u ∼U

n v, and say that u and v are of the same (quantifier-free)
type over 0, 1, . . . , n− 1, if the L-structure induced by U on {0, 1, . . . , n− 1, u} is identical
to the L-structure induced by U on {0, 1, . . . , n − 1, v} after renaming vertex v to u. We
write [u]Un for the ∼U

n -equivalence class of vertex u.

Definition 1.1 (Tree of 1-types). LetU be an infinite (relational) enumerated L-structure.
Given n < ω, write TU(n) = ω/ ∼U

n . A (quantifier-free) 1-type is any member of the
disjoint union TU :=

⊔
n<ω TU(n). We turn TU into a tree as follows. Given x ∈ TU(m)

and y ∈ TU(n), we declare that x ≤T
U y if and only if m ≤ n and x ⊇ y.
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One can associate every vertex of v ∈ U with its corresponding equivalence class in
'U

v . This way every substructure A ⊆ U corresponds to a subset of nodes of the tree
TU. Sierpiński-like colourings can be then constructed by considering shapes of the meet
closures of nodes corresponding to each given copy. Every type in x ∈ ω/ ∼U

n can be
described as an L-structure T with vertex set T = {0, 1, . . . n − 1, t} such that for every
v ∈ x it holds that L-structure induced by U on {0, 1, . . . n − 1, v} is T after renaming t
to v. This is very useful in the setting where types originating from multiple enumerated
L-structures are considered (see for instance [15, 2]).

The concept of the tree of 1-types was implicit in early proofs (such as in Devlin’s
thesis) and became explicit later. The tree of 1-types itself is, however, not sufficient to
give upper bounds on big Ramsey degrees for L-structures in languages containing symbols
of arity 3 and more. Upper bounds in [5] and [6] are based on the product form of the
Milliken tree theorem which in turn suggests the following notion of a weak type.

For the rest of this note, fix a relational language L containing a binary symbol ≤.
For all L-structures, ≤ will always be a linear order on vertices which is either finite or of
order-type ω. This will describe the enumeration. All embeddings will be monotone.

Definition 1.2 (Weak type). We denote by Lf the language L extended by unary function
symbol f . An Lf -structure T is a weak type of level ` if

1. T = {0, 1, . . . , `− 1, t0, t1, . . .} where vertices ti are called type vertices.

2. For every R ∈ L and ~t ∈ RT it holds that ~t∩ {t0, t1, . . .} is a (possibly empty) initial
segment of type vertices (i.e. set of the form {ti : i ∈ k} for some k ∈ ω) and
~t ∩ {0, 1, . . . , `− 1} 6= ∅.

3. For every i > 0 we put fT(ti) = ti−1, fT(t0) = t0, and fT is undefined otherwise.

Weak types thus give less information than standard model-theoretic k-types [14]. Func-
tion f is added to type vertices to distinguish them from normal vertices. This will be useful
in later constructions. Notice that while technically weak type has infinitely many types
vertices, thanks to condition 2 of Definition 1.2, if the language L contains no relations of
arity r + 1 or more, vertices tr−1, tr, . . . will be isolated. In particular:

Observation 1.4. If L contains only unary and binary symbols then there is one-to-one
correspondence between 1-types and weak types because only type vertex t0 carries interesting
structure.

1-types describes one vertex extensions of an initial part of the enumerated L-structure.
The weak-type equivalent of this is the following:

Definition 1.3 (Weak type of a tuple). Let A be an enumerated L-structure, T a weak
type of level ` ∈ A ⊆ ω and ~a = (a0, a1, . . . , ak−1) an increasing tuple of vertices from A\ `.
We say that ~a has type T on level ` if the function h : T → A given by:

h(x) =

{
x if x ∈ `,
ai if x = ti for some i < k



Type-respecting amalgamation and big Ramsey degrees 61

has the property that for everyR ∈ L and~b a tuple of vertices in {0, 1, . . . , `−1, t0, t1, . . . , tk−1}
such that ~b ∩ {t0, t1, . . .} is an initial segment of type vertices and ~b ∩ {0, 1, . . . , `− 1} 6= ∅
it holds that ~b ∈ RT ⇐⇒ h(~b) ∈ RA.

Definition 1.4 (Tree of weak types). Given an enumerated L-structure U, its tree of weak
types consists of all Lf -structures T that are weak types of some tuple of U on some level
` ∈ U ordered by ⊆.

Given an enumerated L-structure A and a weak type T, we say that T extends A if
T \ {t0, t1, . . .} = A. Given two types T and T′ that extend A, and n ≥ 0, we say that T
and T′ agree as n-types if T � (A ∪ {t0, t1, . . . tn−1}) = T′ � (A ∪ {t0, t1, . . . tn−1}).

A standard technique for proving infinite Ramsey-type theorems is to work with finite
approximations of the embeddings considered. See e.g. Todorcevic’s axiomatization of
Ramsey spaces [20]. Initial approximations of our embeddings will be described as follows:

Definition 1.5 (Structure with types). Given a finite enumerated L-structure A, A+

denotes the L-structure created from the disjoint union of all weak types extending A by

1. identifying all copies of A, and,

2. identifying the copy of vertex ti of weak type T and with the copy of ti of weak type
T′ whenever T and T′ agree as i+ 1 types.

Observe that thanks to the function f added to weak types, for any two L-structures
with types A+ and B+, every embedding h : A+ → B+ is also a map from weak types of
A on level |A| to weak types of B of level |B|.

Given an L-structure A and a vertex v, we denote by A(<v) the L-structure induced
by A on {a ∈ A; a < v} and call it the initial segment of A. The key notion for our
approach is to restrict attention to embedding which behave well with respect to weak
types. That is, for every initial segment of the L-structure, the rest of the embedding can
be summarized via embedding of weak types extending the initial segments.

Definition 1.6 (Type-respecting embeddings of L-structures). Given enumerated L-structures
A and B and an embedding h : A→ B, we say that h is type-respecting if for every v ∈ A
there exists an embedding hv : A(<v)+ → B(<h(v))+ such that the weak types of tuples
in B on level h(v) consisting only of vertices of h[A] are all in the image hv[A].

Definition 1.7 (K-type-respecting embeddings of initial segments). Let A and B be two
finite enumerated L-structures. Embedding h : A+ → B+ is type-respecting if for every
(possibly infinite) L-structure A′ with initial segment A there exists an L-structure B′

with initial segment B and a type-respecting embedding g : A→ B finitely approximated
by h. That is g � A = h � A and every weak type in B′ of a tuple consisting of vertices of
g[A] of level g(maxA) is in h[A+].

Given class K of L-structures we say that h : A+ → B′+ is K-type-respecting if for every
L-structure A′ ∈ K with initial segment A there exists an structure B′ ∈ K with initial
segment B and a type-respecting embedding g : A→ B finitely approximated by h.
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Definition 1.8 (Type-respecting amalgamation property). Let K be a hereditary class
of enumerated L-structures. We say that K has type-respecting amalgamation property if
given three finite enumerated L-structures A, B, B′ ∈ K such that B′ \ B = {maxB′}
and B′ � B = B, two K-type-respecting embeddings f : A+ → B+, f ′ : A+ → B′+ and
a type-respecting (but not necessarily K-type-respecting) embedding g : B+ → B′+ such
that g � B is the identity and g ◦ f = f ′, there exists a K-type-respecting embedding
g′ : B+ → B′+ such that g′ ◦ f = f ′ and g′ � B = Id.

Given a class of L-structures K, finite A ∈ K and B ∈ K, we denote by
(
B
A

)K
the

set of all K-type-respecting embeddings A+ → B′+ for B′ an initial segment of B. We
write C −→K (B)Ak,l to denote the following statement: for every colouring χ of

(
C
A

)K
with k colours, there exists a type-respecting embedding f : B→ C such that χ does not
take more than l values on

(
f(B)
A

)K
. For a countably infinite L-structure B and its finite

suborder A, the big Ramsey degree of A in K-type-respecting embeddings of A in B is the
least number D ∈ N ∪ {∞} such that B −→K (B)Ak,D for every k ∈ N.

For type-respecting embeddings we can prove the Ramsey property in the full generality
(showing that, in this situation, Problem 1.3 is not a problem).

Theorem 1.5. Let L be a finite relational language. Let F be a finite family of finite
irreducible enumerated L-structures. Denote by KF the class of all finite or countably-
infinite enumerated L-structures A where ≤A is either finite or of order-type ω such that
for every F ∈ F there no embedding F → A. Assume that KF has the type-respecting
amalgamation property. Then for every universal L-structure U ∈ KF and every finite
A ∈ KF there is a finite D = D(A) such that U −→K (U)Ak,D for every k ∈ N.

We show the following:

Proposition 1.6. Let L be a finite language consisting of binary and unary relational
symbols only. Let F be a finite family of enumerated irreducible L-structures. Then KF has
the type-respecting amalgamation property. Moreover, Theorem 1.5 implies Theorem 1.1.

Proof. Fix L, F and KF . Let A, B, B′ ∈ KF , f : A+ → B+, f ′ : A+ → B′+ and
g : B+ → B′+ be as in Definition 1.8. By Observation 1.4, in order to specify g′, it is only
necessary to give, for every weak type T extending A, an image of its type vertex t0 ∈ T .
Let t′ ∈ B+ be a vertex corresponding to t0. We consider two cases. (1) If t′ ∈ f [A+] then
we put g′(t′) = g(t′). (2) If t′ /∈ f [A+] we put g′(t′) = t′′ where t′′ is the only possible image
of t′ such that there is no relational symbol R ∈ L such that RB+ contains a tuple with
both t′′ and maxB′.

To verify that g′ is KF -type-respecting, choose A′ ∈ KF with initial segment B. Con-
struct A′′ from A by inserting a new vertex v after maxB and extending ≤A′′ . Add the
needed tuples to relations to make B′ the initial segment of A′′. Finally, for every R ∈ L
and u ∈ A′ with u > v, put (u, v) ∈ RA′′ if and only if (g′(t), u) ∈ RB+ where is t is the type
vertex of B corresponding to the type of u in A′. Add tuples (v, u) ∈ RA′′ analogously.

To verify that A′′ ∈ KF , assume to the contrary that there is F ∈ F and embedding
e : F → A′′. Because A′ ∈ KF , clearly v ∈ e[F ]. Because B′ ∈ KF we also know that
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e[F ] contains vertices of A′′ \B′. Since F is irreducible, all such vertices must have types
created by condition (1) above. This contradicts that f ′ is KF -type-respecting.

To see the moreover part we have to construct a universal U which is a substructure
of some U′ ∈ KF with the property that for every n ∈ N there exists N ∈ N such that
for every A ∈ KF with n vertices and every embedding e : A→ U′ there exist a structure
E ∈ KF (called an envelope) with at most N vertices and a KF -type-respecting embedding
h : E → U such that e[A] ⊆ h[E]. This follows from Section 4 of [21], because K-type-
respecting embeddings in this setup are precisely the aged embeddings from [21].

Proposition 1.7. Let L′ = {E,H,≤} and let F′ be an L′-structure created by expanding
the L-structure F from Problem 1.3 by the natural order of vertices. Denote by K the class
of all enumerated L′-structures A for which there is no monomorphism F→ A. The class
K has no type-respecting amalgamation property.

Proof. We give an explicit failure of type-respecting amalgamation showing that the use
of Observation 1.4 in the previous proof is essential. Let A be the empty L′-structure, B
be L′-structure with B = {0}, EB = HB = ∅ and B′ be L′-structure with B′ = {0, 1},
EB′ = {(0, 1)}, HB′ = ∅. Let TA be the unique weak type extending A. Let TB be
weak type extending B with ETB

= HTB
= ∅ and T′B weak type extending B with

ET′
B
= ∅ and HT′

B
= {(0, t0, t1)}. Notice that TB and T′B agree as 1-types and thus in B+

their vertices t0 are identified. Finally, let TB′ and T′B′ be weak types extending B′ with
ETB′ = HT′

B′ = {(0, 1), (1, t0)}, HTB′ = ∅, HT′
B′ = {(0, t0, t1)}. Again TB and TB′ agree

as 1-types. Now let f : A+ → B+ map TA to TB and f+ : A+ → B+ map TA to TB′ .
It is easy to check that these are K-type-respecting. g : B+ → B′+ can be constructed
to be type-respecting by mapping type TB to TB′ and T′B to T′B′ . However there is no
K-type-respecting g′ : B+ → B′+. To see that, observe that any image of T′B must agree
as 1-type with TB′ and consider A′ with A′ = {0, 1, 2} and HA′ = {(0, 1, 2)}. A is an
initial segment of A′ and there is no way to extend g′ to a K-type-respecting embedding
of A′ to some L-structure in K since it will always add vertex v after vertex 0 of A in a
way that there is a monomorphism from F to {0, v, 1, 2}.

We conjecture that the answer to Problem 1.3 is in fact negative. It is possible that by
concentrating on type-respecting embeddings, the study of big Ramsey degrees can find a
proper setting.
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1 Introduction
Hamilton cycles are one of the most studied objects in graph theory, and several classical
results measure how ‘dense’ a graph needs to be to force a Hamilton cycle. In particular, in
1952 Dirac [9] proved that every n-vertex graph with minimum degree δ(G) ≥ n/2 contains
a Hamilton cycle; the minimum degree condition here is best possible.

The Hamiltonicity of directed graphs has also been extensively investigated since the
1960s. A directed graph, or digraph, is a set of vertices together with a set of ordered pairs
of distinct vertices. We think of a digraph as a loop-free multigraph, where every edge is
given an orientation from one endpoint to another, and there is at most one edge oriented
in each of the two directions between a pair of vertices. An oriented graph is a digraph with
at most one directed edge between every pair of vertices. An edge from vertex u to vertex
v is represented as −→uv or ←−vu. In the digraph setting, there is more than one natural analog
of the minimum degree of a graph. The minimum semi-degree δ0(D) of a digraph D is the
minimum of all the in- and outdegrees of the vertices in D; the minimum total degree δ(D)
is the minimum number of edges incident to a vertex in D. Ghouila-Houri [14] proved that
every strongly connected n-vertex digraphD with minimum total degree δ(D) ≥ n contains
a consistently oriented Hamilton cycle, that is, a cycle (v1, v2, . . . , vn, vn+1 = v1) with edges
−−−→vivi+1 for all i ∈ [n]. Note that there are n-vertex digraphs D with δ(D) = 3n/2− 2 that
do not contain a consistently oriented Hamilton cycle, so the strongly connected condition
in Ghouila-Houri’s theorem is necessary.

An immediate consequence of Ghouila-Houri’s theorem is that having minimum semi-
degree δ0(D) ≥ n/2 forces a consistently oriented Hamilton cycle, and this is best pos-
sible. After earlier partial results [15, 16], DeBiasio, Kühn, Molla, Osthus, and Tay-
lor [7] proved that this minimum semi-degree condition in fact forces all possible orien-
tations of a Hamilton cycle, except for the anti-directed Hamilton cycle, that is, a cycle
(v1, v2, . . . , vn, vn+1 = v1) with edges −−−→vivi+1 for all odd i ∈ [n] and←−−−vivi+1 for all even i ∈ [n],
where n is even. Earlier, DeBiasio and Molla [8] showed that the minimum semi-degree
threshold for forcing the anti-directed Hamilton cycle is in fact δ0(D) ≥ n/2 + 1.

There has also been interest in Hamilton cycles in random digraphs: the binomial
random digraph D(n, p) is the digraph with vertex set [n], where each of the n(n − 1)
possible directed edges is present with probability p, independently of all other edges.
Recently, Montgomery [25] determined the sharp threshold for the appearance of any fixed
orientation of a Hamilton cycle H in D(n, p), thereby answering a conjecture of Ferber and
Long [12] in a strong form. Depending on the orientation of H, the threshold here can
vary from p = log n/2n to p = log n/n.

In this extended abstract, we consider arbitrary orientations of Hamilton cycles in the
randomly perturbed digraph model. Introduced in both the undirected and directed setting
by Bohman, Frieze, and Martin [3], this model starts with a dense (di)graph and then
adds m random edges to it. The overarching question now is how many random edges
are required to ensure that the resulting (di)graph asymptotically almost surely (a.a.s.)
satisfies a given property, that is, with probability tending to 1 as the number of vertices
n tends to infinity. For example, Bohman, Frieze, and Martin [3] proved that for every
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α > 0, there is a C = C(α) such that if we start with an arbitrary n-vertex graph G
of minimum degree δ(G) ≥ αn and add Cn random edges to it, then a.a.s. the resulting
graph is Hamiltonian. Furthermore, given a constant 0 < α < 1/2, in a complete bipartite
graph with part sizes αn and (1 − α)n, a linear number of random edges are needed to
ensure Hamiltonicity. Thus their result is best possible up to the dependence of C on α.
Subsequently, there has been a significant effort to improve our understanding of randomly
perturbed graphs. See, e.g., [17, Section 1.3] and the references within for a snapshot of
some of the results in the area.

Bohman, Frieze, and Martin [3] also proved the analogous result for consistently ori-
ented Hamilton cycles in the randomly perturbed digraph model. Their result is also best
possible up to the dependence of C on α, for similar reasons as the undirected setting.

Theorem 1.1 (Bohman, Frieze, and Martin [3]). For every α > 0, there is a C = C(α)
such that if D0 is an n-vertex digraph of minimum semi-degree δ0(D0) ≥ αn, then D0 ∪
D(n,C/n) a.a.s. contains a consistently oriented Hamilton cycle.

A notion closely related to Hamiltonicity is pancyclicity, which is when a (di)graph
contains cycles of every possible length. Bondy [4] generalized Dirac’s theorem, showing
that if δ(G) ≥ n/2 then G is pancyclic or Kn/2,n/2. Shortly after, Bondy [5] proposed his
famous meta-conjecture that any ‘non-trivial’ sufficient condition for Hamiltonicity should
be a sufficient condition for pancyclicity, up to a small number of exceptional graphs.
Krivelevich, Kwan, and Sudakov [20] generalized Theorem 1.1 in this way, showing that
the same conditions as in Theorem 1.1 imply that the randomly perturbed digraph contains
consistently oriented cycles of every length.

Theorem 1.2 (Krivelevich, Kwan, and Sudakov [20]). For every α > 0, there is a C =
C(α) such that if D0 is an n-vertex digraph of minimum semi-degree δ0(D0) ≥ αn, then
D0∪D(n,C/n) a.a.s. contains a consistently oriented cycle of every length between 2 and n.

The original rotation-extension-type proofs of Theorems 1.1 and 1.2 only guarantee
consistently oriented cycles. Our main result is a generalization of Theorem 1.2 to allow
for all orientations of a cycle of every possible length. Moreover, we find all these cycles
simultaneously, i.e., D0 ∪D(n,C/n) a.a.s. contains all of them. This last property is an
example of universality, a notion both well-studied in the random graph (e.g., [10, 25]) and
randomly perturbed (e.g., [6, 27]) settings.

Theorem 1.3. For every α > 0, there is a C = C(α) such that if D0 is an n-vertex
digraph of minimum semi-degree δ0(D0) ≥ αn, then D0 ∪D(n,C/n) a.a.s. contains every
orientation of a cycle of every length between 2 and n.

Theorem 1.3 is best possible in the sense that one really needs to add a linear number
of random edges to D0. Indeed, similarly as before, let D be the complete bipartite digraph
with part sizes αn and (1 − α)n (where 0 < α < 1/2). Then one needs to add a linear
number of edges to D to ensure a Hamilton cycle of any orientation.
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It is also natural to try and generalize Theorem 1.1 in another direction, by relaxing
the minimum semi-degree condition to a total degree. Unfortunately, this cannot be true
for a Hamilton cycle H in which all but o(n) vertices have in- and outdegree 1. Indeed,
given 0 < α < 1/2, let D be the n-vertex digraph which consists of vertex classes S and T
of sizes αn and (1−α)n respectively, and whose edge set consists of all possible edges with
their startpoint in S and their endpoint in T . Then whilst δ(D) = αn, given any constant
C, with probability bounded away from 0, D ∪ D(n,C/n) contains a linear number of
vertices with outdegree 0 and a linear number of vertices with indegree 0, so it will not
contain H.

On the other hand, we show that this type of orientation of a Hamilton cycle is the only
one we cannot guarantee. That is, our desired relaxation is possible for all orientations of
a Hamilton cycle that contain a linear number of vertices of in- or outdegree 2.

Theorem 1.4. For every α, η > 0, there is a C = C(α, η) such that if D0 is an n-vertex
digraph of minimum total degree δ(D0) ≥ 2αn, then D0 ∪D(n,C/n) a.a.s. contains every
orientation of a cycle of every length between 2 and n that contains at most (1−η)n vertices
of indegree 1.

The proof of Theorem 1.4 has the same core ideas as the proof of Theorem 1.3, but
there are additional complications and technicalities that come with the weakened degree
condition. We prove these two theorems in [1]. In the next section we highlight some of
the ideas from the proof of Theorem 1.3.
Notation. We write ←→uv if −→uv and ←−uv are edges and call ←→uv a bidirected edge. A bidirected
path is a digraph obtained from an undirected path by replacing each edge uv with a
bidirected edge ←→uv . An oriented path is a digraph obtained from an undirected path by
replacing each edge uv with a single directed edge; either −→uv or ←−uv. Given an oriented or
bidirected path P = (u1, . . . , uk) we call u1 its startpoint and uk its endpoint, distinguishing
it from the path (uk, . . . , u1).

2 Some ideas in the proof of Theorem 1.3
Our goal is to show that for a given orientation C of a cycle, D0 ∪ D(n,C/n) contains
C with probability at least 1 − e−n. Theorem 1.3 then follows from a union bound over
all choices of C, of which there are trivially at most n2n. For the rest of this section we
consider only spanning C, as the non-spanning cycle case follows easily from the machinery
we set up to deal with arbitrary orientations of a Hamilton cycle.

Let D∗(n, p) denote the random digraph with vertex set [n] where each possible pair of
edges −→uv and ←−uv are included together, independently of other edges, with probability p.
In this way D∗(n, p) is the same as the binomial random graph G(n, p) where we replace
every undirected edge with a bidirected edge. Via a coupling argument from [22, 25], to
prove that D0 ∪D(n,C/n) contains C with probability at least 1− e−n, it suffices to show
that D0 ∪ D∗(n,C/n) contains C with probability at least 1 − e−n. This latter goal will
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be achievable as we only need to access the randomness in D∗(n,C/n) through a simple
pseudorandom property that is easily shown to hold with probability at least 1− e−n.

Our argument applies the absorbing method, a technique that was introduced system-
atically by Rödl, Ruciński, and Szemerédi [28], but that has roots in earlier work (see,
e.g., [19]).

2.1 Global absorbers

For our problem, a ‘global absorber’ in D0 ∪D∗(n,C/n) is a structure A on a small (but
linear size) vertex set with the property that for every sufficiently small set of vertices
R, A ∪ R contains an oriented path on |V (A) ∪ R| vertices with prescribed startpoint
and endpoint in R, and so that crucially, this oriented path is a segment of our desired
orientation of a Hamilton cycle C. If we can obtain such a structure A, then we can proceed
as follows: by applying the pseudorandom property of D∗(n,C/n) we find a bidirected path
Q in D∗(n,C/n) disjoint from A that covers almost all of the vertices not in A. Let R
be the set of vertices consisting of the startpoint x and endpoint y of Q, together with all
those vertices not in Q or A. Using the absorbing property of A we ensure that there is an
oriented path QR on V (A)∪R with startpoint y and endpoint x, so that QR is a segment
of C. Joining the startpoints and endpoints of Q and QR, we obtain our desired orientation
of a Hamilton cycle C.

2.2 Montgomery’s absorbing method

Montgomery [24, 23] introduced an approach to absorbing that has already found a number
of applications, for example, to spanning trees in random graphs [24], decompositions of
Steiner triple systems [11], and tilings in randomly perturbed graphs [17]. The basic idea
of the method is to build a global absorber using a special graph Hm as a framework. The
bipartite graph Hm has a bounded maximum degree with vertex classes X ∪Y and Z, and
has the property that if one deletes any set of vertices of a given size from X, then the
resulting graph contains a perfect matching.

Roughly speaking, a global absorber is usually built from Hm as follows: every edge
xy in Hm is ‘replaced’ with a ‘local absorber’ Axy in such a way that all such absorbers
Axy are vertex-disjoint. Here a local absorber Axy is some small gadget that can absorb a
certain (constant size) set of vertices Sxy associated with x and y.

A reason why this approach has found many applications is that, in some sense, it
allows one to construct a global absorber in the case when one can only find ‘few’ local
absorbers, where what is meant by ‘few’ here depends on the precise setting.

In the proofs of Theorems 1.3 and 1.4 in [1] we use Hm again as a framework to build
a global absorber. The reason we use Hm, however, is different from most applications of
the method (although morally the reason is similar to why Montgomery used this method
in [24]). In our case we will replace every edge in Hm incident to z ∈ Z with the same
local absorbing gadget Az. Here Az is not designed to absorb a fixed set of vertices like
before; rather, it has some local flexibility about what vertices it will absorb. The idea is
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that constructing the global absorber in this way gives us the flexibility to know in advance
precisely which (constant size) set of vertices of C an absorbed vertex w can play the role
of. Having this ‘advanced warning’ about what vertices along C w can play the role of
turns out to be a crucial property of our global absorber; see [1, Section 2] for more details.
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Abstract

Given graphs F and G, a perfect F -tiling in G is a collection of vertex-disjoint
copies of F in G that together cover all the vertices in G. The study of the min-
imum degree threshold forcing a perfect F -tiling in a graph G has a long history,
culminating in the Kühn–Osthus theorem [Combinatorica 2009] which resolves this
problem, up to an additive constant, for all graphs F . We initiate the study of the
analogous question for edge-ordered graphs. In particular, we characterize for which
edge-ordered graphs F this problem is well-defined. We also apply the absorbing
method to asymptotically determine the minimum degree threshold for forcing a per-
fect P -tiling in an edge-ordered graph, where P is any fixed monotone path.
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1 Introduction

1.1 Monotone paths in edge-ordered graphs

An edge-ordered graph G is a graph equipped with a total order ≤ of its edge set E(G).
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where the labels inherit the total order of R and where edges are assigned distinct labels.
A path P in G is monotone if the consecutive edges of P form a monotone sequence with
respect to ≤. We write P 6

k for the monotone path of length k (i.e., on k edges).
The study of monotone paths in edge-ordered graphs dates back to the 1970s. Chvátal

and Komlós [7] raised the following question: what is the largest integer f(Kn) such that
every edge-ordering of Kn contains a copy of the monotone path P 6

f(Kn)
of length f(Kn)?

Over the years there have been several papers on this topic [4, 5, 6, 11, 17, 19]. In a
recent breakthrough, Bucić, Kwan, Pokrovskiy, Sudakov, Tran, and Wagner [4] proved
that f(Kn) ≥ n1−o(1). The best known upper bound on f(Kn) is due to Calderbank,
Chung, and Sturtevant [6] who proved that f(Kn) ≤ (1/2 + o(1))n. There have also
been numerous papers on the wider question of the largest integer f(G) such that every
edge-ordering of a graph G contains a copy of a monotone path of length f(G). See the
introduction of [4] for a detailed overview of the related literature.

A classical result of Rödl [19] yields a Turán-type result for monotone paths: every
edge-ordered graph with n vertices and with at least k(k + 1)n/2 edges contains a copy of
P 6

k . More recently, Gerbner, Methuku, Nagy, Pálvölgyi, Tardos, and Vizer [10] initiated
the systematic study of the Turán problem for edge-ordered graphs.

It is also natural to seek conditions that force an edge-ordered graph G to contain a
collection of vertex-disjoint monotone paths P 6

k that cover all the vertices in G, that is,
a perfect P 6

k -tiling in G. Our first result asymptotically determines the minimum degree
threshold that forces a perfect P 6

k -tiling.

Theorem 1.1. Given any k ∈ N and η > 0, there exists an n0 ∈ N such that if n ≥ n0

where (k + 1)|n then the following holds: if G is an n-vertex edge-ordered graph with
minimum degree

δ(G) ≥ (1/2 + η)n

then G contains a perfect P 6

k -tiling. Moreover, for all n ∈ N with (k + 1)|n, there is an
n-vertex edge-ordered graph G0 with δ(G0) ≥ bn/2c − 2 that does not contain a perfect
P 6

k -tiling.

For the edge-ordered graph G0 in Theorem 1.1, one can take any edge-ordering of the n-
vertex graph consisting of two disjoint cliques whose sizes are as equal as possible under the
constraint that neither has size divisible by k+1. Our proof of Theorem 1.1 in [2] provides
the first application of the so-called absorbing method in the setting of edge-ordered graphs.

1.2 The general problem

Let F and G be edge-ordered graphs. We say that G contains F if F is isomorphic to a
subgraph F ′ of G; here, crucially, the total order of E(F ) must be the same as the total
order of E(F ′) that is inherited from the total order of E(G). In this case we say F ′ is a
copy of F in G. For example, if G contains a path F ′ of length 3 with consecutive edges
labeled 5, 17 and 4 then F ′ is a copy of the path F of length 3 with consecutive edges
labeled 2, 3 and 1.
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Given edge-ordered graphs F and G, an F -tiling in G is a collection of vertex-disjoint
copies of F in G; an F -tiling in G is perfect if it covers all the vertices in G. In light of
Theorem 1.1 we raise the following general question.

Question 1.2. Let F be a fixed edge-ordered graph on f ∈ N vertices and let n ∈ N be
divisible by f . What is the smallest integer f(n, F ) such that every edge-ordered graph on
n vertices and of minimum degree at least f(n, F ) contains a perfect F -tiling?

Theorem 1.1 implies that f(n, P 6

k ) = (1/2+o(1))n for all k ∈ N. Note that the unordered
version of Question 1.2 had been well-studied since the 1960s (see, e.g., [1, 8, 12, 14, 15])
and forty-five years later a complete solution, up to an additive constant term, was obtained
via a theorem of Kühn and Osthus [15]. Very recently, the vertex-ordered graph version of
this problem has been asymptotically resolved [3, 9].

Question 1.2 has a rather different flavor to its graph and vertex-ordered graph coun-
terparts. In particular, there are edge-ordered graphs F for which, given any n ∈ N, there
exists an edge-ordering ≤ of the complete graph Kn that does not contain a single copy
of F . Thus, for such F , Question 1.2 is trivial in the sense that clearly there is no mini-
mum degree threshold f(n, F ) for forcing a perfect F -tiling. This motivates Definitions 1.3
and 1.4 below.

Definition 1.3 (Turánable). An edge-ordered graph F is Turánable if there exists a t ∈ N
such every edge-ordering of the graph Kt contains a copy of F .

Definition 1.4 (Tileable). An edge-ordered graph F on f vertices is tileable if there exists
a t ∈ N divisible by f such that every edge-ordering of the graph Kt contains a perfect
F -tiling.

The following Ramsey-type result, attributed to Leeb (see [10, 18]), says that in ev-
ery sufficiently large edge-ordered complete graph we must always find a subgraph which
is canonically ordered. For n ≥ 5 there are four non-isomorphic canonical edge-orderings
of Kn. We omit the definitions of the canonical edge-orderings in this extended abstract,
but they can be found in [10, Section 2.1].

Proposition 1.5. For every k ∈ N there is an m ∈ N such that every edge-ordered complete
graph Km contains a copy of Kk that is canonically edge-ordered.

In [10] it was observed that Proposition 1.5 yields the following full characterization of
Turánable graphs.

Theorem 1.6 (Turánable characterization). An edge-ordered graph F on n vertices is
Turánable if and only if all four canonical edge-orderings of Kn contain a copy of F .

In [2], we prove a result analogous to Theorem 1.6 for tileable graphs. More precisely,
we provide a full characterization of all n-vertex tileable graphs with respect to twenty fixed
edge-orderings of the complete graph Kn. We call those orderings ?-canonical orderings
of Kn. The full definition of the ?-canonical orderings is a little involved and we omit the
details here, but the precise description can be found in [2].
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Theorem 1.7 (Tileable characterization). An edge-ordered graph F on n vertices is tileable
if and only if all twenty ?-canonical orderings of Kn contain a copy of F .

In [2] we study several consequences of Theorems 1.6 and 1.7. In particular, we prove
that the notions of Turánable and tileable are genuinely different. More precisely, we show
that there are (infinitely many) edge-ordered graphs that are Turánable but not tileable.

In [10] it is proven that no edge-ordering of K4 is Turánable and consequently, any
edge-ordered graph containing a copy of K4 is not Turánable and therefore not tileable.
Thus, for an edge-ordered graph to be tileable it cannot be too ‘dense’. We show in [2]
that no edge-ordering of K−4 is tileable.1

A graph H is universally tileable if for any given ordering of E(H), the resulting
edge-ordered graph is tileable. Similarly, we say that H is universally Turánable if given
any edge-ordering of H, the resulting edge-ordered graph is Turánable. Using [10, Theo-
rem 2.18], in [2] we characterize all those graphs H that are universally tileable.

Theorem 1.8. Let H be a graph. The following are equivalent:
(a ) H is universally tileable;
(b ) H is universally Turánable;
(c ) (i ) H is a star forest (possibly with isolated vertices),2 or

(ii ) H is a path on three edges together with a set (possibly empty) of isolated ver-
tices, or

(iii ) H is a copy of K3 together with a (possibly empty) collection of isolated vertices.

Moreover, in [2] we determine the asymptotic value of f(n, F ) in Question 1.2 for all
connected universally tileable edge-ordered graphs F .

The characterization of tileable edge-ordered graphs given in Theorem 1.7 lays the
ground for the systematic study of Question 1.2. The second and third authors will inves-
tigate this problem further in a forthcoming paper. Already though we can say something
about this question. Indeed, an almost immediate consequence of the Hajnal–Szemerédi
theorem [12] is the following result.

Theorem 1.9. Let F be a tileable edge-ordered graph and let T (F ) be the smallest possible
choice of t ∈ N in Definition 1.4 for F . Given any integer n ≥ T (F ) divisible by |F |,

f(n, F ) ≤
(
1− 1

T (F )

)
n.

The proofs of Theorems 1.1, 1.7, 1.8, and 1.9 can be found in [2]. In the next section
we outline the main ideas in the proof of Theorem 1.1.

1Recall that K−t denotes the graph obtained from Kt by removing an edge.
2A star forest is a graph whose components are all stars.
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2 Outline of the proof of Theorem 1.1
As mentioned above, the proof of Theorem 1.1 applies the absorbing method. This ap-
proach reduces the problem of finding a perfect P 6

k -tiling into two sub-tasks: (i) obtain an
‘absorbing structure’ A in the host graph G, and (ii) find a P 6

k -tiling covering almost all of
the vertices in G \ A.

This latter task is achieved via a relatively straightforward application of a result of
Komlós [13]. The main task is therefore constructing the absorbing structure.

Roughly speaking, for an edge-ordered graph G, we say that a set of vertices A ⊆ V (G)
is a P 6

k -absorber if, for every sufficiently small set of vertices W ⊆ V (G) \ A whose size is
divisible by k + 1, we have that G[W ∪ A] contains a perfect P 6

k -tiling.
We apply (an edge-ordered version of) a lemma by Lo and Markström [16, Lemma 1.1]

which implies that in order to construct such a P 6

k -absorber we only need to find many
so-called ‘local absorbers’ for every pair of vertices x, y ∈ V (G). More precisely, a local
absorber for x and y is a small set L ⊆ V (G) with the property that both G[L ∪ {x}] and
G[L ∪ {y}] contain perfect P 6

k -tilings.
To build up such local absorbers L for x and y, we prove a supersaturated version of

the aforementioned result of Rödl: every edge-ordered graph with linear average degree
contains ‘many’ copies of P 6

k . In particular, as our edge-ordered graph G has δ(G) ≥
(1/2+ o(1))n this allows us to find many copies of P 6

k−1 in the neighborhood NG(v) of any
vertex v ∈ V (G). In fact, with some care, one can show the following stronger property:
for every two different vertices x, y ∈ V (G) there are many vertices w ∈ V (G) so that
(a) G contains many copies Pxw of P 6

k−1 for which x (resp. w) can be added to the start
or end of Pxw to form a copy of P 6

k in G, and (b) G contains many copies Pyw of P 6

k−1 for
which y (resp. w) can be added to the start or end of Pyw to form a copy of P 6

k in G.
This now gives us the structure we need to construct the local absorbers L for x and

y. Indeed, for every choice of w, Pxw and Pyw above, we define a local absorber L :=
V (Pxw) ∪ V (Pyw) ∪ {w}. Properties (a) and (b) ensure each such L is indeed a local
absorber for x and y, as desired.

Note that from the outline above it may not seem clear why our proof is specific to
monotone paths, rather than other edge-orderings of paths. However, the details of the
proof very much rely on our paths being monotone. For example, one crucial property
we exploit is that if P = u1 · · ·uk+1 is a monotone path, then u1 · · ·uk is isomorphic to
u2 · · ·uk+1. In other words, the path obtained by dropping the last vertex is isomorphic
to the one obtained by dropping the first one. It is not hard to see that this property is
satisfied only by monotone paths.

3 Almost perfect tilings and open problems
As part of the proof of Theorem 1.1 in [2], we establish the minimum degree threshold that
forces an ‘almost perfect’ P 6

k -tiling in an edge-ordered graph. It is also natural to consider
this problem more generally. This motivates the following definition.
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Definition 3.1 (Almost tileable). An edge-ordered graph F is almost tileable if for every
0 < ε < 1 there exists a t ∈ N such every edge-ordering of the graph Kt contains an F -tiling
covering all but at most εt vertices of Kt.

It is easy to see that this notion is equivalent to being Turánable.

Proposition 3.2. An edge-ordered graph F is almost tileable if and only if F is Turánable.

Proof. The forward direction is immediate. For the reverse direction, consider any F that
is Turánable. Given any 0 < ε < 1 define t := dT (F )/εe. (Recall T (F ) is defined in the
statement of Theorem 1.9.) Then given any edge-ordering of Kt, by definition of T (F ) we
may repeatedly find vertex-disjoint copies of F in Kt until we have covered all but fewer
than T (F ) vertices in Kt. That is, we have an F -tiling covering all but at most εt vertices
of Kt, as desired.

In light of Proposition 3.2 we propose the following question.

Question 3.3. Let F be a fixed Turánable edge-ordered graph. What is the minimum degree
threshold for forcing an almost perfect F -tiling in an edge-ordered graph on n vertices?
More precisely, given any ε > 0, what is the minimum degree required in an n-vertex
edge-ordered graph G to force an F -tiling in G covering all but at most εn vertices?

Finally, we know that every Turánable (and therefore tileable) edge-ordered graph F
does not contain a copy of K4. However, we are unaware of any result that forbids F from
having large chromatic number.

Question 3.4. Is it true that for every k ∈ N there is a Turánable edge-ordered graph F
whose underlying graph has chromatic number at least k?
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In 1959 Erdős and Gallai proved the asymptotically optimal bound for the maxi-
mum number of edges in graphs not containing a path of a fixed length. We investigate
a rainbow version of the theorem, in which one considers k ≥ 1 graphs on a common
set of vertices not creating a path having edges from different graphs and asks for
the maximum number of edges in each graph. We prove the asymptotically optimal
bound in the case of a path on three edges and any k ≥ 1.
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1 Introduction
A classical problem in graph theory is to determine the Turán number of a graph F , i.e.,
the maximum possible number of edges in graphs not containing a particular forbidden
structure F as a subgraph. The notable results are exact solutions for a triangle by
Mantel [16] and for a complete graph by Turán [17], and an asymptotically optimal bound
for any non-bipartite graph by Erdős and Stone [6]. Not much is known for bipartite
graphs, but the case of a path was solved asymptotically by Erdős and Gallai [5] in 1951,
while in 1975 Faudree and Schelp [7] provided an exact solution.
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There are many possible ways to define a rainbow version of the problem. In our work
we concentrate on a rainbow version without any additional assumptions and when the
number of edges in each color is maximized. Formally, for a graph F and a positive integer k
we consider k graphs G1, G2, . . . , Gk on the same set of vertices and ask for the maximum
possible number of edges in each graph avoiding appearance of a copy of F having at most
one edge from each graph. In other words, for every i we color edges of Gi in color i (in
particular it means that two vertices can be connected by edges in many colors) and forbid
all copies of F having non-repeated colors, so-called rainbow copies.

When the forbidden rainbow graph F is a triangle, it follows from a result of Keevash,
Saks, Sudakov and Verstraëte [13] that for k ≥ 4 colors the best possible number of
edges in each color without having a rainbow triangle is equal to 1

4
n2. This is achieved

in the balanced complete bipartite graph (the same in each color) as in Mantel’s theorem.
Surprisingly, Magnant [15] provided a construction showing that for 3 colors the answer
is different. Later, Aharoni, DeVos, de la Maza, Montejano and Šámal [1], answering a
question of Diwan and Mubayi [4], proved that in this case the asymptotically optimal
bound is

(
26−2

√
7

81

)
n2 ≈ 0.2557n2. They also asked for similar theorems for bigger cliques,

other graphs and different color patterns (in this setting some results were proven in [3]
and [14]). Recently, Falgas-Ravry, Markström and Räty [8] completely determined the
triples of the asymptotic number of edges in each color that force an existence of a rainbow
triangle. Similar problems, but where one maximizes other functions of the number of
edges (instead of the number of edges in each color), were considered e.g. in [2, 9, 11, 12].

2 The main result
In our work we consider an arbitrary fixed number of colors k ≥ 1 and we aim to maximize
the number of edges in each color avoiding a rainbow path of length 3. The bound obtained
is asymptotically tight.

Theorem 1. For every ε > 0 there exists n0 ∈ N such that for every n ≥ n0, k ≥ 1 and
graphs G1, G2, . . . , Gk on a common set of n vertices, each graph having at least (f(k)+ε)n

2

2

edges, where

f(k) =

{
dk
2
e−2 for k ≤ 6,
1

2k−1 for k ≥ 7,

there exists a rainbow path with 3 edges. Moreover, the above bound on the number of edges
is asymptotically optimal for each k ≥ 1.

We note that in [12] the same forbidden structure is considered, i.e., a rainbow path of
length 3, however when one aims to maximize the product of the number of edges in each
color and there are only 3 or 4 colors. While the result for 4 colors provided there implies
our result for 4 colors, the results for 3 colors are independent of each other.

In order to avoid struggling with the lower-order error terms and to obtain a structure
easier to handle, we rewrite Theorem 1 to a bit different setting. Assuming that Theorem 1
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does not hold we obtain an arbitrarily large counterexample with at least (f(k) + ε)n
2

2

edges in each color and without a rainbow path with 3 edges. Using colored graph removal
lemma [10] we remove all rainbow walks with 3 edges by deleting at most 1

4
εn2 edges in

each color. Then, we add all possible edges without creating rainbow walks with 3 edges.
Finally, we group all the vertices into clusters based on the colors on the incident edges.
Note that if there is an edge between two clusters (or inside one), then all the vertices
between these clusters (or inside this cluster) can be connected by edges in the same color
without creating a rainbow walk of length 3. Thus between clusters (and inside them)
in each color we have all possible edges or none. Additionally, notice that vertices in a
cluster incident to only one or two colors can be all connected by edges in those colors,
while vertices incident to more than 2 colors need to form an independent set. Therefore,
Theorem 1 can be stated in an equivalent form for such kind of clustered graphs.

Definition 2. For any integer k ≥ 1 a clustered graph for k colors is an edge-colored
weighted graph on

(
k
2

)
+ k + 1 vertices with vertex weights bij = bji for 1 ≤ i < j ≤ k, ai

for i ∈ [k] and x, in which

• x ≥ 0, ai ≥ 0 for i ∈ [k] and bij ≥ 0 for every 1 ≤ i < j ≤ k,

•
∑

1≤i<j≤k

bij +
∑
1≤i≤k

ai + x = 1,

• for every i ∈ [k] the vertex of weight ai is connected in color i with itself, the vertex
of weight x and all the vertices of weights bip for p 6= i,

• for every 1 ≤ i < j ≤ k each vertex of weight bij is connected in colors i and j with
itself,

• there are no other edges.

The vertex of weight bij represents the cluster of bijn vertices incident to edges colored
i and j, the vertex of weight ai – the cluster of ain vertices incident only to edges colored i,
and x represents the remaining vertices. Clusters for bij and ai are cliques in appropriate
colors, while cluster for x is an independent set. This is depicted for k = 3 in Figure 1.

b12 b13 b23

a1 a2 a3

x

Figure 1: Representation of clusters for k = 3.
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From the definition of a clustered graph it follows that the density of edges in color
i ∈ [k] in a clustered graph G is the number di(G) ∈ [0, 1] equal to

di(G) = a2i +

 ∑
j∈[k]\{i}

b2ij

+

2
∑

j∈[k]\{i}

aibij

+ 2aix.

The equivalent version of Theorem 1 for clustered graphs is the following.

Theorem 3. For every integer k ≥ 1, if G is a clustered graph for k colors, then

min
i∈[k]

di(G) ≤ f(k), where f(k) =

{
dk
2
e−2 for k ≤ 6,
1

2k−1 for k ≥ 7.

Theorem 1 follows from Theorem 3, because a possible counterexample leads to a
graph with density of edges in each color at least (f(k) + 1

2
ε)n

2

2
and clusters of vertices

behaving as weighted vertices of a related clustered graph. Dividing each cluster size by n
we obtain a clustered graph with density of edges in each color at least f(k) + 1

2
ε, which

contradicts Theorem 3. Note that also Theorem 1 implies Theorem 3 as any clustered
graph G contradicting Theorem 3 having di(G) ≥ f(k)+2ε for each i ∈ [k] and some ε > 0
leads for any appropriately large n to a graph on n vertices with at last (f(k)+ ε)n

2

2
edges

in each color and no rainbow path with 3 edges, which contradicts Theorem 1.
The bound provided in Theorem 3 is tight for every integer k ≥ 1, because it is possible

to construct a clustered graph for k colors G such that mini∈[k] di(G) = f(k):
— for k = 1 let a1 = 1;
— for k = 2 let b12 = 1;
— for k = 3 let b12 = b13 =

1
2
;

— for k = 4 let b12 = b34 =
1
2
;

— for k = 5 let b12 = b34 = b15 =
1
3
;

— for k = 6 let b12 = b34 = b56 =
1
3
;

— for k = 5 or k ≥ 7 let ai = 1
2k−1 for each i ∈ [k], x = k−1

2k−1 .
In each case the remaining weights are equal to 0.

For k = 5 there are two different types of constructions. They are depicted in Figure 2.

1/3 1/3 1/3

4/9

1/9

1/9
1/9

1/9

1/9

Figure 2: Two possible types of extremal constructions for k = 5.
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3 Outline of the proof
Theorem 3 is proven by induction. The theorem is trivial for k ∈ {1, 2} as then f(k) = 1.
Let us fix the smallest k ≥ 3 for which the theorem does not hold. Take a clustered graph
for k colors G maximizing the value of mini∈[k] di(G) and, among such, maximizing the
density of edges in any color. The assumption that Theorem 3 does not hold implies that
di(G) > f(k) for every i ∈ [k]. This and the maximality of G enable to show claims on the
weights of the vertices of G, which will lead to a contradiction for each value of k ≥ 3.

To find many useful bounds on the weights, we introduce an operation of removing
and adding weights in a clustered graph for k colors. Intuitively, we remove tiny weights
from some of the vertices of positive weight and add them to different vertices. From the
maximality of G, such operation cannot enlarge the density of edges in each color, so the
density of edges in at least one color needs to drop down (or the densities of edges in every
color remain the same). Due to different extremal constructions, we need to consider three
main cases: k ∈ {3, 4}, k ∈ {5, 6} and k ≥ 7. Let us denote di = di(G), bi =

∑
j∈[k],j 6=i bij,

and ci = ai + bi + x.
In the case of k = 3 our conjectured clustered graph G satisfies mini∈[3] di >

1
4
, which

implies a simple lower bound on ci. We prove that for some i ∈ [3] we have ai = 0 (without
loss of generality a3 = 0). By contradiction, if every ai > 0, we can remove appropriate
weight from each vertex of weight ai and add the removed weights to all vertices. It implies,
using the maximality of G, a better lower bound for some ci, say c3. Now we consider two
cases: x 6= 0 and x = 0. In the former one we find a lower bound on

∑
i∈[3] ai by removing

suitable weight from the vertex of weight x and adding weights to each vertex of weight
ai. Together with bounds on ci, i ∈ [3] it gives a contradiction. While in the latter case,
we show first that b12 > 0 and removing appropriate weight from the vertex of weight b12
and adding weights to each vertex of the graph leads to a contradiction. Once we know
that a3 = 0, using the technique of removing and adding weights, we show that x = 0 and
that d3 ≤ min{d1, d2}. Then by removing suitable weight from b12 and adding weights to
a1 and a2, we obtain a contradiction which finishes the proof of Theorem 3 for k = 3. The
case k = 4 is a simple corollary of the theorem for k = 3 since f(4) = f(3).

The proof of Theorem 3 for k = 5 relies on similar techniques. However, as there are
two types of constructions, it requires more careful estimations and thus additional bounds
and considering more cases. In particular, we prove a different lower bound for bij when it
is positive and a bound on bi when ai = 0. Having this, depending on the number of i ∈ [5]
such that ai = 0, we bound the sum of all ci and obtain a contradiction in each case. The
proof for k = 6 is a simple consequence of the result for k = 5.

In the case of k ≥ 7 we first show that x must be positive. Then we separately prove
cases k = 7, k = 8 and k ≥ 9. In the first one we sum up lower bounds for ci, i ∈ [7]
and

∑
i∈[7] ai, which implies a lower bound on x. Then, by removing and adding weights

between some vertices of weights ai, aj and bij, we get an upper bound on x, which gives
a contradiction. The proofs for k = 8 and k ≥ 9 are based on analogous ideas. The main
differences come from the fact that the aforementioned bounds on ci and x are derived
using induction and the values of f(k − 2) and f(k), which are distinct for each k ≥ 7.
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Abstract

One of the most fundamental questions in graph theory is Mantel’s theorem which
determines the maximum number of edges in a triangle-free graph of a given order.
Recently a colorful variant of this problem has been solved. In such a variant we
consider c graphs on a common vertex set, thinking of each graph as edges in a dis-
tinct color, and want to determine the smallest number of edges in each color which
guarantees the existence of a rainbow triangle. Here, we solve the analogous problem
for directed graphs without rainbow triangles, either directed or transitive, for any
number of colors. The constructions and proofs essentially differ for c = 3 and c ≥ 4
and the type of the forbidden triangle.
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1 Introduction
A cornerstone of the extremal graph theory is Mantel’s theorem from 1907 which determines
the maximum possible number of edges in a triangle-free graph of a given order. Its natural
generalization, known as a Turán problem, is to determine the maximum possible number
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of edges in an n-vertex graph not containing a given graph F as a subgraph. This is an
often studied concept in graph theory with many important results, open problems, and
generalizations to various other discrete settings.

In a rainbow version of the Turán problem, for a graph F and an integer c we consider
c graphs G1, G2, . . . , Gc on the same set of vertices and ask for the maximum possible
number of edges in each graph avoiding the appearance of a copy of F having at most one
edge from each graph. In other words, for every i we color edges of Gi in color i and forbid
all copies of F having non-repeated colors, so-called rainbow copies. Note that if all Gi are
exactly the same, then the existence of a rainbow copy of F is equivalent to the existence
of a non-colored copy of F , therefore any bound for the rainbow version gives also a bound
for the Turán problem.

When the forbidden graph F is a triangle, Keevash, Saks, Sudakov and Verstraëte [10]
showed that for c ≥ 4 colors the best possible number of edges in each color without having
a rainbow triangle is equal to 1

4
n2. This is achieved in the balanced complete bipartite graph

(the same in each color) as in Mantel’s theorem. Surprisingly, Magnant [11] provided
a construction showing that for 3 colors the answer is different. Recently, Aharoni, DeVos,
González, Montejano and Šámal [1], answering a question of Diwan and Mubayi [4], proved
that for 3 colors the optimal bound is

(
26−2

√
7

81

)
n2 ≈ 0.2557n2.

Later, Frankl [6] made a conjecture on the optimal bound for the product of the number
of edges in each of the 3 colors without having a rainbow triangle. This was disproved
by Frankl, Győri, Hel, Lv, Salia, Tomkins, Varga and Zhu [7]. Finally, Falgas-Ravry,
Markström and Räty [5] completely determined the triples of the asymptotic number of
edges in each color that force an existence of a rainbow triangle. Similar problems were
also considered for other rainbow structures than triangles, for instance for paths [2], color-
critical graphs [3], or spanning subgraphs [8, 9].

Here, we consider the problem in the setting of directed graphs and solve it for any
number of colors when a transitive triangle or a directed triangle is the forbidden rainbow
graph. It occurs that for both kinds of triangles and at least 4 colors, the maximum number
of edges in each graph is attained when each of them is the same graph maximizing the
number of edges without creating the forbidden triangle. While for 3 colors, the behavior
is completely different. In case of a transitive triangle the construction is as in the result
of Aharoni et al. [1] with all edges replaced by arcs in both ways. While for a directed
triangle the construction is again significantly different.

In the next section we introduce the used notation, while in Section 3 we state our
theorems and sketch their proofs. If a rainbow directed triangle is forbidden and there are
at least 4 colors we show that the optimal asymptotic value of the maximal number of edges
in each color follows from the bound on the total number of colored edges (Theorem 1),
while for 3 colors we show that the optimal bound follows from the bound on the sum of
the number of edges in any two colors (Theorem 3). Using similar case distinction and
generalizations, we solve the rainbow Turán problem for a transitive triangle and at least
4 colors by Theorem 5 and finally using Theorem 7 we prove the optimal bound in the
3 colors case.
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2 Notation
A directed graph G is a pair (V (G), E(G)), where V (G) is a set of vertices and E(G) is
a set of pairs of distinct vertices. In particular, G does not contain loops or multiple edges.
For shortening, we denote e(G) as |E(G)|. For two vertices u, v ∈ V (G), we write uv to
denote the edge (u, v) ∈ E(G). We refer jointly to edges uv and vu as edges between u
and v. If uv, vu ∈ E(G) we say that u and v are connected with a double edge. A directed
triangle is a directed graph on the vertex set {u, v, w} with edges uv, vw and wu, while
a transitive triangle is a directed graph on the vertex set {u, v, w} with edges uv, vw and
uw. We denote by [c] the set of positive integers {1, 2, . . . , c}.

Having an ordered set of directed graphs G := (G1, G2, . . . , Gc) on a common vertex
set V (G), we consider the edge set of each graph Gi, for i ∈ [c], as edges of G in color i.
For a directed graph F , we say that G contains a rainbow copy of F if V (F ) ⊂ V (G) and
there is a coloring ϕ of the edges of F into distinct colors such that e ∈ E(Gϕ(e)) for every
edge e ∈ E(F ).

3 Our results
We start with forbidding a directed triangle in the setting with at least 4 colors and prove
the following theorem with its immediate corollary.

Theorem 1. Let c ≥ 4 and G1, G2, . . . , Gc be directed graphs on a common set of n vertices.
If
∑c

i=1 e(Gi) > cbn2

2
c, then there exists a rainbow directed triangle.

Corollary 2. Let c ≥ 4 and G1, G2, . . . , Gc be directed graphs on a common set of n ver-
tices. If mini∈[c] e(Gi) > bn

2

2
c, then there exists a rainbow directed triangle.

The bounds provided above are the best possible. To observe this, consider each
graph Gi for i ∈ [c] as the same directed graph having bn2

2
c edges constructed by replacing

each edge of a complete bipartite graphs Kbn
2
c,dn

2
e by a double edge.

Sketch of the proof of Theorem 1. Suppose (for a contradiction) that Theorem 1 is false
and choose a counterexample with the smallest number of vertices n. Firstly, we prove
that there do not exist two vertices u and v connected with a double edge in two colors.
This is obtained by considering how many edges can be between any vertex and vertices
u and v, and using the assumed minimality. It implies that between any two vertices,
there are at most c+ 1 edges, where only one of them can be a double edge. Then, using
a similar approach and careful counting, we show that the vertices connected with c + 1
edges can create only directed paths. Consequently, there are fewer edges than in our
extremal construction, which leads to a contradiction.

In case of 3 colors, Theorem 1 cannot hold, because if G1 and G2 are graphs with
double edges between each pair of vertices and G3 is an empty graph, then

∑3
i=1 e(Gi) =

2n(n − 1) > 3bn2

2
c and there is no rainbow directed triangle. In this case we prove the

following theorem and its corollary.
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Theorem 3. Let G1, G2, G3 be three directed graphs on a common set of n vertices. If
e(Gi) + e(Gj) >

10
9
n2 + 2n for 1 ≤ i < j ≤ 3, then there exists a rainbow directed triangle.

Corollary 4. Let G1, G2, G3 be three directed graphs on a common set of n vertices. If
mini∈[c] e(Gi) >

5
9
n2 + n, then there exists a rainbow directed triangle.

To see that the bound in Theorem 3 is asymptotically the best possible, consider three
sets of n/3 vertices A1, A2 and A3, and for each i ∈ [3] let E(Gi) contain all double edges
inside Aj for j 6= i, as well as edges from A1 to A2, from A1 to A3, and from A2 to A3.
This is depicted in Figure 1. This construction has approximately 5

9
n2 edges in each color

and does not contain a rainbow directed triangle.

Figure 1: The extremal construction for 3 colors and forbidden rainbow directed triangle
(on the left) and rainbow transitive triangle (on the right).

Sketch of the proof of Theorem 3. Consider a counterexample G = (G1, G2, G3) with the
smallest number of vertices. Firstly, using the assumed minimality, we prove that there is
no pair of vertices connected with double edges in all three colors. Using this, we split the
vertices of G into disjoint sets. Consider a set X of vertices forming a maximal matching
of double edges in two colors (there might be a single edge in the third color). Then, on the
vertices V (G)\X consider a set Y forming a maximal matching consisting of pairs of vertices
connected with 4 edges. Next, on the vertices V (G) \ (X ∪ Y ) consider a set Z forming
a maximal matching consisting of pairs of vertices connected by a double edge in one color
and an edge in a different color. Finally, let T be a set of vertices forming a maximal
matching on the vertices V (G) \ (X ∪Y ∪Z) consisting of pairs of vertices connected with
3 edges. From the maximality of Z pairs in T are connected by a single edge in each color.
From the maximality of T , all pairs of vertices in D = V (G)\(X∪Y ∪Z∪T ) are connected
by at most 2 edges.

Having such partitioning, we bound the total number of edges and the number of edges
in each pair of colors in terms of the sizes of the defined sets. It is possible, as the number
of edges between the vertices in respective sets are either limited by the definition of the
sets or by the possibility of creating a rainbow directed triangle. Moreover, to include the
fact that having many edges between set D and sets X, Y and Z is limiting the number
of edges inside those sets, we use additional Turán-type bounds on an auxiliary graph.
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Altogether, we obtain an optimization problem on 4 variables with linear or quadratic
functions, which has a unique solution giving exactly the structure depicted in Figure 1.

We continue with forbidding a transitive triangle in the setting with at least four colors
and prove the following theorem.

Theorem 5. Let c ≥ 4 and G1, G2, . . . , Gc be directed graphs on a common set of n vertices.
If
∑c

i=1 e(Gi) > cbn2

2
c, then there exists a rainbow transitive triangle.

Similarly to the case of a forbidden directed triangle, this theorem easily implies the
following corollary.

Corollary 6. Let c ≥ 4 and G1, G2, . . . , Gc be directed graphs on a common set of n ver-
tices. If mini∈[c] e(Gi) > bn

2

2
c, then there exists a rainbow transitive triangle.

The bounds provided in Theorem 5 and Corollary 6 are the best possible. To observe
this, consider, like in the case of a forbidden rainbow directed triangle, each graph Gi for
i ∈ [c] as the same directed graph constructed by replacing each edge of a complete bipartite
graphs Kbn

2
c,dn

2
e by a double edge. In this construction, there is no directed triangle and

e(Gi) = bn
2

2
c for each i ∈ [c].

Sketch of the proof of Theorem 5. Consider a hypothetical counterexample with the small-
est number of vertices. Firstly, similarly as in the proof of Theorem 1, we prove that it
does not contain a double edge in two colors. Having this limitation, we prove that it
cannot contain any double edge at all. This immediately leads to a contradiction with the
assumed number of edges.

Similarly as in the case of the forbidden rainbow directed triangle, in case of 3 colors
Theorem 5 cannot hold. In this case we prove the following theorem and its corollary.

Theorem 7. Let G1, G2, G3 be three directed graphs on a common set of n vertices. If for
every 1 ≤ i < j ≤ 3 it holds e(Gi)+e(Gj) >

(
104−8

√
7

81

)
n2+2n, then there exists a rainbow

transitive triangle.

Corollary 8. Let G1, G2, G3 be three directed graphs on a common set of n vertices. If
mini∈[c] e(Gi) >

(
52−4

√
7

81

)
n2 + n, then there exists a rainbow transitive triangle.

The bound in Theorem 7 and Corollary 8 is asymptotically optimal in the sense that
it is not possible to prove analogous statements with lower constants by the n2 term.
This is a consequence of the construction obtained from the optimal construction of Aha-
roni et al. [1] for the forbidden rainbow triangle by replacing all edges by double edges, as
depicted in Figure 1.

Sketch of the proof of Theorem 7. We follow the idea of the proof from [1] for the forbidden
rainbow triangle. It is not straightforward that those bounds translate to the directed
setting as here it is possible to contain rainbow triangles as long as they are directed.
Nevertheless, we prove bounds that give the same optimization problem (multiplied by
a factor of 2). Thus, [1] implies the desired bound.
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Abstract
For graphs G< and H< with linearly ordered vertex sets, the ordered Ramsey

number r<(G<, H<) is the smallest N ∈ N such that any red-blue coloring of the edges
of the complete ordered graph K<

N on N vertices contains either a blue copy of G< or
a red copy of H<. Motivated by a problem of Conlon, Fox, Lee, and Sudakov (2017),
we study the numbers r<(M<,K<

3 ) where M< is an n-vertex ordered matching.
We prove that almost all n-vertex ordered matchings M< with interval chro-

matic number 2 satisfy r<(M<,K<
3 ) ∈ Ω((n/ log n)5/4) and r<(M<,K<

3 ) ∈ O(n7/4),
improving a recent result by Rohatgi (2019). We also show that there are n-
vertex ordered matchings M< with interval chromatic number at least 3 satisfy-
ing r<(M<,K<

3 ) ∈ Ω((n/ log n)4/3), which asymptotically matches the best known
lower bound on these ordered Ramsey numbers for general n-vertex ordered matchings.
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subgraph with all edges colored red or H as a subgraph with all edges colored blue. The
existence of these numbers was proved by Ramsey [18] and later independently by Erdős
and Szekeres [13]. The study of the growth rate of these numbers with respect to the
number of vertices of G and H is a classical part of combinatorics and plays a central role
in Ramsey theory.

Motivated by several applications from discrete geometry and extremal combinatorics,
various researchers [3, 4, 6, 10, 16, 19] started investigating an ordered variant of Ramsey
numbers. An ordered graph G< is a graph G together with a linear ordering of its vertex
set. An ordered graph G< is an ordered subgraph of another ordered graph H< if G is a
subgraph of H and the vertex ordering of G is a suborder of the vertex ordering of H. The
ordered Ramsey number r<(G<, H<) of ordered graphs G< and H< is the smallest positive
integer N such that any coloring of the edges of the complete ordered graph K<

N on N
vertices with colors red and blue contains either G< as an ordered subgraph with all edges
red or H< as an ordered subgraph with all edges blue.

It is known that the ordered Ramsey numbers always exist and that they can behave
very differently from the unordered Ramsey numbers. For example, there are ordered
matchings M< (that is, 1-regular ordered graphs) on n vertices for which r<(M<,M<) grows
superpolynomially in n, in particular, we have r<(M<,M<) ∈ 2Ω(log2 n/ log logn) [3, 10] while
r(G,G) is linear for all graphs G with bounded maximum degrees [7]. The superpolynomial
bound obtained for ordered matchings is almost tight for sparse graphs as, for every fixed d ∈
N, every d-degenerate ordered graph G< on n vertices satisfies r<(G<, G<) ∈ 2O(log2 n) [10].

One of the most interesting cases for ordered Ramsey numbers is the study of the growth
rate of r<(M<, K<

3 ) where M< is an ordered matching on n vertices as this is one of the
first non-trivial cases where the exact asymptotics is not known. Conlon, Fox, Lee, and
Sudakov [10] observed that the classical bound r(Kn, K3) ∈ O(n2/ log n) immediately gives
r<(M<, K<

3 ) ∈ O(n2/ log n). On the other hand, they showed that there exists a positive
constant c such that, for all even positive integers n, there is an ordered matching M< on
n vertices with

r<(M<, K<
3 ) ≥ c

(
n

log n

)4/3

. (1)

Conlon, Fox, Lee, and Sudakov expect that the upper bound r<(M<, K<
3 ) ≤ O(n2/ log n)

is far from optimal and posed the following open problem [10], which is also mentioned in a
survey on recent developments in graph Ramsey theory [11].

Problem 1 ([10]). Does there exist an ε > 0 such that for any ordered matching M< on n
vertices r<(M<, K<

3 ) ∈ O(n2−ε)?

Problem 1 is one of the most important questions in the theory of ordered Ramsey
numbers as in order to get a subquadratic upper bound on r<(M<, K<

3 ) one has to be able
to employ the sparsity of M< since the bound r(Kn, K3) ∈ O(n2/ log n) is asymptotically
tight by a famous result of Kim [15]. Being able to use the sparsity of M< and thus
distinguish M< from K<

n could help in numerous problems on ordered Ramsey numbers.
However, this is difficult as some ordered matchings M< can be used to approximate the
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behavior of complete graphs, which is the reason why the numbers r<(M<,M<) can grow
superpolynomially.

Some partial progress on Problem 1 was recently made by Rohatgi [19] who considered
ordered matchings with bounded interval chromatic number. The interval chromatic number
χ<(G<) of an ordered graph G< is the minimum number of intervals the vertex set of
G< can be partitioned into so that there is no edge of G< with both vertices in the same
interval. The interval chromatic number can be understood as an analogue of the chromatic
number for ordered graphs as, for example, there is a variant of the Erdős–Stone–Simonovits
theorem for ordered graphs [17] that is expressed in terms of the interval chromatic number.

Rohatgi [19] showed that the subquadratic bound on r<(M<, K<
3 ) holds for almost all

ordered matchings with interval chromatic number 2 by proving the following result.

Theorem 1 ([19]). There is a constant c such that for every even positive integer n, if an
ordered matching M< on n vertices with χ<(M<) = 2 is picked uniformly at random, then
with high probability

r<(M<, K<
3 ) ≤ cn24/13.

Motivated by Problem 1, we study the numbers r<(M<, K<
3 ) for ordered matchings

with bounded interval chromatic number. We strengthen some bounds by Rohatgi [19] and
by Conlon, Fox, Lee, and Sudakov [10], obtaining a new partial progress on Problem 1.

From now on, we omit floor and ceiling signs whenever they are not essential. For n ∈ N,
we use [n] to denote the set {1, . . . , n}. All logarithms in this paper are base 2.

2 Our results
We try to tackle the first non-trivial instance of Problem 1 by considering the typical behavior
of the numbers r<(M<, K<

3 ) for ordered matchings with interval chromatic number 2. As
far as we know, there is no non-trivial lower bound in this case. In his paper, Rohatgi [19]
mentions the problem of obtaining lower bounds that would come closer to the upper bound
from Theorem 1. As our first result, we prove the first superlinear lower bound for this case.

Theorem 2. There exists a positive constant c such that, for all even positive integers n,
if an ordered matching M< on n vertices with χ<(M<) = 2 is picked uniformly at random,
then with high probability

r<(M<, K<
3 ) ≥ c

(
n

log n

)5/4

.

We also show that this lower bound can be improved for ordered matchings M< with
χ<(M<) > 2.

Theorem 3. For every integer k ≥ 3, there exists a positive constant c = c(k) such that,
for all even positive integers n, there exists an ordered matching M< on n vertices with
χ<(M<) = k satisfying

r<(M<, K<
3 ) ≥ c

(
n

log n

)4/3

.
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Note that the lower bound from Theorem 3 asymptotically matches the bound (1) by
Conlon, Fox, Lee, and Sudakov [10]. Thus, the best known lower bound on r<(M<, K<

3 ) for
general ordered matchings M< can be obtained also for ordered matchings with bounded
interval chromatic number as long as this number is at least 3. The proofs of Theorems 2
and 3 are probabilistic and are based on ideas used by Conlon, Fox, Lee, and Sudakov [10].

Rohatgi [19] was also interested in determining how far from the truth the exponent
24/13 from Theorem 1 is. We narrow the gap there by providing the following upper bound
that strengthens Theorem 1.

Theorem 4. There is a constant c such that for every even positive integer n, if an ordered
matching M< on n vertices with χ<(M<) = 2 is picked uniformly at random, then with
high probability

r<(M<, K<
3 ) ≤ cn7/4.

Note that the difference between the exponent in the lower bound from Theorem 2 and
the exponent in the upper bound from Theorem 4 is exactly 1/2. The sketch of the proof
of Theorem 4 is in Section 4. All proofs can be found in the full version of this paper [5].

3 Open problems
Problem 1 still remains wide open, but there are many interesting intermediate questions
that one could try to tackle. The following interesting conjecture was posed by Rohatgi [19].

Conjecture 1 ([19]). For every integer k ≥ 2, there is a constant ε = ε(k) > 0 such that

r<(M<, K<
3 ) ∈ O(n2−ε)

for almost every ordered matching M< on n vertices with χ<(M<) = k.

It follows from Theorem 4 that ε(2) ≥ 1/4. The conjecture is open for all cases with
k ≥ 3. Our results suggest that ε(2) > ε(3) might hold.

Concerning the ordered matchings M< with interval chromatic number 2, even in this
case the growth rate of r<(M<, K<

3 ) is not understood, so we pose the following weaker
version of Problem 1.

Conjecture 2. There exists an ε > 0 such that for any ordered matching M< on n vertices
with χ<(M<) = 2 we have r<(M<, K<

3 ) ∈ O(n2−ε).

In this paper, we considered the variant of this problem for random ordered matchings
with interval chromatic number 2, but there is still a gap between our bounds. It would be
very interesting to close it.

Problem 2. What is the growth rate of r<(M<, K<
3 ) for uniform random ordered matchings

M< on n vertices with χ<(M<) = 2?

It follows from our results that the answer to Problem 2 lies somewhere between
Ω((n/ log n)5/4) and O(n7/4). We do not know which of these bounds is closer to the truth.
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4 Sketch of the proof of Theorem 4
To prove Theorem 4, we use a multi-thread scanning procedure whose variants were recently
used by Cibulka and Kynčl [9], He and Kwan [14], and Rohatgi [19].

First, we associate an ordered matching M< on [2n] with the permutation πM< on
[n] that maps i to j − n for every edge {i, j} of M<. Let χ be a red-blue coloring of the
edges of K<

2N for some N ∈ N. Let A be an N × N matrix where an entry on position
(i, j) ∈ [N ]× [N ] is the color of the edge {i, N + j} in χ.

We now describe a procedure that we use to find a red copy of M< in χ. It suffices to
find an n× n submatrix of A with red entries on positions (i, φM<(i)) for i = 1, . . . , n. Let
T ∈ N. Consider the rows t + 1, . . . , t + n of A for every t ∈ {0, 1, . . . , T − 1}. First, we
scan through the row πM<(1) + t of A from left to right until we find a red entry in some
position (πM<(1) + t, j1). For every i ∈ {2, . . . , n}, after we have finished scanning through
rows πM<(1) + t, . . . , πM<(i − 1) + t, we scan through the row πM<(i) + t of A, starting
from column ji−1 + 1, until we find a red entry in some position (πM<(i) + t, ji).

We call this multi-thread scanning for M< and we call the set Th(t) of entries of A that
are revealed in step t a thread. Note that Th(t) finds a red copy of M< if and only if some
red copy of M< lies in the rows t+ 1, . . . , t+ n of A.

For a permutation π on [n], we say that a subset C ⊆ [n] with |C| = k is a shift of
another subset D ⊆ [n] in π if there is a positive integer ∆ such that π (ci) = π (di) + ∆
for each i ∈ [k] where c1 < · · · < ck and d1 < · · · < dk are the elements of C and D,
respectively. Let L(π) be the largest positive integer k for which there are sets C,D ⊆ [n],
each of size k, such that C is a shift of D.

The multi-thread scanning procedure yields the following result, which gives asymptoti-
cally stronger bounds than a similar result obtained by Rohatgi [19].

Theorem 5. For n ∈ N, let M< be an ordered matching on 2n vertices with χ<(M<) = 2
and L(πM<) ≤ `. If N ≥ 4n(

√
n`+ 1), then every red-blue coloring of the edges of K<

2N on
[2N ] satisfies at least one of the following three claims:

(a) χ contains a blue copy of K<
3 ,

(b) χ contains a red copy of K<
2n, or

(c) χ contains a red copy of M< between [N ] and {N + 1, . . . , 2N}.

For every ε > 0, Theorem 5 immediately implies that r<(M<, K<
3 ) ∈ O(n2−ε) for every

ordered matching with χ<(M<) = 2 and L(πM<) ≤ n1−2ε. It suffices to show that this is
the case for uniform random ordered matchings with interval chromatic number 2. We do
so by using the following result of He and Kwan [14].

Lemma 6 ([14]). A uniform random permutation π on [n] satisfies L (π) ≤ 3
√
n with high

probability.
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Abstract

A set system F is t-intersecting, if the size of the intersection of every pair of its
elements has size at least t. A set system F is k-Sperner, if it does not contain a
chain of length k + 1.

Our main result is the following: Suppose that k and t are fixed positive in-
tegers, where n + t is even and n is large enough. If F ⊆ 2[n] is a t-intersecting
k-Sperner family, then F has size at most the size of the sum of k layers, of sizes
(n+ t)/2, . . . , (n+ t)/2 + k − 1. This bound is best possible. The case when n+ t is
odd remains open.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-014

1 Introduction

1.1 Definitions and Notation

For a positive integer n, we write [n] := {1, 2, . . . , n} and 2[n] for the power set of [n]. For
a set S, we denote by

(
S
i

)
the family of all i element subsets of S.
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For a family of sets F ⊆ 2[n], we define Fi := {F ∈ F : |F | = i} and fi := |Fi|. We
use ∆i and ∇i to denote the i-shadow and i-shade of F , respectively, so that ∆iF := {A :
|A| = i, A ⊂ F for some F ∈ F} and ∇iF := {A : |A| = i, A ⊃ F for some F ∈ F}. If
the subscript i is unspecified, then assuming F is r-uniform, ∆F = ∆r−1F and similarly
∇F = ∇r+1F .

Definition 1.1. [k-Sperner family]
A (k + 1)-chain is a collection of k + 1 sets A0, A1, . . . , Ak such that A0 ⊂ A1 ⊂ . . . ⊂ Ak.
A family of sets F ⊆ 2[n] is a k-Sperner family if there is no (k + 1)-chain in F . If k = 1,
then F is simply called a Sperner family or an antichain.

Definition 1.2. [t-intersecting family]
A family of sets F ⊆ 2[n] is t-intersecting if for every pair of sets A,B ∈ F , we have
|A ∩B| ≥ t. If t = 1, then we write that F is intersecting.

1.2 History

The maximum size of an antichain in 2[n] was determined by Sperner [9].

Theorem 1.3 (Sperner). Let F ⊆ 2[n] be an antichain. Then,

|F| ≤
(
n

bn
2
c

)
.

Furthermore, equality holds only if F is one of the largest layers in the Boolean lattice 2[n].

Sperner’s theorem was extended to k-Sperner families by Erdős [2].

Theorem 1.4 (Erdős). The maximum-size k-Sperner family F ⊆ 2[n] is the union of the
largest k layers in the Boolean lattice 2[n].

A different extension of Sperner’s theorem was given by Milner [8]. Milner additionally
required the family F to be t-intersecting.

Theorem 1.5 (Milner). If F ⊆ 2[n] is a t-intersecting antichain, then

|F| ≤
(

n

bn+t+1
2
c

)
.

In a different direction, Frankl [3] determined the maximum size of an intersecting k-
Sperner family. Different proofs were given by Gerbner [5] and by Gerbner, Methuku and
Tompkins [6].

Theorem 1.6 (Frankl). Let F ⊆ 2[n] be an intersecting, k-Sperner family. Then,

|F| ≤


∑n+1

2
+k−1

i=n+1
2

(
n
i

)
, if n is odd,(

n−1
n
2
−1

)
+
∑n

2
+k−1

i=n
2
+1

(
n
i

)
+
(
n−1
n
2
+k

)
, if n is even.
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Furthermore, if n is odd, equality holds only if

F =

(
[n]

bn
2
c+ 1

)
∪
(

[n]

bn
2
c+ 2

)
∪ . . . ∪

(
[n]

bn
2
c+ k

)
,

while if n is even and k > 1, equality holds only if for some x ∈ [n],

F =

{
F ∈

(
[n]
n
2

)
: x ∈ F

}
∪
(

[n]
n
2

+ 1

)
∪ . . . ∪

(
[n]

n
2

+ k − 1

)
∪
{
F ∈

(
[n]

n
2

+ k

)
: x /∈ F

}
.

A common generalization of the theorems of Milner and Frankl would be to determine
the maximum size of a t-intersecting, k-Sperner family.

Frankl [4] proposed conjectures on the maximum size of a t-intersecting k-Sperner family
F ⊂ 2[n] and made some progress towards proving these conjectures. The conjectured
extremal family depends on the parity of n+ t.

In the case when n + t is even, the conjectured maximum size of a t-intersecting, k-
Sperner family is very easy to describe.

Conjecture 1.7 (Frankl). If n+t is even, n > t, and F ⊆ 2[n] is a t-intersecting, k-Sperner
family, then

|F| ≤
k−1∑
i=0

(
n

n+t
2

+ i

)
.

Conjecture 1.7 is clearly tight if true, as evidenced by the family
⋃k−1
i=0

( [n]
n+t
2

+i

)
.

The conjectured extremal families do not have such a simple structure when n + t is
odd. We construct two plausible candidates for the maximum size t-intersecting, k-Sperner
family:

A(t, k) =

{
F ∈

(
[n]

n+t−1
2

)
: n /∈ F

}
∪
{
A :

n+ t− 1

2
+ 1 ≤ |A| ≤ n+ t− 1

2
+ (k − 1)

}
.

B(t, k) =

{
F ∈

(
[n]

n+t−1
2

)
: [1, t] ∈ F

}
∪
{
A :

n+ t− 1

2
+ 1 ≤ |A| ≤ n+ t− 1

2
+ (k − 1)

}

∪
({

B : |B| = n+ t− 1

2
+ k

}
\
{
B : |B| = n+ t− 1

2
+ k, [1, t] ∈ B

})
.

It is not hard to show that |B(t, k)| � |A(t, k)| for n sufficiently large (in terms of k
and t). However, it may be checked by computer that A(t, k) is optimal for small values of
n and specific choices of t and k, for example t = 2 and k = 2. We conjecture that B(t, k)
is the largest such family when n is sufficiently large.
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Conjecture 1.8. There exists a positive integer n0 = n0(k, t) such that if n + t is odd,
n > n0, and F ⊆ 2[n] is a t-intersecting, k-Sperner family, then

|F| ≤ |B(t, k)| =
(
n− t
n−t−1

2

)
+

k∑
i=1

(
n

n+t−1
2

+ i

)
−
(

n− t
n−t−1

2
+ k

)
.

Frankl [4] more modestly conjectures the following (Frankl’s conjecture is formulated
for s-union families rather than t-intersecting families, but our formulation is equivalent to
Frankl’s after taking complements).

Conjecture 1.9 (Frankl). Let g(n, t, k) := max{|G| − |∆n−t+1
2
−k(G)| : G ⊂

( [n]
n−t+1

2

)
is

intersecting}. Then, if n+ t is odd and F is a t-intersecting, k-Sperner family, then

|F| ≤ g(n, t, k) +
k∑
i=1

(
n

n+t−1
2

+ i

)
.

Note that Conjecture 1.8 can be interpreted as a strengthening of Conjecture 1.9, in
that additionally there is a conjecture for the value of the function g(n, t, k) for suffi-
ciently large n. The connection may be made more apparent by noting that, after taking
complements, we may equivalently define g(n, t, k) := max{|G| − |∇n+t−1

2
+k(G)| : G ⊂( [n]

n+t−1
2

)
is t-intersecting}.

1.3 New Results

Let us mention that Frankl proved Conjecture 1.7 when t ≥ n − O(
√
n). We settle Con-

jecture 1.7 if t is fixed and n is sufficiently large.

Theorem 1.10. Let t and k be positive integers, and suppose that n+ t is even with t ≤ n,
and n is large enough. If F ⊆ 2[n] is a t-intersecting k-Sperner family, then

|F| ≤
(

[n]
n+t
2

)
+ . . .+

(
[n]

n+t
2

+ k − 1

)
.

2 Sketch of the Proof of Theorem 1.10
The proof of Theorem 1.10 consists of three parts. The first part is a so-called "push-to-
the-middle" argument. By proving this part, one obtains that there exists a maximum size
t-intersecting k-Sperner family that contains sets only of cardinality between n+t

2
− (k− 1)

and n+t
2

+ 2(k− 1). This is achieved in two steps, none of which uses the assumption n+ t
even, so this part of the proof can be applied in arguments for the n + t odd case. The
two steps are formulated in the following two lemmas, the first of which applies Katona’s
shadow t-intersection theorem [7].
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Lemma 2.1. Let F ⊆ 2[n] be a t-intersecting and k-Sperner family, where n + t is even.
Then there exists a t-intersecting k-Sperner family G ⊆ 2[n] with |G| ≥ |F| and min{|G| :
G ∈ G} ≥ n+t

2
− (k − 1).

Lemma 2.2. If F ⊆ 2[n] is a t-intersecting k-Sperner family with min{|F | : F ∈ F} =
n+t
2
− c, then there exists a t-intersecting k-Sperner family F ′ ⊆ 2[n] with |F| ≤ |F ′|, and

min{|F | : F ∈ F} = min{|F ′| : F ′ ∈ F ′} and max{|F ′| : F ′ ∈ F ′} ≤ n+ t

2
+ c+ k − 1.

The other two parts of the proof applies Katona’s cycle method. We need some defi-
nitions. Let σ be a cyclic permutation of [n] and Fσ be the subfamily of those sets in F
that form an interval in σ. Note that there are (n − 1)! choices for σ. For a set G, let
w(G) =

(
n
|G|

)
and w(G) =

∑
G∈G w(G). We define m as m := n+t

2
−min{|F | : F ∈ F ′′}. By

the above discussions, we have 0 ≤ m ≤ k−1. If m = 0 then F has the required structure,
hence we assume m > 0. The second and most delicate part of the proof is the following
lemma that determines the maximum weight of a t-intersecting k-Sperner family on the
cycle.

Lemma 2.3. Suppose n + t is even with t ≤ n and n is large enough. For every cyclic
permutation σ and t-intersecting k-Sperner family F ⊆

⋃n+t
2

+k−1+m
i=n+t

2
−m

(
[n]
i

)
, we have w(Fσ) ≤

n
∑k−1

i=0

(
n

n+t
2

+i

)
.

Before giving more insight on the proof of Lemma 2.3, let us show how Lemma 2.3
implies Theorem 1.10 that is the part of the proof.

Proof of Theorem 1.10 using Lemma 2.3. As mentioned in the last paragraph of the previ-
ous subsection, by Theorem 2.1 and Lemma 2.2, we can assume that F ⊆

⋃n+t
2

+k−1+m
i=n+t

2
−m

(
[n]
i

)
holds. Then using Lemma 2.3 we have:

∑
σ

∑
F∈Fσ

w(F ) ≤ (n− 1)! · n
k−1∑
i=0

(
n

n+t
2

+ i

)
= n! ·

k−1∑
i=0

(
n

n+t
2

+ i

)
.

From the other side,∑
σ

∑
F∈Fσ

w(F ) =
∑
F∈F

|F |!(n− |F |)!
(
n

|F |

)
= n!|F|,

which implies the required upper bound on |F|.

Let us return to the proof of Lemma 2.3. The extremal family of the lemma consists
of all kn intervals with size between n+t

2
and n+t

2
+ k − 1. Also, any k-Sperner family

on the cycle may contain at most kn intervals, but those that have cardinality smaller
than n+t

2
have larger weight than the intervals of the extremal family. To compensate for
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these, we need to show that if such intervals exist in a t-intersecting K-Sperner family G,
then G must contain intervals that are too large, larger than n+t

2
+ k − 1 and therefore

have smaller weight than all intervals of the extremal family. (And we have to make sure
that the loss of weight is more than the gain.) This is done based on the following simple
observation. For a cyclic permutation σ and an interval G define Gt as the complement
of G together with the (counterclockwise) leftmost b t

2
c and rightmost d t

2
e elements of G

with respect to σ. For a family G of intervals, let Gt = {Gt
: G ∈ G}. Observe that

|G∩Gt| = t and the two endpoints of Gt belong to G∩Gt. Therefore, if G is t-intersecting,
then for any G ∈ G no proper subinterval H of Gt belongs to G. |G| = n+t

2
− c implies

|Gt| = n− (n+t
2
− c) + t = n+t

2
+ c, so if such a G belongs to G, then many intervals of size

close n+t
2

cannot belong to G.
The details how this is used to derive Lemma 2.3 can be found in [1].
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Abstract

We obtain isoperimetric stability theorems for general Cayley digraphs on Zd. For
any fixed B that generates Zd over Z, we characterise the approximate structure of
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1 Introduction
An important theme at the interface of Geometry, Analysis and Combinatorics is un-
derstanding the structure of approximate minimisers to isoperimetric problems. These
problems take the form of minimising surface area of sets with a fixed volume, for various
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large literature on its stability, i.e. understanding the structure of approximate minimis-
ers, culminating in the sharp quantitative isoperimetric inequality of Fusco, Maggi and
Pratelli [8].

In the discrete setting, isoperimetric problems form a broad area that is widely studied
within Combinatorics (see the surveys [2, 14]) and as part of the Concentration of Measure
phenomenon (see [15, 26]). Certain particular settings have been intensively studied due to
their applications; for example, there has been considerable recent progress (see [12, 11, 13,
23]) on isoperimetric stability in the discrete cube {0, 1}n, which is intimately connected
to the Analysis of Boolean Functions (see [20]) and the Kahn–Kalai Conjecture (see [10])
on thresholds for monotone properties, which has recently been solved [7, 21]. This paper
concerns the setting of integer lattices, which is widely studied in Additive Combinatorics,
where the Polynomial Freiman–Ruzsa Conjecture (see [9]) predicts the structure of sets
with small doubling.

For an isoperimetric problem on a digraph (directed graph) G, we measure the ‘volume’
of A ⊆ V (G) by its size |A|, and its ‘surface area’ either by the edge boundary ∂e,G(A),
which is the number of edges −→xy ∈ E(G) with x ∈ A and y ∈ V (G) \ A, or by the vertex
boundary ∂v,G(A), which is the number of vertices y ∈ V (G) \ A such that −→xy ∈ E(G) for
some x ∈ A. Here we consider Cayley digraphs: given a generating set B of Zd, we write
GB for the digraph on Zd with edges E(GB) = {−→uv : v − u ∈ B}.

It is an open problem to determine the minimum possible value of ∂v,GB
(A) or ∂e,GB

(A)
for A ⊆ Zd of given size, let alone any structural properties of (approximate) minimisers;
exact results are only known for a few instances of B (see [3, 4, 27, 24]). It is therefore
natural to seek asymptotics. For ease of reference we collect here our notation for the
various sets involved in stating the following results.

C(B) ⊆ Rd The conical hull C(B) of B is the convex hull of B ∪ {0}.

Bn ⊆ Zd The sets kC(B) ∩ Zd are increasing as a function of k > 0. Write Bn for the
smallest of these sets with at least n elements.

[B] ⊆ Zd Write [B] =
{∑

b∈B′ b : B′ ⊆ B
}
for the set of all sums of subsets of B. Thus

|[B]| ≤ 2|B|, where the bound is strict if multiple subsets of B have equal
sums.

Z(B) ⊆ Rd The zonotope generated by B is
{∑

b∈B xbb : x ∈ [0, 1]B
}
. Equivalently, Z(B)

is the convex (or conical, as [B] contains 0) hull of [B].

For A ⊆ Zd of size n → ∞, Ruzsa [25] showed that the minimum value of the vertex
boundary ∂v,GB

(A) is asymptotic to that achieved by a set of the form kC(B) ∩ Zd. A
corresponding result for the edge boundary was obtained in [1]: the minimum value of
∂e,GB

(A) is asymptotic to that achieved by a set of the form kZ(B) ∩ Zd.
We will prove stability versions of both these results, describing the approximate struc-

ture of asymptotic minimisers for both the vertex and edge isoperimetric problems in GB.
We use µ to denote Lebesgue measure.
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Theorem 1.1. Let d ≥ 2. For every generating set B of Zd, there is a K ∈ N such that
whenever

• A ⊆ Zd with |A| = n ≥ K,

• Kn−1/2d < ε < K−1 and

• ∂v,GB
(A) ≤ dµ(C(B))1/dn1−1/d(1 + ε),

there is a v ∈ Zd with |A4 (v +Bn)| < Kn
√
ε.

Theorem 1.2. Let d ≥ 2. For every generating set B of Zd and δ > 0, there are K ∈ N
and ε > 0 such that whenever

• A ⊆ Zd with |A| = n ≥ K and

• ∂e,GB
(A) ≤ dµ(Z(B))1/dn1−1/d(1 + ε),

there is a v ∈ Zd with |A4 (v + [B]n)| < δn.

The square root dependence in Theorem 1.1 is tight, as may be seen from an example
where B consists of the corners of a cube and A is an appropriate cuboid.

Besides drawing on the methods of [25] (particularly Plünnecke’s inequality for sumsets)
and [1] (a probabilistic reduction to [25]), the most significant new contribution of our paper
is a technique for transforming discrete problems to a continuous setting where one can
apply results from Geometric Measure Theory. We will employ the sharp estimate on
asymmetric index in terms of anisotropic perimeter with respect to any convex set K due
to Figalli, Maggi and Pratelli [6] (building on the case when K is a ball, established in [8]).

2 Proof strategy
This section contains an overview of the proof of our tight quantitative stability result for
the vertex isoperimetric inequality in general Cayley digraphs. Using ideas from [1] one
can deduce from this also a stability result for the edge isoperimetric inequality.

We start with a summary of Ruzsa’s approach in [25], during which we record some
key lemmas on sumsets and fundamental domains of lattices that we will also use in our
proof.

2.1 Ruzsa’s approach

The sumset of A,B ∈ Zd is defined by A + B := {a + b : a ∈ A, b ∈ B}. The vertex
isoperimetric problem in the Cayley digraph GB is equivalent to finding the minimum of
|A+B| over all sets A of given size. The following result of Ruzsa [25, Theorem 2] implies
an asymptotic for this minimum.

Theorem 2.1. Let B be a generating set of Zd with d ≥ 2. Then for any A ⊆ Zd with
|A| = n large we have |A+B| ≥ dµ(C(B))1/dn1−1/d(1−O(n−1/2d)

)
.
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Ruzsa aims to deduce this inequality from the Brunn–Minkowski inequality (in the form
due to Lusternik [16]) µ(U + V )1/d ≥ µ(U)1/d + µ(V )1/d, which is tight when U and V are
closed, convex and homothetic (that is, agree up to scaling and translation).

Passing from a discrete inequality to a continuous one can be achieved by adding a
fundamental set Q to each side; that is, a measurable Q such that any x ∈ Rd has a unique
representation as x = z + q with z ∈ Zd and q ∈ Q. This ensures that µ(X +Q) = |X| for
any X ⊆ Zd. One example of a fundamental set is the half-open unit cube [0, 1)d, but we
will prefer a fundamental set tailored to B rather than to the standard coordinate axes.

Typically B + Q will be far from convex, so a naive application of Brunn–Minkowski
gives poor results. Ruzsa smooths out B by using a version of Plünnecke’s inequality [22]
to replace B by its sumset. We write Σk(A) for the k-fold sumset of A rather than the
commonly used kA, which in this paper denotes the dilate of A by factor k.

Theorem 2.2 (see [25, Statement 6.2]). Let k ∈ N and A,B ⊆ Zd with |A| = n and
|A+B| = αn. Then there is a non-empty subset A′ ⊆ A with |A′ + Σk(B)| ≤ αk|A′|.

To return to a bound on to discrete sets Ruzsa uses the following lemma. By nice we
mean that a set is a finite union of bounded convex polytopes.

Lemma 2.3 ([25, Lemma 11.2]). Let B be a generating set of Zd with d ≥ 2 and 0 ∈
B. Then there are p ∈ N, z ∈ Zd and a nice fundamental set Q ⊆ Z(B) such that
kC(B) +Q+ z ⊆ Σk+p(B) +Q for any k ∈ N.

The fact that Q may be chosen to be nice and such that Q ⊆ Z(B) is not stated in [25],
but it can be read out of the proof. With a little care Q can be taken to be a parallelepiped,
but we make no use of this observation.

Chaining together the inequalities in this section and optimising over k proves Theo-
rem 2.1. A similar process, taking notice of the stability of our application of the Brunn–
Minkowski inequality, will prove Theorem 1.1.

2.2 Some Geometric Measure Theory

The next element of our proof incorporates a recent quantitative isoperimetric stability
result of Figalli, Maggi and Pratelli [6]. We adopt simplified definitions that suffice for sets
that are nice, as defined in the previous subsection; see [17, 18] for the general setting of
sets of finite perimeter.

For a closed convex polytope K ⊆ Rd and a union E of disjoint (possibly non-convex)
closed polytopes, the perimeter of E with respect to K is given by

PerK(E) = lim
ε→0+

µ(E + εK)− µ(E)

ε
. (1)

In our setting, given a nice set A, for all r ≥ 0 the measure of A + rK and its closure
A+ rK are the same; that is µ(A+ rK) = µ(A+ rK). Thus for all r ≥ 0, (1) gives

PerK(A+ rK) = lim
ε→0+

µ(A+ (r + ε)K)− µ(A+ rK)

ε
. (2)
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The anisotropic isoperimetric problem was posed in 1901 by Wulff [28], who con-
jectured that minimisers of PerK up to null sets are homothetic copies of K, giving
PerK(E) ≥ dµ(K)1/dµ(E)1−1/d. This was established for sets E with continuous boundary
by Dinghas [5] and for general sets E of finite perimeter by Gromov [19]. It is equivalent
to non-negativity of the isoperimetric deficit δK(E) of E with respect to K, defined by

δK(E) :=
PerK(E)

dµ(K)1/dµ(E)1−1/d
− 1.

We quantify the structural similarity between K and E via the asymmetric index (also
known as Fraenkel asymmetry) of E with respect to K, which is given by

AK(E) = inf

{
µ(E 4 (x0 + rK))

µ(E)
: x0 ∈ Rd and rdµ(K) = µ(E)

}
.

Theorem 2.4 ([6, Theorem 1.1]). For any d ∈ N there exists D = D(d) such that for any
bounded convex open set K ⊆ Rd and E ⊆ Rd of finite perimeter we have

AK(E) ≤ D
√
δK(E).

2.3 Stability

Given these ingredients, let us indicate briefly how Theorem 1.1 follows.
Given a set A which is close to optimal in terms of Theorem 1.2, using Ruzsa’s inter-

pretation of the problem in terms of sumsets, we can apply Lemma 2.2 to find a subset
A′ ⊆ A which is close to optimal in the lattice generated by Σk+p(B). In particular, this
leads to a lower bound on the size of A′ in terms of |A′ + Σk+p(B)|. By taking a contin-
uous approximation of this sumset and applying the Brunn-Minkowski inequality we can
conclude that |A′| is approximately |A|, and so it suffices to show that A′ is structurally
close to to an appropriate Bn.

Using Lemma 2.3 we can approximate Σk+p(B) by a homothetic copy of C(B), after
thickening by an appropraite fundamental set, and hence relate the boundary in this new
lattice to the isoperimetric deficit of A′ with respect to C(B). In particular, by Theorem
2.4 we can use this to bound the asymmetric index of A′ with respect to C(B), and hence
by another discrete approximation, to bound the symmetric difference between A′ and
some Bn.
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Abstract

The results of Thue state that there exists an infinite sequence over 3 symbols
without 2 identical adjacent blocks, which we call a 2-nonrepetitive sequence, and
also that there exists an infinite sequence over 2 symbols without 3 identical adjacent
blocks, which is a 3-nonrepetitive sequence. An r-repetition is defined as a sequence
of symbols consisting of r identical adjacent blocks, and a sequence is said to be r-
nonrepetitive if none of its subsequences are r-repetitions. Here, we study colorings
of Euclidean spaces related to the work of Thue. A coloring of Rd is said to be r-
nonrepetitive of no sequence of colors derived from a set of collinear points at distance
1 is an r-repetition. In this case, the coloring is said to avoid r-repetitions. It was
proved in [9] that there exists a coloring of the plane that avoids 2-repetitions using
18 colors, and conversely, it was proved in [3] that there exists a coloring of the plane
that avoids 43-repetitions using only 2 colors. We specifically study r-nonrepetitive
colorings for fixed number of colors : for a fixed number of colors k and dimension
d, the aim is to determine the minimum multiplicity of repetition r such that there
exists an r-nonrepetitive coloring of Rd using k colors.

We prove that the plane, R2, admits a 2- and a 3-coloring avoiding 33- and 18-
repetitions, respectively.
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1 Introduction
The Hadwiger-Nelson problem asks for the minimum number of colors required to color
the Euclidean plane such that any two points at distance 1 are colored differently. This
is called the chromatic number of the plane, and is denoted as χ(R2). The answer to this
problem is unknown, but it was proved that 5 ≤ χ(R2) ≤ 7 [1, 2, 7]. We study colorings of
Euclidean spaces that are connected to the Hadwiger-Nelson problem and where the goal
is to avoid specific patterns on straight lines.

An r-repetition is a finite sequence of symbols consisting of r identical blocks, where a
block is a subsequence of consecutive terms. A sequence is r-nonrepetitive if none of its
subsequences of consecutive terms are r-repetitions. For instance, the word hotshots is a 2-
repetition and the word minimize is 2-nonrepetitive. The results of Thue state that there
exists an infinite 2-nonrepetitive sequence over 3 symbols and an infinite 3-nonrepetitive
sequence over 2 symbols. We study the Euclidean variant of Thue sequences introduced
by Grytczuk et al. [5]. A straight path is defined as a sequence of collinear points of Rd,
where consecutive points are at distance 1. A coloring of Rd is r-nonrepetitive if for each
straight path in Rd, the sequence of the colors of its points is r-nonrepetitive. For fixed
integers d and r, the aim is to find the minimum number of colors for which there exists
an r-nonrepetitive coloring of Rd. Let πr(Rd) denote that number.

One easily deduces from Thue’s result that π2(R) = 3 and π3(R) = 2. The problem is
more difficult for higher dimensions. Colorings of Euclidean spaces that avoid 2-repetitions
are called square-free colorings. It was proven in [9] that there exists a square-free coloring
of the plane that uses 18 colors, which means that π2(R2) ≤ 18. The problem of determining
π2(R2) is connected to the Hadwiger-Nelson problem in the following way. If a coloring of
the plane is 2-nonrepetitive, then 2 points at distance 1 must be colored differently, so at
least χ(R2) colors are required. Therefore 5 ≤ χ(R2) ≤ π2(R2) ≤ 18.

Dębski et al. studied r-nonrepetitive colorings for larger values of r [3]. More specifi-
cally, they gave a proof that for any d ∈ N, there exists r = r(d) such that πr(Rd) = 2. In
other words, for large enough values of r, the problem can be solved with the least possible
number of colors. In particular, for d = 2, the minimum value of r for which πr(R2) = 2 is
unknown, but the paper provides a proof that π43(R2) = 2 and π24(R2) ≤ 3. For smaller
values of r, it is known that π6(R2) ≤ 4 and π3(R2) ≤ 9 [4, 9].

We prove that there exists a 33-nonrepetitive coloring of R2 with 2 colors, that is,
π33(R2) = 2. We also prove that π18(R2) ≤ 3. Our improvements rely on two main
ingredients. First, we provide a better bound on the number of pathable sequences of
hypercubes. This quantity already played a crucial role in the proof from [3]. Secondly, the
proof from [3] uses the Lovász Local Lemma, which we replace with a counting method that
yields slightly better bounds in this setting. This argument was first used for nonrepetitive
colorings of graphs [6] and was later presented in the more general context of hypergraph
coloring [8].
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2 Pathable sequences
A standard technique in problems related to colorings of Euclidean spaces is to define a
regular tiling of that space and assign the same color to all the points of each tile. The
proof of the result from [3] uses a partition of Rd into hypercubes of diameter 1. We will
also use this partition. More precisely, each hypercube is a set of the form {(x1, ..., xd) ∈
Rd : ∀j ∈ J1, dK, ij ≤ xj

√
d < ij + 1}, with (i1, ..., id) ∈ Zd. This way, any two points at

distance 1 are always in different hypercubes. Let H denote the set of hypercubes from
this partition.

We call a sequence (α0, ..., α`−1) of hypercubes `-pathable if there exists a straight path
(q0, ..., q`−1) in Rd with qi ∈ αi for each i (See Figure 1). For a fixed cube H, Dd(`) is
defined as the number of `-pathable sequences in Rd containing H (each pair (α0, ..., α`−1)
and (α`−1, ..., α0) is counted as a single sequence).

Figure 1: A 6-pathable sequence in R2.

It is know that Dd(l) = O(l3d) [3]. We improve this upper bound for d = 2.

Lemma 1. The number of `-pathable sequences in R2 is bounded as follows,

D2(`) ≤
2
√
2

3
`5 + (2− 2

√
2

3
)`3 − 2`2 .

3 Calculations with the counting argument
In this section, we provide a condition similar to [3, Lemma 2.3]. It provides a condition
on r and the number of colors k that ensures that there exists an r-nonrepetitive coloring
of Rd using k colors. However, the condition of Lemma 3, can be proven to be weaker, that
is, whenever the condition of [3, Lemma 2.3] holds then our lemma automatically holds
with β = k2−1/(r−1). In practice, this leads to a slightly better bound for our results.

In the proof of Lemma 2, we will consider an arbitrary subset S of Rd consisting of
finitely many hypercubes from the partition. This method directly shows that there exist
exponentially many valid hypercube colorings, with respect to the number of hypercubes
in S.



Nonrepetitive colorings of Rd 117

Lemma 2. Let r, k and d be integers. For every set S of hypercubes, let C(S) be the set
of r-nonrepetitive hypercube colorings of S with k colors.

If there exists β > 1 such that

k ≥ β +
∞∑
s=1

Dd(rs)× β1−(r−1)s ,

then for every set S of n hypercubes of the partition of Rd and for every hypercube H ∈ S,

|C(S)| ≥ β|C(S −H)| .

Remark that β > 1 and that according to Corollary 2.5 from [3], Dd(rs) = O((rs)3d),
so the sum in this Lemma is always well-defined.

Proof. We proceed by induction on n = |S|. This is true for n = 1 because S − H = ∅.
Fix n ≥ 2 and assume that the result holds for every i < n. Let S be a set of n hypercubes
and H a hypercube of S. Our induction hypothesis implies that for all R ⊆ S −H,

C(S −H −R) ≤ C(S −H)

β|R|
. (1)

Let F be the set of colorings of S that are r-nonrepetitive on S−H but for which there
is an r-repetition on S. Then

|C(S)| = k|C(S −H)| − |F | . (2)

Let s ∈ N∗ and α = (α1, ..., αrs) be a pathable sequence such that H = αi, for some
i ∈ {1, . . . , rs}. We define Fα as the subset of F for which there is an r-repetition of length
rs on that sequence. Without loss of generality, we assume that i ≥ s + 1. We consider
a coloring φ ∈ Fα. By definition of F , the sequence of colors on α is an r-repetition, and
the restriction of φ to S − (αs+1, ..., αrs) is r-nonrepetitive because H ∈ {αs+1, ..., αrs}.
Therefore, φ is uniquely determined by its restriction to S − {αs+1, ..., αrs} and |Fα| ≤
|C(S − {αs+1, ..., αrs}|. By equation (1), this implies,

|Fα| ≤
1

β(r−1)s−1 |C(S −H)| .

Let Frs be the subset of F for which there is an r-repetition of length rs. Recall that
Dd(rs) is the number of pathable sequences of length rs containing H. Then,

|Frs| ≤ Dd(rs)
1

β(r−1)s−1 |C(S −H)| .

Now, by summing over all s, and by using our main hypothesis

|F | =

∣∣∣∣∣
∞⋃
s=1

Frs

∣∣∣∣∣ ≤
∞∑
s=1

|Frs| ≤
∞∑
s=1

Dd(rs)
1

β(r−1)s−1 |C(S −H)| ≤ |C(S −H)|(k − β) .
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Using this bound inside equation (2),

|C(S)| = k|C(S −H)| − |F | ≥ β|C(S −H)|

which concludes our induction.

For each subset S of Rd consisting of n hypercubes, |C(S)| ≥ βn−1k. This means that
any finite arbitrary subset of hypercubes of the partition of Rd can be r-nonrepetitively
colored. By compacity (e.g., see the proof of Lemma 2.3 from [3]) there exists an r-
nonrepetitive coloring of Rd.

Lemma 3. For every integers r, k and d, if there exists β > 1 such that

k ≥ β +
∞∑
s=1

Dd(rs)× β1−(r−1)s

then πr(Rd) ≤ k.

4 Proof of the main results and conclusion
We can now use the bound from Lemma 1 to verify the conditions of Lemma 3 for well-
chosen values of r, β and k. In particular, one can verify that the condition of Lemma 3
holds for r = 33, β = 19/10 and k = 2 which implies the following result.

Theorem 4. There exists a 2-coloring of the plane avoiding 33-repetitions.

Let r(d) denote the least positive integer such that πr(d)(Rd) = 2. We proved that
r(2) ≤ 33, which improves the bound r(2) ≤ 43 proved in [3]. However, this result probably
isn’t optimal, since the best known lower bound is r(2) ≥ 3 which is a consequence of the
results of Thue. This means that r(2) lies between 3 and 33. In fact, it is conjectured in
[3] that r(2) = 4.

Similarly, one can verify that the condition of Lemma 3 holds for r = 18, β = 8/3 and
k = 3 which implies the following result.

Theorem 5. There exists a 3-coloring of the plane avoiding 18-repetitions.

Again the value 18 is an improvement from 24 but is probably still not optimal.
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Abstract

For given positive integers k and n, a family F of subsets of {1, . . . , n} is k-
antichain saturated if it does not contain an antichain of size k, but adding any set to
F creates an antichain of size k. We use sat∗(n, k) to denote the smallest size of such
a family. For all k and sufficiently large n, we determine the exact value of sat∗(n, k).
Our result implies that sat∗(n, k) = n(k − 1) − Θ(k log k), which confirms several
conjectures on antichain saturation. Previously, exact values for sat∗(n, k) were only
known for k up to 6.

We also prove a strengthening of a result of Lehman-Ron which may be of inde-
pendent interest. We show that given m disjoint chains in the Boolean lattice, we
can create m disjoint skipless chains that cover the same elements (where we call a
chain skipless if any two consecutive elements differ in size by exactly one).
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Many powerful results have been proved over the years concerning the structure of
chains and antichains in the Boolean lattice, e.g. [10, 14, 20, 21, 22]. For example, it is
well-known that the Boolean lattice admits a symmetric chain decomposition [1, 9], and in
fact these chains may be taken to be skipless (or saturated): every chain C1 ( · · · ( Cr ⊆
[n] = {1, . . . , n} has the property that |Ci+1| = |Ci| + 1 for all i ∈ [r − 1]. Skipless chains
have also been studied in other contexts such as in [3, 6, 16].

Given sets X1, . . . , Xm from layer r and sets Y1, . . . , Ym from layer s such that Xi ⊆ Yi,
it need not be possible to find disjoint skipless chains C1, . . . , Cm linking X1 to Y1, X2 to
Y2 etc. However, it was shown by Lehman and Ron [15] in 2001 that there always exist m
disjoint skipless chains that cover the sets X1, . . . , Xm and Y1, . . . , Ym.

Theorem 1 (Lehman-Ron [15]). Let integers 1 ≤ s < r ≤ n and subsets X1, . . . , Xm, Y1, . . . , Ym ⊆
[n] be given with |Xi| = s, |Yi| = r and Xi ⊆ Yi for all i ∈ [m]. Then there exist m disjoint
skipless chains that cover {X1, . . . , Xm, Y1, . . . , Ym}.

It is natural to ask if a stronger statement holds. For example, what happens if we
allow the sets to come from different layers, or ask that the chains go via some elements
from layers between layer r and layer s? Is it possible to cover any m disjoint chains with
m disjoint skipless chains, or can we force the use of an additional chain? We show that
m chains always suffice. For a family F , we say that F admits a chain decomposition into
m chains if there exits m disjoint chains C1, . . . , Cm that covers F .

Theorem 2. Suppose that F ⊆ 2[n] admits a chain decomposition into m chains. Then
there exist disjoint skipless chains C1, . . . , Cm such that F ⊆

⋃m
i=1C

i.

Proof overview. The core of the proof, despite being slightly more technical, follows a
method similar to the one used in [15]. It uses multiple inductive arguments to reduce the
problem to a well-structured instance. From there it is possible to uses Menger’s theorem
[18] to deduce connectivity properties.

The building blocks for our induction can are as follows (see Fig. 1 for an example):

Claim 3. Let s ≤ r ≤ n be integers. Let C1, . . . , Cm be disjoint chains, such that for all
i ∈ [m− 1], the chain Ci starts in layer s and ends in layer r. Suppose that Cm starts in
A ∈

(
[n]
≤s

)
and ends in B ∈

(
[n]
r

)
. Then there exist m disjoint chains D1, . . . , Dm with the

following three properties.

1. For i ∈ [m − 1], the chain Di starts in the sth layer, ends in the rth layer and is
skipless.

2. The chain Dm starts at A and intersects the ith layer for all i ∈ [s+ 1, r].

3. The chains D1, . . . , Dm cover the elements in C1, . . . , Cm.
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C1 C2 C3 B

A

D1 D2 D3 D4

A

Figure 1: Representation of Claim 3 (case r = s+ 2 and m = 3).

Theorem 2 was already known in the special case that the union F of the chains we
wish to cover is a convex set system (i.e. if X, Y ∈ F and X ⊆ Z ⊆ Y , then Z ∈ F) [6].
In this case, the chains can be taken to partition F as any additional sets must be at the
ends of the chains.

Although we believe Theorem 2 to be of interest in its own right, our initial motivation
came from the area of induced poset saturation where we use Theorem 2 to easily settle
various conjectures concerning the asymptotics of antichain saturation numbers. With
more work, we are in fact able to go well beyond the conjectures and pinpoint the exact
values.

For given positive integers k and n, a family F of subsets of [n] is k-antichain saturated
if it does not contain an antichain of size k, but for all X ⊆ [n] with X 6∈ F , the family
F ∪{X} does contain an antichain of size k. We denote the size of the smallest such family
by sat*(n, k).

In the literature, this is also sometimes denoted sat*(n,Ak), where Ak is the poset
consisting of k incomparable elements. This is called an induced saturation number: it
is the size of the smallest set system which is saturated in terms of not containing Ak as
an induced subposet. Such saturation numbers for the Boolean lattice were introduced by
Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi and Patkós [8] and have been investigated
for a variety of posets, for example for the butterfly [11], the diamond [12] and the chain
[19]. We refer to [13] for a nice overview.

Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan [7] were the first to study
the particular case of the antichain and made the following conjecture.

Conjecture 1 ([7]). For k ≥ 3, sat*(n, k) ∼ (k − 1)n as n→∞.

The upper bound is easy to see: for all i ∈ [n], a k-antichain saturated family can
contain at most k− 1 subsets of size i since two subsets of the same size are incomparable.
Moreover, a k-antichain saturated family must always exist since we can start with the
empty family and greedily add subsets until it is no longer possible to do so without
creating an antichain of size k.
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Martin, Smith and Walker [17] proved the lower bound

sat*(n, k) ≥
(

1− 1

log2(k − 1)

)
(k − 1)n

log2(k − 1)

for k ≥ 4 and n sufficiently large. The exact values for k = 2, 3 and 4 were shown to be
n+ 1, 2n and 3n− 1 respectively in [7], the exact values for k = 5 and k = 6 were recently
determined to be 4n − 2 and 5n − 5 respectively by Ðanković and Ivan [2]. They also
strengthened Conjecture 1 as follows, and proposed two weaker conjectures implied by this
conjecture.

Conjecture 2 ([2]). sat*(n, k) = n(k − 1)−Ok(1).

We show later how all the conjectures mentioned above are easily derived from Theorem
2. In particular, we will show the following corollary.

Corollary 4. There exist constants c1, c2 > 0 such that for all k ≥ 4 and n sufficiently
large,

n(k − 1)− c1k log k ≤ sat*(n, k) ≤ n(k − 1)− c2k log k.

In general, obtaining exact saturation numbers is a notoriously difficult problem, and
for the antichain exact numbers were only known for k up to 6. Our main result determines
the exact value of sat*(n, k) for all values of k and n where n is large enough relative to
k . We note that n need not be excessively large compared to k and it certainly suffices
to assume n ≥ 6 log k + 1 for example. Determining the exact values is considerably more
involved than just determining the asymptotics, and we require some more definitions just
to state the value of the numbers.

Given a natural number k, let ` be the smallest integer j such that
(

j
bj/2c

)
≥ k − 1.

Note that when n < `, there are no antichains of size k in 2[n] and F must contain every
set (i.e. sat*(n, k) = 2n).

Let C(m, t) denote the initial segment of layer t of size m when the sets are in colex-
icographic order. For a family of sets A from the same layer, let ν(A) be the size of the
maximum matching from A to its shadow ∂A, and recursively define c0, c1, . . . , cb`/2c as
follows. Let cb`/2c = k − 1. For 0 ≤ t < b`/2c, let ct = ν (C(ct+1, t+ 1)).

Theorem 5. Let n, k ≥ 4 be integers and let ` and c0, . . . , cb`/2c be as defined above. If
n < `, then sat*(n, k) = 2n. If n ≥ `, then

sat*(n, k) ≥ 2

b`/2c∑
t=0

ct + (k − 1)(n− 1− 2 b`/2c).

Moreover, equality holds when n ≥ 2`+ 1.

Given the form of the bound in Theorem 5, one might be tempted to suggest that
the best approach is to take each layer t ≤ b`/2c to be an initial segment of colex of the
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appropriate size, but this is not the case in general. While such an example would have
the optimal size, it may already contain an antichain of size k. For example, one can check
there is an antichain of size 262 in C(261, 5)∪C(219, 4), and this approach would not work
for k = 262.

For infinitely many values of k, a matching upper bound to Theorem 5 was already
known [7] which works for all n ≥ `+ 1. It gives the following corollary.

Corollary 6. Let `, k, n be integers such that
(

`
b`/2c

)
= k−1. If n ≤ ` then sat*(n, k) = 2n.

If n ≥ `+ 1, then

sat*(n, k) = 2

b`/2c∑
j=0

(
`

j

)
+ (k − 1)(n− 1− 2b`/2c).

In particular, whenever k−1 is a central binomial coefficient (i.e. k = 3, 4, 7, 11, 21, 36, . . . )
the value of sat*(n, k) is determined for all n.

We now explain how Corollary 4 follows from Theorem 2. The upper bound was already
known, and we prove a lower bound of sat*(n, k) ≥ (n + 1 − 2`)(k − 1) for n sufficiently
large. (Recall that ` is the smallest j such that

(
j
bj/2c

)
≥ k − 1, so ` = Θ(log k).)

By Dilworth’s theorem [5], having a chain decomposition of size at most k− 1 is equiv-
alent to not containing any antichain of size k. Suppose that F ⊆ 2[n] is k-antichain
saturated and so admits a decomposition into k− 1 chains. By Theorem 2, there are k− 1
disjoint skipless chains C1, . . . , Ck−1 that cover the elements of F ; since F is saturated,
this must form a chain decomposition of F . It suffices to show that every chain must
contain a set of size at most ` and a set of size at least n− `. Suppose the smallest element
X of some chain Ci has size |X| > `, then all subsets Y of X must be present in F since
otherwise we may extend Ci to include Y (and that would mean that F ∪ {Y } can also
be covered by k− 1 chains, contradicting the fact that F is k-antichain saturated). There
are at least k − 1 subsets of X of size b`/2c, and these cannot all be covered by the other
k−2 chains. Since each chain contains an element of size at most ` and one of size at least
n− `, the bound follows immediately from the fact that the chains are skipless.

In order to prove the exact lower bound of Theorem 5, it is needed to examine what
happens on layers 1, . . . , `. This is considerably more delicate and for this we use an
auxiliary result concerning the matching number of the colex order, explained in details
in the complete version of the paper [4]. There, we also give an explicit construction of a
k-antichain saturated system F which matches our lower bound on each layer provided n is
sufficiently large. This construction was already known for the special case k− 1 =

(
`
b`/2c

)
,

and we apply it recursively for other values of k. The recursion requires special care and
depends on a particular way of writing k−1 as a sum of binomial coefficients. This notation
can be used to write exact values for the matching numbers ct from Theorem 5.
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Abstract

A d-dir graph is an intersection graph of segments, where the segments have at
most d different slopes. It is easy to see that a d-dir graph with clique number ω
has chromatic number at most dω. We study the chromatic number of 2-dir graphs
in more detail, proving that this upper bound is tight even in the fractional coloring
setting.
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The clique number (the size of the largest complete subgraph) is clearly a lower bound
on the chromatic number of a graph. It is natural to ask whether the chromatic number
can be also bounded from above as a function of the clique number. In particular, a graph
G is called perfect if G as well as all its induced subgraphs have chromatic number equal to
clique number. Graphs from many interesting graph classes, such as bipartite graphs, their
linegraphs, interval and chordal graphs, and their complements, are known to be perfect.
A celebrated strong perfect graph theorem [5] states that a graph is perfect if and only if
it avoids odd holes and antiholes.

Relaxing the notion of perfectness, Gyárfás [11] introduced the notion of χ-boundedness:
A graph class G is χ-bounded if there exists a function f such that χ(G) ≤ f(ω(G))
for every G ∈ G. Not all graphs are χ-bounded—Erdős [8] famously proved that there
exist graphs with arbitrarily large chromatic number and arbitrarily large girth. However,
many interesting graph classes have this property. For example, in the geometric setting,
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intersection graphs of scaled and translated copies of any compact convex shape [13], circle
graphs (intersection graphs of the chords of a circle) [10, 6], intersection graphs of unit-
length segments in the plane [18] and intersection graphs of axis-aligned rectangles in the
plane [1] are χ-bounded (on the other hand, triangle-free intersection graphs of boxes in
R3 have unbounded chromatic number [2]).

In this paper, we are interested in a variant of intersection graphs of straight line
segments in the plane. A graph G is a segment intersection graph if we can assign to
each vertex of G a segment in the plane so that distinct vertices u, v ∈ V (G) are adjacent
iff the corresponding segments intersect in at least one point. Answering in negative an
old question of Erdős, Pawlik et al. [16] proved that there exist triangle-free segment
intersection graphs with arbitrarily large chromatic number. However, it is easy to see
that such graphs must contain segments of many different slopes. Indeed, suppose each
segment of a segment intersection graph G has one of at most d slopes (such graphs are
called d-dir). The segments in each direction induce an interval graph, and since interval
graphs are perfect, we conclude that χ(G) ≤ d ·ω(G). Hence, for every d, the class of d-dir
graphs is χ-bounded.

For context, all planar graphs are segment intersection graphs [4], bipartite planar
graphs are 2-dir [7, 12], and 3-colorable planar graphs are 3-dir [9]. Moreover, West [19]
conjectured all planar graphs are 4-dir. Let us remark that recognizing whether a graph
is a d-dir graph is NP-complete for any d ≥ 2, while recognizing the segment intersection
graphs in general is ∃R-complete, and thus NP-hard and known to be in PSPACE [14].

There are very few χ-bounded graph classes where tight bounds on the chromatic
number in terms of the clique number are known. This motivates us to ask whether the
trivial bound on the chromatic number of d-dir graphs can be improved. In this paper, we
focus on the basic case d = 2. Without loss of generality, each 2-dir graph G is represented
by horizontal and vertical segments. A row of G is a horizontal line that contains at least
one of the horizontal segments of G. To get a more detailed understanding, we consider
2-dir graphs with bounded number of rows: Let Dk,t denote the class of all 2-dir graphs of
clique number at most t and with at most k rows, and let Dt =

⋃∞
k=1Dk,t be the class of

all 2-dir graphs of clique number at most t.
It turns out to be convenient to consider fractional chromatic number in addition to

standard chromatic number. A fractional coloring of a graph G is a function ϕ that to each
vertex assigns a set of measure one (in any measure space), such that ϕ(u) ∩ ϕ(v) = ∅ for
every uv ∈ E(G). The span of ϕ is the measure of

⋃
v∈V (G) ϕ(v). The fractional chromatic

number χf (G) of G is the infimum of the real numbers c such that G has a fractional
coloring of span at most c. It is known that the infimum is actually a minimum and that
it is always rational [17]. Clearly χf (G) ≤ χ(G) for every graph G. Moreover, it is known
that there exist graphs with fractional chromatic number arbitrarily close to 2 and with
arbitrarily large chromatic number [15].

For a class of graphs G, let χ(G) and χf (G) denote the supremum of chromatic and
fractional chromatic numbers, respectively, of graphs from G. Our results are based on
a detailed investigation of the (fractional) chromatic number of triangle-free 2-dir graphs
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with a given number of rows, summarized in the following theorem.

Theorem 1. The following bounds hold:

• χ(D1,2) = χf (D1,2) = 2.

• χ(D2,2) = 3 and χf (D2,2) = 5/2.

• χ(D3,2) = 3 and χf (D3,2) = 11/4.

• χ(Dk,2) = 4 for every k ≥ 4 and χf (D4,2) = 3.

• χf (Dk,2) ≤ 4− 1
2k−1 for every k ≥ 1.

• For all integers r,m ≥ 1, χf (Drm,2) ≥ 4− 1
m
− 1

2r−1 .

Consequently, χ(D2) = χf (D2) = 4, but there are no triangle-free 2-dir graphs with frac-
tional chromatic number exactly 4.

Let us remark that the fact that χf (D2) = 4 also follows from the construction of [3],
who gave construction of 2-dir triangle-free graphs G with |V (G)|/α(G) arbitrarily close
to 4.

For a positive integer b, the b-blowup of a graph G is the graph H obtained from G
by replacing each vertex by a clique of size b and each edge uv by a complete bipartite
graph between the cliques replacing u and v. Note that clique number, fractional chromatic
number, and being a d-dir graph all behave predictably after a blowup (this is not the case
for the ordinary chromatic number, motivating our focus on its fractional version): We
have ω(H) = b · ω(G) and χf (H) = b · χf (G), and if G is a d-dir graph, then H is a d-dir
graph as well.

Since χf (D2) = 4, for every even integer t and ε > 0, there exists a triangle-free 2-dir
graph with fractional chromatic number at least 4 − 2ε

t
, and applying the (t/2)-blowup

operation results in a graph of clique number t and fractional chromatic number at least
2t − ε. This gives our main result: For 2-dir graphs, the trivial upper bound χ(Dt) ≤ 2t
cannot be improved when the clique number t is even.

Corollary 2. For every even t, we have χ(Dt) = χf (Dt) = 2t.

For odd t, this only gives a bound 2t−2 ≤ χf (Dt) ≤ χ(Dt) ≤ 2t. We suspect the upper
bound is tight in this case as well. Finally, we conjecture this is the case for d-dir graphs
in general.

Conjecture 3. For all positive integers d and t and real ε > 0, there exists a d-dir graph
G of clique number t whose fractional chromatic number is at least dt− ε.

Because of the blowup operation, to prove this for even t one only needs to consider
the case t = 2, i.e., triangle-free d-dir graphs. In the rest of this extended abstract, let
us outline the construction showing the lower bounds on the fractional chromatic number
stated in Theorem 1.
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Lower bounds on the fractional chromatic number

Throughout the rest of the paper, let µ be Lebesgue measure on subsets of real numbers.
We will work with a slightly more general notion of fractional coloring. Let G be a graph
and let f : V (G)→ R+

0 be an arbitrary function. An f -fractional coloring of G is a function
ϕ that to each vertex v ∈ V (G) assigns a set of real numbers such that µ(ϕ(v)) = f(v)
and ϕ(u) ∩ ϕ(v) = ∅ for every uv ∈ E(G). The f -fractional chromatic number of G is the
infimum of the spans of its f -fractional colorings.

We say that a 2-dir graph is horizontally trivial if each of its rows contains exactly one
horizontal segment v and this segment v intersects all vertical segments that intersect the
row. In other words, the segment v can be extended arbitrarily far in each direction along
the row without changing the intersection graph. The motivation for requiring different
amounts of colors at each vertex comes from the following observation.

Lemma 4. Let r,m ≥ 1 be integers and let G be a horizontally trivial triangle-free 2-
dir graph with at most m rows. Let f : V (G) → R+ be defined by setting f(v) = 1 for
each vertical segment v and f(v) = 2 − 1

2r−1 for each horizontal segment v. Then G has
f -fractional chromatic number at most χf (Drm,2).

Proof. Without loss of generality, we can assume that for i ∈ {0, . . . ,m − 1}, G has a
horizontal segment hi with endpoints (0, i) and (1, i), and that each vertical segment has
the x-coordinate strictly between 0 and 1. Moreover, we can assume that for each endpoint
p = (x, y) of a vertical segment, there exists an integer j such that j−1/r < y < j: For any
integer j, we can shift all endpoints with j − 1 < y < j to this interval without changing
the intersection graph; and if an endpoint p has y-coordinate exactly j, then since G is
triangle-free, it is an endpoint of exactly one vertical segment v, and thus we can shift p so
that its y-coordinate becomes less than j (if p is the bottom endpoint of v) or more than
j + 1− 1/r (if p is the top endpoint of v).

Let G′ be the triangle-free 2-dir graph with rm rows obtained as follows: We copy each
vertical segment of G 2rm−1 times and shift the copies by 0, 1, . . . , 2rm−1 − 1 to the right.
For i = 0, . . . , rm− 1, G′ has a row `i with y-coordinate yi = i/r, and this row contains 2i
horizontal segments vi,j for j ∈ {0, . . . , 2i−1}, where vi,j has endpoints (j ·2rm−1−i, yi) and
((j + 1) · 2rm−1−i, yi). We view the horizontal segments as arranged in a tree-like fashion,
and if i < rm − 1, we say that vi+1,2j and vi+1,2j+1 are the children of vi,j; note that the
projection of vi,j on the x-axis is the union of the projections of its children. Note also that
by the assumptions on the y-coordinates of the endpoints of the vertical segments of G,
for k ∈ {0, . . . ,m− 1}, the rows `kr, `kr+1, . . . , `kr+r−1 intersect exactly the same vertical
segments of G′.

Since G′ ∈ Drm,2, G′ has a fractional coloring ϕ of span at most χf (Drm,2). For
k = 1, . . . ,m, let us choose a horizontal segment uk = vkr−1,jk in the row `kr−1 and a set
Ck of colors of measure 2− 1

2r−1 as follows:

• If k = 1, then let uk,0 = v0,0, otherwise let uk,0 be a child of uk−1 chosen arbitrarily,
and let Ck,0 = ϕ(uk,0).
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• For i = 1, . . . , r − 1, choose uk,i = u′ among the children u′ and u′′ of uk,i−1 so
that µ(Ck,i−1 ∩ ϕ(u′)) ≤ µ(Ck,i−1 ∩ ϕ(u′′)). Since u′u′′ ∈ E(G′), ϕ(u′) and ϕ(u′′)
are disjoint, and thus µ(Ck,i−1 ∩ ϕ(u′)) ≤ 1

2
µ(Ck,i−1). Hence, µ(Ck,i−1 ∪ ϕ(u′)) =

µ(Ck,i−1)+ 1−µ(Ck,i−1 ∩ϕ(u′)) ≥ 1
2
µ(Ck,i−1)+ 1. We let Ck,i be a subset of Ck,i−1 ∪

ϕ(u′) of measure exactly 2 − 1
2i
. Such a set exists, since by induction, we have

1
2
µ(Ck,i−1) + 1 = 1

2

(
2− 1

2i−1

)
+ 1 = 2− 1

2i
.

• Let uk = uk,r−1 and Ck = Ck,r−1.

Consider now the assignment ϕ′ of sets of colors to vertices of G defined as follows: For
k = 1, . . . ,m, the horizontal segment hk−1 with endpoints (0, k − 1) and (1, k − 1) gets
ϕ′(hk−1) = Ck. Hence, µ(ϕ′(hk−1)) = 2− 1

2r−1 = f(hk−1). For each vertical segment v, let
v′ be its copy in G′ whose projection on the x-axis is contained inside the projection of um
(and thus also inside the projection of u1, . . . , um−1), and let ϕ′(v) = ϕ(v′). Note that if v′
intersects uk for some k ∈ {1, . . . ,m}, then it also intersects all horizontal segments whose
color sets contribute to Ck, and thus ϕ′(v) is disjoint from Ck = ϕ′(hk−1). Consequently,
ϕ′ is an f -fractional coloring of G whose span is at most the span of ϕ, and thus at most
χf (Drm,2)

We use duality to prove lower bounds on the fractional chromatic number. A function
γ : V (G)→ R+

0 is a fractional clique in a graph G if
∑

v∈I γ(v) ≤ 1 for every independent
set I inG. The f -weight of γ is defined as

∑
v∈V (G) γ(v)f(v). It is a well-known consequence

of linear programming duality that the f -fractional chromatic number is equal to the
maximum f -weight of a fractional clique [17].

The 2-universal 2-dir graph with m rows is the horizontally trivial triangle-free 2-dir
graph with rows `1, . . . , `m in order according to the y-coordinate and withm vertical lines,
where the first vertical line contains a segment intersecting all rows and for i ∈ {2, . . . ,m},
the i-th vertical line contains two intersecting vertical segments, one of them intersecting
`1, . . . , `i−1 and the other one intersecting `i, . . . , `m.

Lemma 5. Let m ≥ 1 be an integer, let ε > 0 be a real number, let G be the 2-universal
2-dir graph with m rows, and let f : V (G) → R+ be defined by setting f(v) = 1 for each
vertical segment v and f(v) = 2−ε for each horizontal segment v. Then G has f -fractional
chromatic number at least 4− 1

m
− ε.

Proof. Let us define γ(v) = 1
m

for every v ∈ V (G). We claim that γ is a fractional
clique. Indeed, consider any independent set I. If I does not contain any horizontal
segment, then I contains at most one vertical segment from each vertical line, and thus
|I| ≤ m. Otherwise, let j1 be the minimum index such that I contains the horizontal
segment from row `j1 and let j2 be the maximum such such index; then I contains at most
j2 − j1 + 1 horizontal segments. Moreover, I cannot contain the vertical segment from
the first vertical line or from the i-th vertical line for any i ∈ {j1 + 1, . . . , j2}, and thus
|I| ≤ (j2 − j1 + 1) +m− (j2 − j1 + 1) = m. Therefore,

∑
v∈I γ(v) ≤

1
m
|I| ≤ 1.

The f -weight of γ is 1
m
(m · (2− ε)+2m− 1) = 4− 1

m
− ε, establishing the desired lower

bound on the f -fractional chromatic number of G.
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Since the 2-universal 2-dir graph is horizontally trivial, we can combine Lemmas 4 and
5 to obtain the lower bound from Theorem 1.

Corollary 6. For all integers r,m ≥ 1, χf (Drm,2) ≥ 4− 1
m
− 1

2r−1 .
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Abstract

Oscillation stability is an important concept in Banach space theory which hap-
pens to be closely connected to discrete Ramsey theory. For example, Gowers proved
oscillation stability for the Banach space c0 using his now famous Ramsey theorem
for FINk as the key ingredient. We develop the theory behind this connection and
introduce the notion of compact big Ramsey degrees, extending the theory of (dis-
crete) big Ramsey degrees. We prove existence of compact big Ramsey degrees for
the Banach space `∞ and the Urysohn sphere, with an explicit characterization in
the case of `∞.
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1 Introduction
A discrete structure is a structure in a relational language without unary predicates (e.g.
orders, graphs, hypergraphs, etc.). Given two discrete structures X and Y in the same
language we will denote by

(
X
Y

)
the set of all embeddings Y → X. Given a discrete

structure X and a finite substructure A of X we say that A has a finite big Ramsey degree
in X if there exists t > 1 such that every finite colouring of

(
X
A

)
attains at most t colors
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on
(
f [X]
A

)
for some well-chosen f ∈

(
X
X

)
. In this case, the big Ramsey degree of A in X is

the least such t. We say that X has finite big Ramsey degrees if every finite substructure
of X has a finite big Ramsey degree in X.

The infinite Ramsey theorem says that all big Ramsey degrees in (N, <) are equal to 1.
However, this is usually not the case. By Hjorth [10], no infinite homogeneous structure has
all big Ramsey degrees equal to 1. However, they can still be finite. The task of identifying
such structures was initiated by an unpublished result by Laver who proved finiteness of
big Ramsey degrees of (Q, <), followed by their exact computation by Devlin [5]. Since
then there has been a lot of progress [1, 2, 3, 4, 6, 8, 11, 13, 15, 16, 21]. See also Dobrinen’s
survey [7].

Recall that c0 is the Banach space of all sequences x : N→ R tending to zero at infinity,
with the norm ||x||∞ := supn∈N |x(n)|, and that the unit sphere of a Banach space X is
SX := {x ∈ X | ‖x‖ = 1}. Also recall that the Urysohn sphere S is the unique complete
and separable metric space of diameter 1 containing copies of all finite metric spaces of
diameter at most 1 which is homogeneous, that is, every isometry between finite subsets of
S extends to an onto isometry of S. By a compactum, we mean a compact metric space.

A discrete structure X is indivisible if the big Ramsey degree of a vertex in X is equal
to 1. Mostly motivated by the distortion problem from Banach space theory, the two first
indivisibility-like results for metric structures (called oscillation stability results by Banach
space theorists) have been proved by Gowers [9], and Nguyen Van Thé and Sauer [17].
Here, Lipschitz maps can be seen as continuous colourings, and compactness is the right
metric analogue of finiteness.

Theorem 1.1 (Gowers [9]). Let K be a compactum and χ : Sc0 → K be a Lipschitz map.
For every ε > 0, there exists a linear isometric copy X of c0 in c0 such that diam(χ(SX)) 6
ε.

Theorem 1.2 (Nguyen Van Thé–Sauer [17]). Let K be a compactum and χ : S → K be
a Lipschitz map. For every ε > 0, there exists an isometric copy X of S in S such that
diam(χ(X)) 6 ε.

The proof of Theorem 1.1 is based on discrete approximations and was the reason why
Gowers proved his now well-known FINk theorem, which is the main ingredient in the proof.
The proof of Theorem 1.2 is also using discrete approximations (following a combinatorial
strategy which was proposed earlier by Nguyen Van Thé and Lopez-Abad [14]) combined
with indivisibility results for metric spaces with finitely many distances.

The similarity between those results and indivisibility results makes it is natural to ask
if a suitable version of big Ramsey degrees could be defined for metric structures. This
was addressed by Kechris, Pestov, and Todorcevic [12, § 11(F)] who suggested a definition
which, however, is rather restrictive and fails to capture most interesting structures beyond
the discrete ones. Our goal is to provide a more general notion, and to demonstrate its
suitability on examples such as the Banach space `∞ and the Urysohn sphere. Our work
on the Urysohn sphere builds on results on big Ramsey degrees of homogeneous structures
with forbidden cycles announced at Eurocomb 2021 [3].
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Our motivations are twofold. First, Zucker [20] extended the KPT correspondence [12]
to big Ramsey degrees, giving a correspondence between them and some dynamical invari-
ants of automorphism groups. Our extension to the metric setting could allow us to study
the same dynamical invariants for the automorphism groups of metric structures; no tool
is currently available for studying those. Second, our methods could lead to a systematical
study of the distortion phenomenon in Banach space theory, closely related to oscillation
stability and not yet well understood. For instance, Odell and Schlumprecht’s solution to
the distortion problem [18] shows that the analogue of Theorem 1.1 fails for the separable
Hilbert space. Metric big Ramsey degrees could help to express a quantitative and optimal
version of their result.

2 Compact big Ramsey degrees
We first review, in a more general setting, some results on discrete big Ramsey degrees to
motivate our definitions in the metric case. Let M be a monoid acting by injections on a
set X. The action M y X has a finite big Ramsey degree if there exists t > 1 such that
every colouring of X with finitely many colours takes at most t values on a set of the form
p ·X, p ∈M . In this case, the big Ramsey degree of the action is the least such t. Observe
that if Y is a discrete structure and A ⊆ Y a finite substructure, then takingM :=

(
Y
Y

)
and

X :=
(
Y
A

)
and considering the action by left-composition, we recover the classical notion of

the big Ramsey degree of A in Y . For k > 1, denote by [k] the set {1, . . . , k}.

Definition 2.1. Fix M y X as above, and k > 1. A colouring χ : X → [k] is:

• persistent if for every p ∈M , χ(p ·X) = [k];

• universal if for every l > 1, every colouring ψ : X → [l] and every p ∈M , there exists
q ∈M and f : [k]→ [l] such that ψ �pq·X= f ◦ χ �pq·X ;
• a big Ramsey colouring (or a canonical partition, following [13]) if it is both persistent

and universal.

The proof of the following fact is elementary.

Proposition 2.2. Suppose that the action M y X has a finite big Ramsey degree. Then
it admits a big Ramsey colouring. Moreover, the number of colours of such a colouring is
always equal to the big Ramsey degree of the action.

In the metric metric setting, one has a monoid M acting by (non-necessarily onto)
isometries on a complete metric space X. Inspired by Theorems 1.1 and 1.2, we define
a colouring of X as a 1-Lipschitz map X → K, where K is a compactum (the Lipschitz
constant 1 is here to ensure some rigidity). We will also allow some ε-approximation in our
results. For K,L compacta we put K 6 L if there exists a 1-Lispchitz surjection L→ K.
This quasiordering is meant to “replace” the order on N. It is a classical fact that K 6 L
and L 6 K if and only if K and L are isometric. If χ, ψ : X → K are maps, we will denote
by d∞(f, g) the supremum distance between f and g.
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Definition 2.3. Say that a compactum K is:

• universal with respect to the actionM y X if for every compactum L, every colour-
ing ψ : X → L, and every ε > 0, there exists q ∈ M , a colouring χ : X → K, and a
1-Lipschitz map f : K → L such that d∞(ψ �q·X , f ◦ χ �q·X) 6 ε;

• the big Ramsey degree of the action M y X if K is a 6-least universal compactum.

Say that the action M y X has a compact big Ramsey degree if it admits a big Ramsey
degree in the above sense.

The big Ramsey degree of an action, if it exists, is unique, up to isometry.

Definition 2.4. Say that a colouring χ : X → K is:

• persistent if for every p ∈M , χ(p ·X) is dense in K;

• universal if for every compactum L, every colouring ψ : X → L, every p ∈ M
and every ε > 0, there exists q ∈ M and a 1-Lipschitz map f : K → L such that
d∞(ψ �pq·X , f ◦ χ �pq·X) 6 ε;

• a big Ramsey colouring if it is both persistent and universal.

Proposition 2.5. Suppose that χ : X → K is a big Ramsey colouring for the action
M y X. Then K is the big Ramsey degree of this action.

Proposition 2.6. Consider the following statements:

(1) the action M y X admits a universal compactum;

(2) the action M y X has a compact big Ramsey degree;

(3) the action M y X admits a universal colouring;

(4) the action M y X admits a big Ramsey colouring.

Then the following implications hold: (4) =⇒ (3) =⇒ (2) =⇒ (1).

While the analogues of the above implications are equivalent in the discrete setting,
we do not know whether any of the reverse implications holds in the metric setting. The
most relevant notion seems to be the existence of a big Ramsey colouring as, in the dis-
crete setting, it is the closest to Zucker’s condition for getting interesting dynamical con-
sequences [20]. Also, in all metric examples for which we have been able to prove the
existence of a universal compactum, we could also prove the existence of a big Ramsey
colouring.

We end this section mentioning that, by endowing discrete structures with the metric
where any two distinct points are at distance 1, we can “embed” the classical discrete
setting for big Ramsey degrees in our metric setting, thus making the discrete setting a
particular case of the metric setting.
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3 Banach spaces
In this section we study big Ramsey degrees of the spaces `p and c0. Instead of colouring
(linear isometric) embeddings of finite-dimensional subspaces into the whole space, we will
equivalently colour finite tuples of elements of its unit sphere, which makes the presentation
easier. Given a Banach space X and d > 1, the set (SX)

d will be endowed with the
supremum distance. We denote by Emb(X) the monoid of all linear isometric embeddings
of X into itself.

For 1 6 p < ∞ and a sequence x : N → R, we let ‖x‖p :=
(∑

n∈N |x(n)|p
) 1

p , and
‖x‖∞ := supn∈N |x(n)|; and for 1 6 p 6 ∞, we denote by `p the Banach space of all
sequences x : N → R such that ‖x‖p < ∞, endowed with the norm ‖ · ‖p. The space c0 is
a particular subspace of `∞.

Gowers’ theorem 1.1 is equivalent to saying that the action Emb(c0) y Sc0 admits a big
Ramsey degree which is a singleton. However, the situation is different in higher arities.
To see this, colour a pair (x, y) ∈ S2

c0
of disjointly supported vectors by the number of

times their supports intertwine. Then every block-subspace of c0 meets an infinite number
of colours. While this “colouring” is neither Lipschitz nor compactum-valued, the idea can
be developed to prove the following result.

Theorem 3.1. Let d > 2. Then the action Emb(c0) y (Sc0)
d does not admit a universal

compactum.

As mentioned in the introduction, Odell and Schlumprecht [18] proved that the sepa-
rable Hilbert space `2 does not satisfy an analogue of Theorem 1.1. In fact, their paper
immediately implies a stronger conclusion.

Theorem 3.2. Let d > 1 and 1 6 p < ∞. Then the action Emb(`p) y (S`p)
d does not

admit a universal compactum.

This means that for an optimal version of the Odell–Schlumprecht theorem (if it exists),
a theory of noncompact big Ramsey degrees would be needed; we believe that such a theory
can be developed, and keep it in mind for a future project.

We now turn to `∞. In the rest of this section, we fix d > 1 and consider the action
Emb(`∞) y (S`∞)d. Classical arguments from Banach space theory show that, even when
d = 1, this action does not admit a universal compactum. However, the proof involves a
diagonal argument based on the Axiom of Choice. In such cases, imposing a definability
restriction on colourings often allows one to get positive results (see e.g. [19]). The right
topology is the weak-* topology (here, we refer to the one we get when seeing `∞ as the
dual of `1). We can then define the notions of a definable big Ramsey degree and a definable
big Ramsey colouring for the above action by considering, in Definitions 2.3 and 2.4, only
colourings that are Borel, or even Suslin–measurable, when (S`∞)d is endowed with the d-th
power of the weak-* topology. All results stated in Section 2 remain valid for these definable
notions, and it turns out that we can prove the existence of a definable big Ramsey colouring
for the action Emb(`∞) y (S`∞)d. In order to state our result, preliminary definitions are
needed.
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Put Bd := [−1, 1]d, endowed with the supremum metric. The entries of a tuple x ∈
(S`∞)d will be denoted by x1, . . . , xd. We use a functional notation for elements of `∞, so
that for n ∈ N and i ∈ [d], the n-th entry of the vector xi will be denoted by xi(n). We
can finally let, for each n ∈ N, x(n) be the d-tuple (x1(n), . . . , xd(n)); it is an element of
Bd. In this way, elements of (S`∞)d can be seen as maps N → Bd. If X is a metric space,
denote by K(X) the set of all nonempty compact subsets of X, and endow it with the
Hausdorff metric dH defined by dH(K,L) := max(supx∈K d(x, L), supy∈L d(y,K)). Denote
by SCK(Bd) the set of all nonempty symmetric, convex and compact subsets of Bd, and
see it as a metric subspace of K(Bd). If A ⊆ Bd, denote by sc(A) the symmetric convex
hull of the set A.

Definition 3.3. A d-pumpkin is a compact subset P ⊆ SCK(Bd) such that {0} ∈ P , there
exists C ∈ P such that for all i ∈ [d], proji(C) = [−1, 1], and the inclusion induces a
dense linear order on P . We denote by Pumd the set of all d-pumpkins, seen as a subset
of K(SCK(Bd)).

A d-pumpkin can be seen as a continuously growing symmetric compact convex subset
of Bd, starting at {0} and such that the final step of the evolution touches all faces of the
cube Bd. It can be shown that the metric space Pumd is compact.

Definition 3.4. For x ∈ (S`∞)d, let:

PPd(x) :=
{
sc{x(0), . . . , x(n− 1), tx(n)}

∣∣∣n ∈ N, t ∈ [0, 1]
}
∪
{
sc{x(n) | n ∈ N}

}
.

This defines a definable colouring PPd := (S`∞)d → Pumd.

Intuitively, sets sc{x(0), . . . , x(n − 1)}, n ∈ N, must be steps of the evolution of the
pumpkin PPd(x), and the set sc{x(n) | n ∈ N} must be its final step. Between those steps,
we “fill in the holes” in an affine way.

Theorem 3.5. PPd is a definable big Ramsey colouring of the action Emb(`∞) y (S`∞)d.
In particular, Pumd is the definable big Ramsey degree of this action.

It is easy to see that Pum1 is a singleton. Thus, as a corollary of Theorem 3.5, we get
the following oscillation stability result for `∞, analogous to Theorem 1.1.

Corollary 3.6. Let K be a compactum and χ : S`∞ → K be a Lipschitz map that is also
Borel (or Suslin-measurable) for the weak-* topology. Then for every ε > 0, there exists a
linear isometric copy X of `∞ in itself such that diam(χ(SX)) 6 ε.

The proof of Theorem 3.5 is based on the Carlson–Simpson theorem. The natural
presentation of S`∞ as a set of infinite words over the alphabet [−1, 1] makes its use
particularly simple. Another ingredient in the proof is an analysis of the form of linear
isometric copies of `∞ in itself, based on elementary Banach space theoretic tools.



Big Ramsey Degrees in the Metric Setting 140

4 The Urysohn sphere
Recall that S is the Urysohn sphere. As for Banach spaces, we will consider colourings
of tuples from S rather than embeddings of finite substructures. For each d > 1, endow
the d-th power Sd with the supremum metric. Denote by Emb(S) the monoid of all (non-
necessarily surjective) isometries of S into itself.

Theorem 4.1. For every d > 1, the action Emb(S) y Sd admits a big Ramsey colouring.

Our proof method is based on ideas developed in [3] for proving finiteness of the big
Ramsey degrees of discrete versions of the Urysohn sphere. We don’t work directly on
S itself but on a metric space T that is bi-embeddable with it. This metric space is
a well-enough behaved space of sequences, allowing us the use of the Carlson–Simpson
theorem. Our proof allows us to recover the fact that the big Ramsey degree of the action
Emb(S) y S is a singleton, thus giving a new and short proof of Theorem 1.2, based on
very different tools than the original proof. However, as soon as d > 1, part of our proof
relies on a non-constructive argument, and we are currently not able to characterize the
big Ramsey degree completely. We are only able to give an upper bound of the big Ramsey
degree in the sense of the quasiordering 6, as a quotient of Td by an action of the monoid
of rigid surjections N→ N.

Acknowledgements. The authors greatly benefited from useful discussions with A. Bar-
toš and S. Todorcevic in writing the present paper.
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Abstract

We prove that for any ε > 0, for any large enough t, there is a graph G that admits
no Kt-minor but admits a (32 − ε)t-colouring that is “frozen” with respect to Kempe
changes, i.e. any two colour classes induce a connected component. This disproves
three conjectures of Las Vergnas and Meyniel from 1981.
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1 Introduction
In an attempt to prove the Four Colour Theorem in 1879, Kempe [7] introduced an ele-
mentary operation on the colourings1 of a graph that became known as a Kempe change.
Given a k-colouring α of a graph G, a Kempe chain is a maximal bichromatic component2.
A Kempe change in α corresponds to swapping the two colours of a Kempe chain so as to
obtain another k-colouring. Two k-colourings are Kempe equivalent if one can be obtained
from the other through a series of Kempe changes.
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1Throughout this paper, all colourings are proper, i.e. no two vertices with the same colour are adjacent.
2If a vertex of G is coloured 1 and has no neighbour coloured 2 in α, then it forms a Kempe chain of

size 1.
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The study of Kempe changes has a vast history, see e.g. [13] for a comprehensive
overview or [3] for a recent result on general graphs. We refer the curious reader to the rel-
evant chapter of a 2013 survey by Cereceda [19]. Kempe equivalence falls within the wider
setting of combinatorial reconfiguration, which [19] is also an excellent introduction to.
Perhaps surprisingly, Kempe equivalence has direct applications in approximate counting
and applications in statistical physics (see e.g. [15, 14] for nice overviews). Closer to graph
theory, Kempe equivalence can be studied with a goal of obtaining a random colouring by
applying random walks and rapidly mixing Markov chains, see e.g. [20].

Kempe changes were introduced as a mere tool, and are decisive in the proof of Vizing’s
edge colouring theorem [21]. However, the equivalence class they define on the set of k-
colourings is itself highly interesting. In which cases is there a single equivalence class?
In which cases does every equivalence class contain a colouring that uses the minimum
number of colours? Vizing conjectured in 1965 [22] that the second scenario should be true
in every line graph, no matter the choice of k. Despite partial results [1, 2], this conjecture
remains wildly open.

In the setting of planar graphs, Meyniel proved in 1977 [12] that all 5-colourings form a
unique Kempe equivalence class. The result was then extended to all K5-minor-free graphs
in 1979 by Las Vergnas and Meyniel [11]. They conjectured the following, which can be
seen as a reconfiguration counterpoint to Hadwiger’s conjecture, though it neither implies
it nor is implied by it.

Conjecture 1.1 (Conjecture A in [11]). For every t, all the t-colourings of a graph with
no Kt-minor form a single equivalence class.

They also proposed a related conjecture that is weaker assuming Hadwiger’s conjecture
holds.

Conjecture 1.2 (Conjecture A’ in [11]). For every t and every graph with no Kt-minor,
every equivalence class of t-colourings contains some (t− 1)-colouring.

Here, we disprove both Conjectures 1.1 and 1.2, as follows.

Theorem 1.3. For every ε > 0 and for any large enough t, there is a graph with no
Kt-minor, whose (3

2
− ε)t-colourings are not all Kempe equivalent.

In fact, we prove that for every ε > 0 and for any large enough t, there is a graph G
that does not admit a Kt-minor but admits a (3

2
− ε)t-colouring that is frozen; Any pair

of colours induce a connected component, so that no Kempe change can modify the colour
partition. To obtain Theorem 1.3, we then argue that the graph admits a colouring with
a different colour partition. The notion of frozen k-colouring is related to the notion of
quasi-Kp-minor, introduced in [11]. A graph G admits aKp-minor if it admits p non-empty,
pairwise disjoint and connected bags B1, . . . , Bp ⊂ V (G) such that for any i 6= j, there is an
edge between some vertex in Bi and some vertex in Bj. For the notion of quasi-Kp-minor,
we drop the restriction that each Bi should induce a connected subgraph of G, and replace
it with the condition that for any i 6= j, the set Bi ∪ Bj induces a connected subgraph of
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G. If the graph G admits a frozen p-colouring, then it trivially admits a quasi-Kp-minor3,
while the converse may not be true. If all p-colourings of a graph form a single equivalence
class, then either there is no frozen p-colouring or there is a unique p-colouring of the
graph up to colour permutation. The latter situation in a graph with no Kp-minor would
disprove Hadwiger’s conjecture, so Las Vergnas and Meyniel conjectured that there is no
frozen p-colouring in that case. Namely, they conjectured the following.

Conjecture 1.4 (Conjecture C in [11]). For any t, any graph that admits a quasi-Kt-minor
admits a Kt-minor.

Conjecture 1.4 was proved for increasing values of t, and is now known to hold for
t ≤ 10 [5, 16, 10]. As discussed above, we strongly disprove Conjecture 1.4 for large t. It
is unclear how large t needs to be for a counter-example.

Theorem 1.5. For every ε > 0 and for any large enough t, there is a graph G that admits
a quasi-Kt-minor but does not admit a K( 2

3
+ε)t-minor.

We later became aware a similar construction already appeared in [4].
Trivially, every graph that admits a quasi-K2t-minor admits a Kt-minor. We leave the

following two open questions, noting that 2
3
≥ c ≥ 1

2
and c′ ≥ 3

2
.

Question 1.6. What is the infimum c such that for any large enough t, there is a graph G
that admits a quasi-Kt-minor but no Kct-minor?

Question 1.7. Is there a constant c′ such that for every t, all the c′ · t-colourings of a graph
with no Kt-minor form a single equivalence class?

In the 1980’s, [8, 9] and [17] proved independently that a graph with no Kt-minor has
degeneracy O(t

√
log t), since improved only by a constant factor [18, 23, 6]. Since all the

k-colorings of d-degenerate graphs are equivalent for k > d [11], this gives the best upper
bound known so far for Question 1.7.

2 Construction
Let n ∈ N and let η > 0. We build a random graph Gn on vertex set {a1, . . . , an,
b1, . . . , bn}: for every i 6= j independently, we select one pair uniformly at random among
{(ai, aj), (ai, bj), (bi, aj), (bi, bj)} and add the three other pairs as edges to the graph Gn.

Note that the sets {ai, bi}1≤i≤n form a quasi-Kn-minor, as for every i 6= j, the set
{ai, bi, aj, bj} induces a path on four vertices in Gn, hence is connected.

Our goal is to argue that if n is sufficiently large then with high probability the graph
Gn does not admit anyK( 2

3
+η)n-minor. This will yield Theorem 1.5. To additionally obtain

Theorem 1.3, we need to argue that with high probability, Gn admits an n-colouring with
a different colour partition than the natural one, where the colour classes are of the form
{ai, bi}. Informally, we can observe that each of {a1, . . . , an} and {b1, . . . , bn} induces a

3One bag for each colour class.
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graph behaving like a graph in Gn, 3
4
(i.e. each edge exists with probability 3

4
) though the

two processes are not independent. This argument indicates that χ(Gn) = O( n
logn

), but
we prefer a simpler, more pedestrian approach.

Assume that for some i, j, k, `, none of the edges aibj, ajbk, akb` and a`bi exist. Then
the graph Gn admits an n-colouring α where α(ap) = α(bp) = p for every p 6∈ {i, j, k, `}
and α(ai) = α(bj) = i, α(aj) = α(bk) = j, α(ak) = α(b`) = k and α(a`) = α(bi) = `
(see Figure 1). Since every quadruple (i, j, k, `) has a positive and constant probability of
satisfying this property, Gn contains such a quadruple with overwhelmingly high probability
when n is large.

Figure 1: A different n-colouring given an appropriate quadruple.

We are now ready to prove that the probability that Gn admits a K( 2
3
+η)n-minor tends

to 0 as n grows to infinity. We consider three types of Kp-minors in G, depending on the
size of the bags involved. If every bag is of size 1, we say that it is a simple Kp-minor – in
fact, it is a subgraph. If every bag is of size 2, we say it is a double Kp-minor. If every bag
is of size at least 3, we say it is a triple Kp-minor. We prove three claims, as follows.

Claim 2.1. For any ε > 0, P(Gn contains a simple Kεn-minor)→ 0 as n→∞.

Claim 2.2. For any ε > 0, P(Gn contains a double Kεn-minor)→ 0 as n→∞.

Claim 2.3. Gn does not contain a triple K 2
3
n+1-minor.

Claims 2.1, 2.2 and 2.3 are proved in Sections 2.1, 2.2 and 2.3, respectively. If a graph
admits a Kp-minor, then in particular it admits a simple Ka-minor, a double Kb-minor and
a triple Kc-minor such that a + b + c ≥ p. Combining Claims 2.1, 2.2 and 2.3, we derive
the desired conclusion.
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2.1 No large simple minor

Proof of Claim 2.1. Let S be a subset of k vertices of Gn. The probability that S induces
a clique in Gn is at most

(
3
4

)(k2). Indeed, if {ai, bi} ⊆ S for some i, then the probability
is 0. Otherwise, |S ∩ {ai, bi}| ≤ 1 for every i, so we have G[S] ∈ Gk, 3

4
, i.e. edges exist

independently with probability 3
4
. Therefore, the probability that S induces a clique is(

3
4

)(k2). By union-bound, the probability that some subset on k vertices induces a clique is

at most
(
2n
k

)
·
(
3
4

)(k2). For any ε > 0, we note that
(
2n
εn

)
≤ 22n. Therefore, the probability

that Gn contains a simple Kεn-minor is at most 22n ·
(
3
4

)(εn2 ), which tends to 0 as n grows
to infinity. y

2.2 No large double minor

Proof of Claim 2.2. Let S ′ be a subset of k pairwise disjoint pairs of vertices in Gn such
that for every i, at most one of {ai, bi} is involved in S ′.

We consider the probability that Gn/S′ induces a clique, where Gn/S′ is defined as
the graph obtained from Gn by considering only vertices involved in some pair of S ′ and
identifying the vertices in each pair.

We consider two distinct pairs (x1, y1), (x2, y2) of S ′. Without loss of generality, {x1, x2,
y1, y2} = {ai, aj, ak, a`} for some i, j, k, `. The probability that there is an edge between
{x1, y1} and {x2, y2} is 1 −

(
1
4

)4. In other words, P(E((x1, y1), (x2, y2)) = ∅) =
(
1
4

)4 and
since at most one of {ai, bi} is involved in S ′ for all i, all such events are mutually inde-

pendent. Therefore, the probability that S ′ yields a quasi-K|S′|-minor is
(
1−

(
1
4

)4)(|S′|
2 ).

For any ε′ > 0, the number of candidates for S ′ is at most
(

2n
2ε′n

)
(the number of choices

for a ground set of 2ε′n vertices) times (2ε′n)! (a rough upper bound on the number of
ways to pair them). Note that

(
2n
2ε′n

)
· (2ε′n)! ≤ (2n)2ε

′n. We derive that the probability

that there is a set S ′ of size ε′n such that Gn/S′ = K|S′| is at most (2n)2ε′n ·
(
1−

(
1
4

)4)(ε′n2 ),
which tends to 0 as n grows large.

Consider a double Kk-minor S of Gn. Note that no pair in S is equal to {ai, bi} (for any
i), as every bag induces a connected subgraph in Gn. We build greedily a maximal subset
S ′ ⊆ S such that S ′ involves at most one vertex out of every set of type {ai, bi}. Note
that |S ′| ≥ |S|

3
. By taking ε′ = ε

3
in the above analysis, we obtain that the probability that

there is a set S of εn pairs that induces a quasi-K|S|-minor tends to 0 as n grows large. y

2.3 No large triple minor

Proof of Claim 2.3. The graph Gn has 2n vertices, and a triple Kk-minor involves at least
3k vertices. It follows that if Gn contains a triple Kk-minor then k ≤ 2n

3
. y
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Abstract

We study the Localization game on locally finite graphs and trees, where each
vertex has finite degree. As in finite graphs, we prove that any locally finite graph
contains a subdivision where one cop can capture the robber. In contrast to the finite
case, for n a positive integer, we construct a locally finite tree with localization num-
ber n for any choice of n. Such trees contain uncountably many ends, and we show
this is necessary by proving that graphs with countably many ends have localization
number at most 2. We finish with questions on characterizing the localization number
of locally finite trees.
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Pursuit-evasion games are most commonly studied on finite graphs, but various studies
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graphs, where the degree of each vertex is finite. Unlike in the finite case, the robber may
avoid capture in locally finite graphs by moving along an infinite path.

The Localization game was first introduced for one cop by Seager [16, 17], and was
subsequently studied in several papers such as [1, 4, 5, 7, 8, 9]. The game consists of two
players playing on a graph. One player controls a set of k cops and the other controls
a single robber. The players play over a sequence of discrete time-steps; a round of the
game is a move by the cops and the subsequent move by the robber. The players move on
alternate time-steps, with the robber going first. The robber occupies a vertex of the graph,
and when the robber is ready to move during a round, they may move to a neighboring
vertex or remain on their current vertex. The cops’ move is a placement of cops on a set
of vertices. Note that the cops are not limited to moving to neighboring vertices. In each
round, the cops occupy a set of vertices u1, u2, . . . , uk, and each cop sends out a cop probe.
Each cop probe returns the distance from ui to the robber. The cops win if they have a
strategy to determine, after a finite number of rounds, the location of the robber, at which
time we say that the cops capture the robber. We assume the robber is omniscient, in the
sense that they know the entire strategy for the cops. The robber wins by evading capture
indefinitely. For a graph G, the localization number of G, written ζ(G), is the smallest
cardinal for which k cops have a winning strategy. As locally finite graphs are countable,
ζ(G) is either a positive integer or the first infinite cardinal, ℵ0.

We present new results on the localization number of locally finite (that is, every vertex
has finitely many neighbors) graphs and trees, paying particular attention to whether
results persist or change from the finite case. As in finite graphs, we prove that any locally
finite graph contains a subdivision where one cop can capture the robber. In contrast
to the finite case, we construct a locally finite tree with localization number n for any
choice of n, where n is a positive integer or ℵ0. These constructions contain uncountably
many “infinite branches” or ends. We show that, as in the finite case, trees with countably
many ends have localization number of at most two. We close with open questions about
characterizing the localization number of locally finite trees.

All graphs considered are simple, connected, and locally finite. The reader is directed
to [2, 11] for additional background on graph theory and infinite graphs.

2 Results
Although determining the localization number for general graphs is NP-hard [7], the fol-
lowing theorem of Seager characterizes the Localization game on finite trees. Let T3 be the
tree depicted in Figure 1.

Figure 1: The graph T3.
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Theorem 1 ([17]). If T is a finite tree, then ζ(T ) = 1 if and only if T is T3-free, and
otherwise, ζ(T ) = 2.

The Localization game on locally finite trees has received far less attention. While
proving a result for finite graphs, Haselgrave, Johnson, and Koch gave the first theorem
extending the Localization game to an infinite tree.

Theorem 2 ([13]). The infinite ∆-regular tree T∆ satisfies ζ(T∆) ≥ b∆2

4
c.

As a consequence of Theorems 1 and 2, we note that locally finite trees offer a richer
spectrum of localization numbers than finite trees. In our first contribution, we show that
for any choice of n, including ℵ0, there is a locally finite tree with localization number n.

Theorem 3. If n is a positive integer or n = ℵ0, then there is a locally finite tree T with
ζ(T ) = n.

While the full proof of Theorem 3 will be given in the full paper, we sketch it here.
Fix n > 2 an integer. For locally finite trees T with ζ(T ) = n, consider the subdivision of
the infinite n(n − 1)-regular tree, where each edge is subdivided n − 1 times. A set of n
cops can spend n− 1 rounds determining which subtree contains the robber. This allows
them to move n vertices towards the robber, who can only move n − 1 away, so the cops
eventually overtake and capture the robber. The robber can evade n − 1 cops by playing
on an unprobed branch for at least n rounds. This guarantees the robber can choose any
fixed distance d to stay from every probe, avoiding capture. For the case of n = ℵ0, note
that Theorem 2 allows us to construct a graph on which the robber can evade any finite
number of cops.

Theorem 2 tells us the infinite n(n−1)-regular tree requires Ω(n4) cops, but subdividing
reduced the number of required cops to n. This technique was studied in finite graphs,
where it is known that every finite graph G has a subdivision G′ such that ζ(G′) = 1;
see [10]. An analogous result holds for locally finite graphs.

Theorem 4. For every locally finite graph G, there is a subdivision G′ of G such that
ζ(G′) = 1.

Unlike in the approach given in [10] in the finite case, we subdivide different edges a
different number of times. We defer the complete proof to the full paper.

Locally finite trees have infinite paths where the robber may evade capture. Bearing
this in mind, we use the setting of ends to formalize our approach to the localization
number of locally finite trees. A ray is an infinite one-way path. An end is an equivalence
class of rays with the property that for any finite set of vertices S, each equivalent ray is in
the same component of G− S. Different ends can be separated by removing finitely many
vertices, matching our concept of separate infinite branches. The theory of ends in general
locally finite graphs is complex (see [11]); in the context of locally finite trees, however,
we may view an end as an infinite branch of the tree with finite subtrees attached to each
vertex.
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The locally finite trees considered so far all contain the infinite binary tree as a minor,
and such graphs have uncountably many ends. Containing the infinite binary tree as a
minor is equivalent to having uncountably-many ends [11].

In the full paper, we will prove the following.

Theorem 5. If T is a locally finite tree with finitely many ends, then ζ(T ) ≤ 2.

Perhaps surprisingly, two cops still have a winning strategy in case there are countably
many ends.

Theorem 6. If T is a locally finite tree with countably many ends, then ζ(T ) ≤ 2.

For the proof of Theorem 6, we use transfinite induction on a certain ordinal labeling
of ends. The base case for the induction uses Theorem 5.

Proof. Given a locally finite rooted tree T and the corresponding tree order where for
u, v ∈ V (T ), u < v if and only if u is on the unique path from v to the root, a recursive
pruning is a labeling of the vertices of T by ordinals where the collection of vertices that
receive ordinal α are those which, after removing all vertices with label β < α, have up-
closures that form chains. In other words, after pruning all vertices labeled so far, assign
label α to all vertices after the point where any path or ray starting at the root stops
branching. We let Tα be the tree resulting from pruning all vertices with label β < α, and
note that the process of recursive pruning ensures Tα is connected for all α.

For more background on recursive prunings, we direct the reader to [11, Chapter 8].
Trees have a recursive pruning if and only if they do not contain a subdivision of the infinite
binary tree [11, Proposition 8.5.1]; such trees are the only examples of “infinite branching”
where some vertices cannot be labeled. Thus, every rooted tree with countably many ends
has a recursive pruning.

Consider an ordinal labeling of the vertices of T by a recursive pruning. Each end of
T contains a ray such that the labels of vertices along that ray are weakly decreasing;
otherwise, there would be some α for which Tα is not connected. Since decreasing sets of
ordinals are finite, each such ray only contains vertices with finitely many labels, and thus,
among those labels that occur infinitely often, one must be largest. If ε is an end of T ,
then we call the largest label that occurs infinitely often on the corresponding ray the end
label of ε.

We claim that if an ordinal α is the supremum of the end labels among the (possibly
countably many) ends of T , then there are finitely many ends with end label α. After
pruning vertices that received label α, the resulting tree Tα+1 is connected. If Tα+1 is
empty, then Tα contained no vertices of degree greater than two and thus contained at
most two ends, each of which had end label α. If Tα+1 contains finitely many vertices,
then as T is locally finite, each vertex was adjacent to finitely many rays where each vertex
received label α, and so there are finitely many such ends. Finally, if Tα+1 contains infinitely
many vertices, it must contain an end [11, Proposition 8.2.1], and the vertices on that end
must receive a label larger than α, so α was not the supremum of the end labels.
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We next show that the supremum α of the end labels is in fact a maximum. Let
α1, α2, . . . infinite be a strictly increasing sequence of ordinals such that there are ends
ε1, ε2, . . . where εi has end label αi. We will show there is at least one end with end label
β such that for all i, β > αi; therefore, every infinite chain of increasing end labels has a
maximal element. By Zorn’s lemma, T has an end with maximum end label.

To find an end with end label β, first note that for every end εi, we can find an infinite
ray ri beginning at some arbitrarily chosen root of T , say v0, which belongs to the end
εi. As T is locally finite, v0 has finitely many neighbors. One of these neighbors say v1,
must be contained in ri for infinitely many i. We repeat this compactness-type argument
to find a ray v0v1 · · · such that each vertex is contained in infinitely many of the ri. Each
vi must, therefore, receive a label larger than each αi. Hence, the end containing this ray
must have end label β > αi for each i.

We prove that two cops have a winning strategy by transfinite induction on the largest
end label in the recursive pruning of T . For the base case, if T contains no ends, or if the
largest end label is 1, then given that there are finitely many ends with end label 1, the
result follows from Theorem 5.

Assume now that the theorem holds if the largest end label is strictly less than α and
let T be a tree with the largest end label α. By implementing a strategy similar to that
used to prove Theorem 5, two cops repeatedly restrict the robber’s access to ends with
label α until the robber is trapped on a subgraph with ends which have label less than
α. At this point, the cops have a winning strategy by the induction hypothesis, and the
theorem follows.

3 Further Directions
Given Theorem 6, it is natural to ask if there is a version of Theorem 1 for locally finite
trees with countably many ends. Unlike in the finite case, T3 is not the only obstruction
to a locally finite tree having localization number one. One example is the doubly infinite
comb graph T∞

1 consisting of a double ray with a leaf attached to each vertex; see Figure 2.

· · · · · ·

Figure 2: The graph T∞
1 .

The tree T∞
1 is locally finite, T3-free tree satisfying ζ(T∞

1 ) = 2. We may show that the
tree T∞

1 is minimal in the sense that deleting any edge results in a tree T with ζ(T ) = 1.
An interesting problem is determining the minimal locally finite trees with countable (or
even finite) ends and localization number 2.
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Abstract

Inspired by a width invariant on permutations defined by Guillemot and Marx,
Bonnet, Kim, Thomassé, and Watrigant introduced the twin-width of graphs, which
is a parameter describing its structural complexity. This invariant has been further
extended to binary structures, in several (basically equivalent) ways. We prove that
a class of binary relational structures (that is: edge-colored partially directed graphs)
has bounded twin-width if and only if it is a first-order transduction of a proper per-
mutation class. As a by-product, we show that every class with bounded twin-width
contains at most 2O(n) pairwise non-isomorphic n-vertex graphs.
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1 Introduction
In this paper we consider the graph parameter twin-width, defined by Bonnet, Kim,
Thomassé and Watrigant [6] as a generalization of an invariant for classes of permuta-
tions defined by Guillemot and Marx [9]. Twin-width was recently studied intensively in
the context of many structural and algorithmic questions, such as FPT model checking [6],
graph enumeration [3], graph coloring [4], and structural properties of matrices and ordered
graphs [5].
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Many well-studied classes of graphs have bounded twin-width: planar graphs, and more
generally, any class of graphs excluding a fixed minor, cographs, and more generally, any
class of bounded clique-width, etc.

The twin-width of graphs was originally defined using a sequence of ‘near-twin’ vertex
contractions or identifications. Roughly speaking, twin-width measures the accumulated
error (recorded via the so-called ‘red edges’) made by the identifications. To help the reader
start forming intuitions, we give a concise definition of the twin-width of a graph.

A trigraph is a graph with some edges colored red (while the rest of them are black).
A contraction (or identification) consists of merging two (non-necessarily adjacent) vertices,
say, u, v into a vertex w that is adjacent to a vertex z via a black edge if uz and vz were
black edges, or otherwise, via a red edge if at least one of u and v were adjacent to z. The
rest of the trigraph does not change. A contraction sequence of an n-vertex graph G is a
sequence of trigraphs G = Gn, . . . , G1 such that Gi is obtained from Gi+1 by performing
one contraction (observe that G1 is the 1-vertex graph). A d-sequence is a contraction
sequence where all the trigraphs have red degree at most d. The twin-width of G is then
the minimum integer d such that G admits a d-sequence. See Figure 1 for an example of
a graph admitting a 2-sequence.
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Figure 1: A 2-sequence witnessing that the initial graph has twin-width at most 2.

Our main result deals with relational structures in a way which is consistent (for bound-
edness) with other definitions used in the literature (see [6], for example).

We show that twin-width can be concisely expressed by special structures, which we
call twin-models. Twin-models are rooted trees augmented by a set of transversal edges
that satisfies two simple properties: minimality and consistency. These properties imply
that every twin-model admits a ranking, from which we can compute a width. The twin-
width of a structure then coincides with the optimal width of a ranked twin-model of the
structure. While this connection is technical, twin-models provide a simple way to handle
classes of binary structures with bounded twin-width. Note that an informal precursor of
ranked twin-models appears in [4] in the form of the so-called ordered union trees and the
realization that the edge set of graphs of twin-width at most d can be partitioned into Od(n)
bicliques where both sides of each biclique are a discrete interval along a unique fixed vertex
ordering. The main novelty in the (ranked) twin-models lies in the axiomatization of legal
sets of transversal edges, which is indispensable to their logical treatment.

This paper is a combination of model-theoretic tools (relational structures, interpre-
tations, transductions), structural graph theory and theory of permutations. Here, by a
permutation, we mean a relational structure consisting of two linear orders on the same set
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(see [1] for a discussion on representations of permutations). Note that this type of repre-
sentation is particularly adapted to the study of patterns in permutations. The following
is the main result of this paper:
Theorem. A class of binary relational structures has bounded twin-width if and only if it
is a first-order transduction of a proper permutation class.

We recall that a proper permutation class is a set of permutations closed under sub-
permutations that excludes at least one permutation. Transductions provide a model
theoretical tool to encode relational structures (or classes of relational structures) inside
other (classes of) relational structures.

The fact that any class of graphs with bounded twin-width is just a transduction of a
very simple class (a proper permutation class) is surprising at first glance, and it nicely
complements another model theoretic characterization of classes of bounded twin-width:
a class of graphs has bounded twin-width if and only if it is the reduct of a dependent
class of ordered graphs [5]. It can also be thought of as scaling up the fact that classes
of bounded rank-width coincide with transductions of tree orders, and classes of bounded
linear rank-width, with transductions of linear orders [8]. On the other hand, twin-models
are interesting objects per se and in a way present one of the most permissive forms of
width parameters related to trees. Note that for other classes of sparse structures (such
as nowhere dense classes or classes with bounded expansion) we do not have such concrete
models.

The main result implies that every relational structure on n elements from a class with
bounded twin-width can be encoded in a permutation on at most kn elements for some
number k. It is then a consequence of [10] that every class of relational structures with
bounded twin-width contains at most cn non-isomorphic structures with n vertices, hence
is small (i.e., contains at most cn n! labeled structures with n elements). This extends
the main result of [3] while not using the “versatile twin-width” machinery (but only the
preservation of bounded twin-width by transductions proved in [6]). This also extends a
similar property for proper minor-closed classes of graphs, which can be derived from the
boundedness of book thickness, as noticed by McDiarmid (see the concluding remarks of
[2]).

The proof of our main result is surprisingly complex and proceeds in several steps,
which perhaps add new aspects to the rich spectrum of structures related to twin-width.
The basic steps can be outlined as follows (the relevant terminology is formally introduced
in the full version of the paper [7]).

We start with a class C0 of binary relational structures with bounded twin-width. We
derive a class T of twin-models (tree-like representations of the structures using rooted
binary trees and transversal binary relations). Replacing the rooted binary trees of the
twin-models by binary tree orders, we get a class F of so-called full twin-models, which we
prove has bounded twin-width. This class can be used to retrieve C0 as a transduction, that
is by means of a logical encoding. Using a transduction pairing (generalizing the notion
of a bijective encoding) between binary tree orders O and rooted binary trees ordered by
a preorder Y < we derive a transduction pairing of the class of full twin-models F with
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a class T < of ordered twin-models. From the property that the class G of the Gaifman
graphs of the twin-models in T is degenerate (and has bounded twin-width), we prove a
transduction pairing of T and G , from which we derive a transduction pairing of T < and
the class G < of ordered Gaifman graphs of the ordered twin-models. As a composition of
a transduction pairing of G < with a class E < of ordered binary structures, in which each
binary relation induces a pseudoforest and a transduction pairing of E < with a class P of
permutations we define a transduction pairing of G < and P. As G < has bounded twin-
width (as it is a transduction of a class with bounded twin-width) we infer that P avoids
a least one pattern. Following the backward transductions, we eventually deduce that C0

is a transduction of the hereditary closure P of P, which is a proper permutation class.
This proof may be schematically outlined by Figure 2.
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Figure 2: Relations between the classes of structures involved in the proof of the main
result.

The full transformation of a graph G into a permutation σ and the inverse transforma-
tion (obtained as a transduction) are displayed on Figure 3 on an example.

The full version of this paper is available on [7].
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are adjacent. In particular, any maximal independent set in G is dominating. We denote
by γ(G) (resp. ι(G)) the cardinality of a minimum dominating (resp. independent domi-
nating) set of G. Note that γ(G) ≤ ι(G). Such parameters are known as the domination
number and the independent domination number of G, respectively, and their calculations
are known to be NP-complete problems even on planar bipartite graphs with maximum
degree 3 [13, Corollary 3]. Therefore, it is natural to explore such parameters in special
classes of graphs, or to look for upper and lower bounds on them.

In this paper, we focus on planar graphs, i.e., graphs that can be drawn in the plane so
that intersections of edges happen only at their ends. By a plane graph we mean a planar
graph together with a fixed planar drawing of it. For general terminology on planar graphs
we refer to the book of Diestel [3]. In particular, a planar triangulation is a plane graph in
which each face is bounded by a triangle; and a triangulated disk or a near triangulation is
a plane graph in which each face, except possibly its outer face, is bounded by a triangle.
In 1996, Matheson and Tarjan [8] proved that every triangulated disk G on n vertices
satisfies γ(G) ≤ n/3, and posed the following conjecture.

Conjecture 1 (Matheson–Tarjan, 1996). For every sufficiently large planar triangula-
tion G on n vertices, we have γ(G) ≤ n/4.

Several partial results has been proved for Conjecture 1 [6, 7, 9, 10]. The best known
general result is due to Špacapan [12], who proved that γ(G) ≤ 17n/53 for every planar
triangulation G on n ≥ 6 vertices. Related results for maximal outerplanar graphs has
been given in [2, 11].

We are interested in the analogous problem for the independent domination number:
What is the minimum ε such that ι(G) ≤ εn for every planar triangulation G on n vertices?
In contrast to the domination number, this parameter has not received so much attention
on planar triangulations. It is known that, for any planar graph G on n ≥ 10 vertices,
ι(G) < 3n/4 [5, Theorem 6] and that ι(G) ≤ n/2 if G is planar and δ(G) ≥ 2 [5,
Theorem 8]. For an excellent survey on independent dominating sets, see [4].

Now, note that since every Eulerian planar triangulation has chromatic number 3, they
contain three disjoint independent dominating sets. Goddard and Henning [5, Question 1]
asked whether such three sets exist in any planar triangulation. In particular, this would
imply that ι(G) ≤ n/3 for every n-vertex planar triangulation G. We state the later
statement as a conjecture.

Conjecture 2. For every planar triangulation G on n vertices, we have ι(G) ≤ n/3.

Our main contribution is the following theorem.

Theorem 3. For every planar triangulation G on n vertices, we have ι(G) < 3n/8. More-
over, if δ(G) ≥ 5, then ι(G) ≤ n/3.

We also show that the bound 3n/8 cannot be reduced below 2n/7, by presenting an
infinite family of planar triangulations G for which ι(G) ≥ 2n/7 (see Theorem 5). Note
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that this improves an observation of Goddard and Henning [5, Figure 6], who presented
an infinite family of planar triangulations G for which ι(G) ≥ 5n/19.

As a starting example, we prove that ι(G) ≤ 2n/5 for every planar triangulation G on n
vertices due to a relation between r-dynamic and acyclic colorings as follows. A k-coloring
of a graph G is a partition of V (G) into k independent sets. Each part in such a partition
is called a color class. A coloring of G is r-dynamic if each vertex v has neighbors in at
least min{r, d(v)} color classes, where d(v) denotes the degree of v in G; and a coloring
of G is acyclic if the union of any two of its color classes induces a forest. We use the
following result of Goddard and Henning [5, Lemma 4].

Lemma 4 (Goddard–Henning, 2020). For every graph G on n vertices with δ(G) ≥ r for
which there is an r-dynamic k-coloring, we have ι(G) ≤ (k − r)n/k.

Borodin [1] showed that every planar graph admits an acyclic 5-coloring. Let G be a
planar triangulation and χa be an acyclic 5-coloring of G. Note that δ(G) ≥ 3 and the
neighborhood of each vertex contains a cycle; hence, because χa is an acyclic coloring,
every vertex has neighbors in at least three color classes of χa. Therefore, χa is 3-dynamic
and, by Lemma 4, we have ι(G) ≤ 2n/5.

2 An improved upper bound
In this section, we prove the main theorem of this paper, Theorem 3. For that, we introduce
a concept and settle some notation. For a vertex v in G, denote byN(v) the set of neighbors
of v in G. For a vertex set S of G, denote by N(S) the set of all neighbors of vertices
in S (that may also include vertices of S), and by N [S] the closed neighborhood of S, that
is, N [S] = N(S) ∪ S.

Proof of Theorem 3. Let G be a planar triangulation on n vertices. The celebrated Four-
Color Theorem assures that there exists a 4-coloring for G [3, Theorem 5.1.1]. Let C1, C2,
C3, C4 be the color classes in such a coloring. Each Ci is an independent set. If some Ci is
empty, then each of the other color classes is non-empty and dominating. Therefore, the
smallest of the three non-empty color classes is an independent dominating set of size at
most n/3 < 3n/8.

So suppose each Ci is non-empty. For each i, let Ui be the set of vertices that are not
dominated by Ci. Note that U1, U2, U3, and U4 are pairwise disjoint, as the neighborhood
of any vertex is colored with at least two colors, distinct from the color used in the vertex.
We start by proving a stronger statement on U1, U2, U3, and U4, namely that

N [Ui] ∩ Uj = ∅ if i 6= j. (1)

Indeed, by contradiction, say v ∈ N(U1) ∩ U2. Then v ∈ C3 ∪ C4. Let u be a neighbor
of v in U1. As v ∈ U2, we conclude that u ∈ N(U2) ∩ U1, and hence u ∈ C3 ∪ C4 also.
Because G is a planar triangulation, and u and v are adjacent, u and v have a common
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neighbor, say w. Since either v ∈ C3 and u ∈ C4, or v ∈ C4 and u ∈ C3, vertex w has
either color 1 or 2, contradicting the fact that v ∈ U2 and u ∈ U1.

Let Si be an independent dominating set of G[Ui] and let S = S1∪S2∪S3∪S4. Because
each Si is a subset of Ui, by (1), the set S is independent in G. Let H = G − S, and
consider the plane embedding of H induced by G. Because G is a planar triangulation, S
is independent, and all neighbors of S are in H, each vertex of S lies in a different face
of H. Moreover, the boundary of each face of H is a cycle, hence H is connected. Note
that, for each v ∈ Ui, the set N(v) is colored with two colors. Thus, the boundary of each
face of H in which a vertex from S lies has an even number of vertices.

Let G′ be a connected plane graph on n′ vertices and m′ edges. For i ≥ 3, let fi be
the number of faces in G′ with i edges on their boundary. Then, 2m′ =

∑
i≥3 i fi and

the number of faces in G′ is f ′ =
∑

i≥3 fi. By Euler’s formula [3, Theorem 4.2.9], we have
that n′−m′+f ′ = 2, which implies that n′−(

∑
i≥3 i fi)/2+

∑
i≥3 fi = n′−

∑
i≥3

(i−2)
2

fi = 2.
Hence, f4+2

∑
i≥6 fi ≤

∑
i≥4

(i−2)
2

fi ≤
∑

i≥3
(i−2)

2
fi = n′−2. So, if G′ = H, then there are

at most f4+
∑

i≥6 fi vertices in S, because vertices of S lie in faces with an even number of
vertices on their boundary. Thus, 2|S| ≤ 2(f4+

∑
i≥6 fi) ≤ n′−2+f4. Moreover, n′+|S| = n

because H = G− S. Joining the last two inequalities, we conclude that 3|S| ≤ n− 2 + f4.
Hence, each set Ci ∪ Si is an independent dominating set and

4∑
i=1

(|Ci|+ |Si|) = n+ |S| ≤ 4n− 2 + f4
3

.

So the smallest of these four independent dominating sets has size less than n/3 + f4/12.
The number of faces in G is 2n− 4, and there are 4f4 faces of G incident to the vertices of
degree 4 in S. Therefore f4 ≤ (2n−4)/4 < n/2, and ι(G) < n/3+n/24 = 3n/8. Moreover,
if δ(G) ≥ 5, then f4 = 0 and ι(G) ≤ n/3.

3 A lower bound
As far as we know, Theorem 3 might not be tight: we do not know a family of planar
triangulations G on n vertices with ι(G) approaching 3n/8. We improve the previous
lower bound on ε given by Goddard and Henning [5, Figure 6] in the next result.

Theorem 5. There is an infinite family F of planar triangulations such that ι(G) = 2n/7
for every G ∈ F , where n is the number of vertices in G.

Proof. Consider the diamond graph depicted in Figure 1(a). Let us describe a family F of
planar triangulations using this graph. Each planar triangulation in F consists of a circular
chain of such diamond graphs, as depicted in Figure 1(b), with edges added to result in
a planar triangulation. The planar triangulation Gk obtained in this way with k diamond
graphs has n = 7k vertices. The squared vertices in Figure 1(b) show an independent
dominating set with 2k = 2n/7 vertices. Note that any independent dominating set in
such a planar triangulation Gk must contain at least two vertices in each diamond graph,
therefore ι(Gk) = 2k = 2n/7.
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(a)

(b)

...

Figure 1: (a) A gadget consisting of seven vertices: the white vertex is not part of the
gadget. Any independent dominating set has one of the red vertices, otherwise, being
independent, it cannot dominate the three red vertices. Analogously, any independent
dominating set has one of the blue vertices, otherwise it does not dominate the middle
blue vertex. (b) A graph consisting of a circular chain of gadgets. In each copy of the
gadget, two of its vertices are needed in any independent dominating set. The red squared
vertices form an independent set with exactly two vertices in each gadget.

4 Further results and concluding remarks
In this section, we explore a few families of planar triangulations for which we can obtain
better bounds on their independent domination number. A planar 3-tree is a planar trian-
gulation that can be obtained from a triangle by repeatedly choosing one of its faces and
adding a new vertex inside of it while joining this new vertex to the three vertices of the
face. It is not hard to prove that any planar 3-tree admits a 4-coloring in which each of its
color classes is dominating. Thus ι(G) ≤ n/4 for every planar 3-tree on n vertices.

As we observed before, Conjecture 2 is valid for any Eulerian planar triangulation. We
can prove a better bound for a particular class of Eulerian triangulations, which we call
recursive Eulerian triangulations, and define as follows. A recursive Eulerian triangulation
is either a triangle, or a triangulation obtained from a recursive Eulerian triangulation by
selecting a face and drawing a triangle inside of it while joining each vertex of the selected
triangle to the ends of a different edge of the new triangle.

Theorem 6. For every recursive Eulerian triangulation G on n ≥ 9 vertices, ι(G) < 13n
42

.

Finally, if every vertex of a planar triangulation G on n vertices has odd degree, then
every color class of a 4-coloring of G is dominating, hence ι(G) ≤ n/4. We can extend this
result and show that if G has at least αn odd-degree vertices, then ι(G) ≤ (2 − α)n/4,
which improves the bound in Theorem 3 when α ≥ 2/7. Also, Conjecture 2 holds for any
n-vertex planar triangulation with at least 2n/3 odd-degree vertices.
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1 Introduction
A central problem in graph theory is guaranteeing dense substructures in graphs with a
given chromatic number. Hadwiger’s Conjecture [13] is one of the most important examples
of this pursuit, stating that every loopless graph G contains the complete graph Kχ(G) as a
minor (where χ(G) is the chromatic number of G), thus aiming to generalize the Four Color
Theorem. This difficult conjecture is known to hold whenever χ(G) ≤ 6 [27], and it is open
for the remaining values. Thus, a natural approach is to study whether it holds whenever G
is restricted to a particular class of graphs. A class of graphs that has received particular
attention (and yet remains open) is that of graphs with independence number 2. A recent
survey of Seymour [28] emphasizes the importance of this case, which was first remarked
by Mader (see [24]). Plummer, Stiebitz, and Toft [24] gave an equivalent formulation of
Hadwiger’s Conjecture for such graphs: every n-vertex graph with independence number 2
contains a minor of K⌈n/2⌉. Before that, in 1982, Duchet and Meyniel [8] had shown a
result that implies that every such graph contains a minor of K⌈n/3⌉. Despite much work,
see e.g. [11, 14, 15, 32], it is still open whether there is a constant c > 1/3 such that
every graph with independence number 2 contains a minor of K⌈cn⌉. Given the difficulty
to obtain a clique minor on ⌈n/2⌉ vertices, Norin and Seymour [23] recently turned into
finding dense minors on this amount of vertices. They proved that every n-vertex graph
with independence number 2 contains a (simple) minor of a graph H on ⌈n/2⌉ vertices and
0.98688 ·

(|V (H)|
2

)
− o(n2) edges.

The focus of this paper is a conjecture related to Hadwiger’s, concerned with finding
graph immersions in graphs with a given chromatic number; this type of substructure is
defined as follows. To split off a pair of adjacent edges uv,vw amounts to deleting those
two edges and adding the edge uw. A graph G is said to contain an immersion of another
graph H if H can be obtained from a subgraph of G by splitting off pairs of edges and
deleting isolated vertices. Notice then that if G contains H as a subdivision, it contains H
as an immersion (and as a minor). Immersions have received increased attention in recent
years, see e.g. [6, 9, 20, 21, 22, 31], particularly since Robertson and Seymour [26] proved
that graphs are well-quasi-ordered by the immersion relation. Much of this attention has
been centered around the following conjecture of Abu-Khzam and Langston [1], which is
the immersion-analog of Hadwiger’s Conjecture.

Conjecture 1 (Abu-Khzam and Langston [1]). Every loopless graph G contains an im-
mersion of Kχ(G).

The above conjecture holds whenever χ(G) ≤ 4 because Hajós’ subdivision conjec-
ture holds in this case, actually giving a subdivision of Kχ(G) [7]. The cases where
χ(G) ∈ {5, 6, 7} were verified independently by Lescure and Meyniel [19] and by De-
Vos, Kawarabayashi, Mohar, and Okamura [5]. In general, a result of Gauthier, Le, and
Wollan [12] guarantees that every graph G contains an immersion of a clique on ⌈χ(G)−4

3.54
⌉

vertices. This result improves on theorems due to Dvořák and Yepremyan [10] and DeVos,
Dvořák, Fox, McDonald, Mohar, and Scheide [4].
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The case of graphs with independence number 2 has also received attention in regard
to Conjecture 1. In particular, Vergara [30] showed that, for such graphs, Conjecture 1 is
equivalent to the following conjecture.

Conjecture 2 (Vergara [30]). Every n-vertex graph with independence number 2 contains
an immersion of K⌈n/2⌉.

As evidence for her conjecture, Vergara proved that every n-vertex graph with inde-
pendence number 2 contains an immersion of K⌈n/3⌉. This was later improved by Gauthier
et al. [12], who showed that every such graph contains an immersion of K2⌊n/5⌋. This last
result was extended to graphs with arbitrary independence number [3]. Additionally, Ver-
gara’s Conjecture has been verified for graphs with small forbidden subgraphs [25]. The
main contribution of this paper is the following result, which states that graphs with in-
dependence number 2 contain an immersion of every complete bipartite graph on ⌈n/2⌉
vertices.

Theorem 3. Let G be an n-vertex graph with independence number 2, and ℓ ≤ ⌈n/2⌉ − 1
be a positive integer. Then G contains an immersion of Kℓ,⌈n/2⌉−ℓ.

Using an argument due to Plummer et al. [24] we can show that this implies the
following.

Corollary 4. Let G be a graph with independence number 2, and 1 ≤ ℓ ≤ χ(G) − 1.
Then G contains an immersion of Kℓ,χ(G)−ℓ.

This result leads us to make the following conjecture, which holds trivially when ℓ = 1.

Conjecture 5. If 1 ≤ ℓ ≤ χ(G)− 1, then G contains an immersion of Kℓ,χ(G)−ℓ.

We denote by Ka,b,c the graph that admits a partition into parts of sizes a, b, and c such
that any pair of these parts induces a complete bipartite graph. In addition to Corollary 4,
as evidence for Conjecture 5, we can prove the following strengthening of the case ℓ = 2.

Proposition 6. If χ(G) ≥ 3, then G contains K1,1,χ(G)−2 as an immersion.

We note that Conjecture 5 has its parallel in the minor order. Woodall [33] and,
independently, Seymour (see [18]), proposed the following conjecture: every graph G with
ℓ ≤ χ(G)− 1 contains a minor of Kℓ,χ(G)−ℓ. In [33], Woodall showed that (the list-coloring
strengthening of) his conjecture holds whenever ℓ ≤ 2. Kostochka and Prince [18] showed
that the case ℓ = 3 holds as long as χ(G) ≥ 6503. Kostochka [16] proved it for every ℓ as
long as χ(G) is very large in comparison to ℓ, and later [17] improved this so that χ(G)
could be polynomial in ℓ, namely, whenever χ(G) > 5(200ℓ log2(200ℓ))

3 + ℓ. In fact, the
results in [16, 17, 18] obtain the full join K∗

ℓ,χ(G)−ℓ, which is the graph obtained from the
disjoint union of a Kℓ and an independent set on χ(G) − ℓ vertices by adding all of the
possible edges between them. This and the above-cited result of Norin and Seymour leads
us to make the following conjecture.
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Conjecture 7. Let G be an n-vertex graph with independence number 2, and 1 ≤ ℓ ≤
⌈n/2⌉ − 1. Then G contains a minor of Kℓ,⌈n/2⌉−ℓ.

Note that the result of Kostochka leaves open the balanced case, thus not implying
Conjecture 7. Moreover, it is not hard to build a graph that is denser than the minor
obtained by the result of Norin and Seymour, and yet does not contain K⌊n/4⌋,⌈n/4⌉: take a
complete graph on ⌈n/2⌉ vertices and delete ⌊n/4⌋+ 1 edges incident to the same vertex.
Thus Conjecture 7 is not implied by this result either.

The rest of the paper is organized as follows. In Section 1.1 we give a few definitions
and present an interesting lemma that is used to prove Theorem 3 in Section 2. Due to
space limitations, we only present a sketch of the proof. We refer the interested reader
to [2] for its details.

1.1 Preliminaries and notation

Let G be a graph. For v ∈ V (G) and S ⊆ V (G), we define E(v, S) = {vu ∈ E(G) : u ∈ S}.
If A and B are disjoint sets, we let KA,B be the complete bipartite graph with bipartition
(A,B). A substructure (subgraph, immersion, minor, etc.) is a clique if it is a complete
graph, and is a biclique if it is a complete bipartite graph. In a manner that is equivalent
to the definition given in the introduction, we say that a graph G contains an immersion
of H if there exists an injection f : V (H) → V (G) and a collection of edge-disjoint paths
in G, one for each edge of H, such that the path Puv corresponding to the edge uv has
endpoints f(u) and f(v).

Finally, in our proof, we make use of the following lemma, which we believe to be
interesting by itself, and that we could not find in the literature.

Lemma 8. Let j ≤ k be positive integers, and let C1, . . . , Cj ⊆ [n] be sets of size k. Let A
be a set of size k disjoint from [n]. Then there are disjoint matchings M1, . . . ,Mj in KA,[n]

such that Mi matches A with Ci for every i ∈ [j].

2 Outline of the proof of Theorem 3
Indeed, we can consider graphs with independence number at most 2. The proof follows
by induction on n + ℓ. Let G be an n-vertex graph with α(G) ≤ 2 and let ℓ ≤ ⌈n/2⌉ − 1
be a positive integer. Note that the result is easy when n ≤ 4, so we can assume n ≥ 5.
Note also that it suffices to prove the statement in the case G is edge-critical, i.e., that the
removal of any edge of G increases its independence number. Now, if n ≤ 4ℓ − 2, then
⌈n/2⌉ − ℓ ≤ 2ℓ− 1− ℓ < ℓ. Thus, by induction there is an immersion of Kℓ′,⌈n/2⌉−ℓ′ in G,
where ℓ′ = ⌈n/2⌉ − ℓ. But this is the desired immersion because K⌈n/2⌉−ℓ,⌈n/2⌉−⌈n/2⌉+ℓ is
isomorphic to K⌈n/2⌉−ℓ,ℓ. Thus, from now on, we assume that n ≥ 4ℓ− 1.

Now, suppose that G contains two non-adjacent vertices, say x and y, with at least
ℓ − 1 common neighbors, and let G′ = G − x − y. If ℓ ≤ ⌈n/2⌉ − 2 = ⌈(n − 2)/2⌉ − 1,
the induction hypothesis guarantees that G′ contains an immersion of Kℓ,⌈(n−2)/2⌉−ℓ, which
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we call H ′. Otherwise, if we have ℓ = ⌈n/2⌉ − 1 we let H ′ be an arbitrary set of ℓ
vertices. Let L and B be the parts of H ′ having size ℓ and ⌈n/2⌉− 1− ℓ, respectively, and
let R = V (G′) \ (L ∪ B). As α(G) = 2, every vertex in G′ is either adjacent to x or to y
in G. This is true in particular for the vertices in L. In what follows, we add either x or y
to B, in order to obtain the desired immersion of Kℓ,⌈n/2⌉−ℓ. This is immediate if x or y is
adjacent to every vertex in L. Thus we may assume that |E(y, L)|, |E(x, L)| < ℓ. Now, let
Lx (resp. Ly) be the set of vertices in L adjacent to x but not to y (resp. to y but not to
x); Lc be the set of vertices in L adjacent to both x and y; and Oc be the set of vertices
adjacent to both x and y that are not in L. As x is adjacent to every vertex in Lx ∪ Lc,
it is enough to find (edge-disjoint) paths from x to Ly without using edges of H ′. Notice
that |Ly| + |Lc| = |E(y, L)| ≤ ℓ − 1 and that, by hypothesis, we have |Lc| + |Oc| ≥ ℓ − 1.
Thus |Oc| ≥ |Ly|. Let Oc = {o1, o2, . . . , o|Oc|} and Ly = {ℓ1, ℓ2, . . . , ℓ|Ly |}. For 1 ≤ i ≤ |Ly|,
we take the path xoiyℓi. These paths are as desired. Therefore, we may assume that
|N(u) ∩N(v)| ≤ ℓ− 2 for every pair of non-adjacent vertices u, v.

2.1 Consequences of edge-criticality

Recall that G is edge-critical, meaning that the removal of any edge uv ∈ E(G) creates an
independent set of size 3. Hence, for such an edge there is a vertex w that is not adjacent
to both u and v. We formalize this argument in the following claim.

Claim 9. For any u, v ∈ V (G), we have uv ∈ E(G) if and only if N [u] ∪N [v] ̸= V (G).

For the rest of the proof, we fix two non-adjacent vertices x and y, and partition V (G)
as follows:

▷ C = N(x) ∩N(y), the set of common neighbors of x and y;

▷ X = N [y], the set of non-neighbors of y excluding y, which contains x; and

▷ Y = N [x], the set of non-neighbors of x excluding x, which contains y.

We observe that |C| ≤ ℓ− 2, and that each of X and Y induces a complete subgraph of G,
otherwise we could find an independent set of size 3. Moreover, the edge-criticality of G
yields the following claim.

Claim 10. For every vertex a ∈ C, we have X, Y ⊈ N(a).

2.2 Key vertex sets

Let XC ⊆ X (resp. YC ⊆ Y ) be the set containing vertices v ∈ X (resp. v ∈ Y ) for which
C ⊂ N(v), and put XC = X \XC (resp. Y C = Y \ YC). Now, given a vertex a in C, we
denote by Xa (resp. Ya) the set of vertices in X (resp. in Y ) that are adjacent to a, and put
Xa = X \Xa and Y a = Y \ Ya. Notice that if v ∈ Xa and w ∈ Y a, then v and w must be
adjacent, as the independence number of G is 2. Thus we get KXa,Y a

as a subgraph of G.
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Note that XC ⊆ Xa and XC ⊇ Xa (resp. YC ⊆ Ya and Y C ⊇ Y a) for every a ∈ C. Indeed,
we have XC =

⋂
a∈C Xa (resp. YC =

⋂
a∈C Ya) and XC =

⋃
a∈C Xa (resp. Y C =

⋃
a∈C Y a).

The following claim gives bounds and relations on the sizes of some of these sets. This
control is the key to build the desired immersion.

Claim 11.

1. Given a ∈ C, we have that |XC | ≤ |Xa| ≤ ℓ−2 and |YC | ≤ |Ya| ≤ ℓ−2. Furthermore,
we have |Xa| ≥ ⌈n/2⌉ − |Y |+ 3 and |Y a| ≥ ⌈n/2⌉ − |X|+ 3.

2. For every v ∈ XC (resp. w ∈ Y C), we have |N(v) ∩ Y C | > ⌈n/2⌉ − |X| (resp.
|N(w) ∩XC | > ⌈n/2⌉ − |Y |).

2.3 Constructing the immersion

The rest of the proof is divided into two cases which depend on the sizes of XC and Y C .
The sets that form the bipartition of the immersion depend on which case we are dealing
with. The construction requires more care in the case one of XC , Y C is large, which we
sketch here. Say, without loss of generality, that |XC | ≥ ℓ. For the rest of the proof, we
fix a ∈ C. By Claim 11(1), we can choose Y ∗ ⊂ Y a with |Y ∗| = ⌈n/2⌉ − |X|, and since
|XC | ≥ ℓ, we can choose X∗ ⊂ XC \Xa with |X∗| = ℓ − |Xa|. Using Claim 11(1) again,
we can show that

|X∗| ≤ |Y ∗|. (1)

Since X, Y , and Xa ∪ Y a induce cliques, G contains all edges joining (i) vertices in Xa

to vertices in Y ∗; (ii) vertices in Xa to vertices in Xa \ X∗; and (iii) vertices in X∗ to
vertices in Xa \X∗. It remains to find edge-disjoint paths joining vertices in X∗ to vertices
in Y ∗. For these paths, we only use edges that are incident to vertices in Y and not
to vertices in Xa; this assures that they are disjoint from the edges already used. Let
X∗ = {v1, v2, . . . , v|X∗|} and Y ∗ = {y1, y2, . . . , y|Y ∗|}. The first step is to use Lemma 8
to find paths joining each vertex vi to all vertices in Y ∗ allowing edges between vertices
of Y ∗ to be used at most twice. Nevertheless, the intersections are relatively few and
with a combination of different techniques, we are able to fix them and obtain the desired
immersion.

Claim 12. For each i ∈ {1, 2, . . . , |X∗|}, there is a subgraph K(vi) which contains an
immersion of Kvi,Y ∗ and satisfies that:

i) each path of K(vi) with an endpoint in vi has length at most 2;

ii) for each path vizyj in K(vi) we have z ∈ Y C; and

iii) if i ̸= j and uw ∈ E(K(vi)) ∩ E(K(vj)), then there is no r /∈ {i, j} such that uw ∈
E(K(vr)), and one path containing uw ends at u while the other ends at w.
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Proof. Note that, since X∗ ⊆ XC , Claim 11(2) assures that for each i ∈ {1, 2, . . . , |X∗|},
we have |N(vi) ∩ Y C | > ⌈n/2⌉ − |X| = |Y ∗|. In order to use Lemma 8, we define, for
each such i, a set Ni ⊂ N(vi) ∩ Y C with |Ni| = |Y ∗|, and a set of auxiliary vertices
A = {a1, a2, . . . , a|Y ∗|} with N(aj) = Y C . By (1), we can apply Lemma 8 to N1, . . . , N|X∗|
together with A to obtain disjoint matchings M1,M2, . . . ,M|X∗| such that Mi matches A
to Ni, for i ∈ {1, . . . , |X∗|}. Let Mi = {zi,1a1, . . . , zi,|Y ∗|a|Y ∗|} where zi,j ∈ Ni for every i, j.

For each vi ∈ X∗, we obtain K(vi) by using yj whenever aj is used in a matching. In
other words, for every 1 ≤ j ≤ |Y ∗|, if zi,jaj ∈ Mi, then we use the path vizi,jyj. Notice
that zi,j could be yj itself. When that is the case, we use the path viyj. Formally, we define

P (i, j) =

{
vizi,jyj if yj ̸= zi,j

viyj if yj = zi,j .

Notice that P (i, j) may not be edge-disjoint from P (i, k) if k ̸= j, but this can only happen
if P (i, j) = viykyj and P (i, k) = viyjyk. If that is the case, we redefine P (i, j) as viyj and
P (i, k) as viyk. Thus, after doing all the necessary changes, we can assume that P (i, j) is
disjoint of P (i, k) whenever j ̸= k. Finally we define K(vi) =

⋃|Y ∗|
j=1 P (i, j) and since the

P (i, j)’s are edge disjoint each K(vi) contains an immersion of Kvi,Y ∗ and clearly satisfies
items i) and ii).

Furthermore, as M1, . . . ,M|X∗| are disjoint matchings, if uw ∈ E(K(vi))∩E(K(vj)) for
some pair i ̸= j, then it must be that u,w ∈ Y ∗. Let u = yh and w = yk. Then either
zi,h = yk or zi,k = yh. Assume, w.l.o.g., that zi,h = yk. This means that zi,hah = ykah ∈ Mi.
Thus ykah /∈ Mr for r ̸= i. This, in turn, implies that zj,k = yh, which means that yhak ∈ Mj

and yhak /∈ Mr for r ̸= j. This proves iii).

Let K(v1), . . . , K(v|X∗|) be the subgraphs given by Claim 12. We would like the vi, Y
∗-

paths on these subgraphs to be the X∗, Y ∗-paths in our immersion. Yet, if i ̸= j, K(vi)
might not be edge disjoint from K(vj). Fortunately, by Claim 12 iii) the intersections are
restricted, which we can show to be sufficient for fixing them.

References
[1] Faisal N. Abu-Khzam and Michael A. Langston. Graph coloring and the immersion

order. In Computing and combinatorics, volume 2697 of Lecture Notes in Comput.
Sci., pages 394–403. Springer, Berlin, 2003.

[2] F. Botler, A. Jiménez, C. N. Lintzmayer, A. Pastine, D. A. Quiroz, and M. Sam-
binelli. Biclique immersions in graphs with independence number 2. arXiv:2303.06483
[math.CO], 2023.

[3] Sebastián Bustamante, Daniel A. Quiroz, Maya Stein, and José Zamora. Clique im-
mersions and independence number. European J. Combin., 106:Paper No. 103550, 9,
2022.



Biclique immersions in graphs with independence number 2 176

[4] Matt DeVos, Zdeněk Dvořák, Jacob Fox, Jessica McDonald, Bojan Mohar, and Diego
Scheide. A minimum degree condition forcing complete graph immersion. Combina-
torica, 34:279–298, 2014.

[5] Matt DeVos, Ken-ichi Kawarabayashi, Bojan Mohar, and Haruko Okamura. Immers-
ing small complete graphs. Ars Math. Contemp., 3(2):139–146, 2010.

[6] Matt DeVos, Jessica McDonald, Bojan Mohar, and Diego Scheide. Immersing complete
digraphs. European J. Combin., 33(6):1294–1302, 2012.

[7] G. A. Dirac. A property of 4-chromatic graphs and some remarks on critical graphs.
J. London Math. Soc., 27:85–92, 1952.

[8] P. Duchet and H. Meyniel. On Hadwiger’s number and the stability number. Ann.
Discrete Math., 13:71–73, 1982.

[9] Zdeněk Dvořák and Paul Wollan. A structure theorem for strong immersions. J.
Graph Theory, 83(2):152–163, 2016.

[10] Zdeněk Dvořák and Liana Yepremyan. Complete graph immersions and minimum
degree. J. Graph Theory, 88(1):211–221, 2018.

[11] Jacob Fox. Complete minors and independence number. SIAM J. Discrete Math.,
24(4):1313–1321, 2010.

[12] Gregory Gauthier, Tien-Nam Le, and Paul Wollan. Forcing clique immersions through
chromatic number. European J. Combin., 81:98–118, 2019.

[13] H. Hadwiger. Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Natur-
forsch. Ges. Zürich, 88:133–142, 1943.

[14] Ken-ichi Kawarabayashi, Michael D. Plummer, and Bjarne Toft. Improvements of the
theorem of Duchet and Meyniel on Hadwiger’s conjecture. J. Combin. Theory Ser. B,
95(1):152–167, 2005.

[15] Ken-ichi Kawarabayashi and Zi-Xia Song. Independence number and clique minors.
J. Graph Theory, 56(3):219–226, 2007.

[16] A. V. Kostochka. On Ks,t minors in (s + t)-chromatic graphs. J. Graph Theory,
65(4):343–350, 2010.

[17] A. V. Kostochka. Ks,t minors in (s + t)-chromatic graphs, II. J. Graph Theory,
75(4):377–386, 2014.

[18] A. V. Kostochka and N. Prince. Dense graphs have K3,t minors. Discrete Math.,
310(20):2637–2654, 2010.



Biclique immersions in graphs with independence number 2 177

[19] F. Lescure and H. Meyniel. On a problem upon configurations contained in graphs
with given chromatic number. Ann. Discrete Math., 41:325–331, 1989.

[20] Chun-Hung Liu. Immersion and clustered coloring. J. Combin. Theory, Ser. B,
158(1):252–282, 2023.

[21] Chun-Hung Liu and Irene Muzi. Well-quasi-ordering digraphs with no long alternating
paths by the strong immersion relation. J. Combin. Theory, Ser. B, 158(1):210–251,
2023.

[22] Dániel Marx and Paul Wollan. Immersions in highly edge connected graphs. SIAM
J. Discrete Math., 28(1):503–520, 2014.

[23] Sergey Norin and Paul Seymour. Dense minors of graphs with independence number
two, 2022. arXiv:2206.00186 [math.CO].

[24] Michael D. Plummer, Michael Stiebitz, and Bjarne Toft. On a special case of Had-
wiger’s conjecture. Discuss. Math. Graph Theory, 23(2):333–363, 2003.

[25] Daniel A. Quiroz. Clique immersions in graphs of independence number two with
certain forbidden subgraphs. Discrete Math., 344(6):Paper No. 112365, 9, 2021.

[26] Neil Robertson and Paul Seymour. Graph minors XXIII. Nash-Williams’ immersion
conjecture. J. Combin. Theory, Ser. B, 100(2):181–205, 2010.

[27] Neil Robertson, Paul Seymour, and Robin Thomas. Hadwiger’s conjecture for K6-free
graphs. Combinatorica, 13(3):279–361, 1993.

[28] Paul Seymour. Hadwiger’s conjecture. In Open problems in mathematics, pages 417–
437. Springer, [Cham], 2016.

[29] Matěj Stehlík. Critical graphs with connected complements. J. Combin. Theory Ser.
B, 89(2):189–194, 2003.

[30] Sylvia Vergara. Complete graph immersions in dense graphs. Discrete Math.,
340(5):1019–1027, 2017.

[31] Paul Wollan. The structure of graphs not admitting a fixed immersion. J. Combin.
Theory, Ser. B, 110(1):47–66, 2016.

[32] David R. Wood. Independent sets in graphs with an excluded clique minor. Discrete
Math. Theor. Comput. Sci., 9(1):171–175, 2007.

[33] Douglas R. Woodall. List colourings of graphs. In Surveys in combinatorics, 2001
(Sussex), volume 288 of London Math. Soc. Lecture Note Ser., pages 269–301. Cam-
bridge Univ. Press, Cambridge, 2001.



Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications
EUROCOMB’23

Prague, August 28 - September 1, 2023

A resolution of the Kohayakawa–Kreuter
conjecture for the majority of cases

(Extended abstract)

Candida Bowtell∗ Robert Hancock† Joseph Hyde‡

Abstract

For graphs G,H1, . . . ,Hr, write G → (H1, . . . ,Hr) to denote the property that
whenever we r-colour the edges of G, there is a monochromatic copy of Hi in colour
i for some i ∈ {1, . . . , r}. Mousset, Nenadov and Samotij proved an upper bound
on the threshold function for the property that G(n, p) → (H1, . . . ,Hr), thereby re-
solving the 1-statement of the Kohayakawa–Kreuter conjecture. We extend upon the
many partial results for the 0-statement, by resolving it for a large number of cases,
which in particular includes (but is not limited to) when r ≥ 3, when H2 is strictly
2-balanced and not bipartite, or when H1 and H2 have the same 2-densities.
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Let r ∈ N and G,H1, . . . , Hr be graphs. We write G→ (H1, . . . , Hr) to denote the property
that whenever we colour the edges of G with colours from the set [r] := {1, . . . , r} there
exists i ∈ [r] and a copy of Hi in G monochromatic in colour i. Ramsey’s theorem states
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the property G→ (H1, . . . , Hr) is monotone, a result of Bollobás and Thomason [1] implies
that there must exist a threshold function p0 for the property that the binomial random
graph G(n, p) (which has n vertices and contains each possible edge independently with
probability p) satisfies G(n, p) → (H1, . . . , Hr). Rödl and Ruciński [11, 12, 13] famously
located the threshold for the symmetric case, while Kohayakawa and Kreuter [4] gave a
conjecture for the threshold for the asymmetric case.

1.1 Notation

Before we can state these thresholds we require some notation. Let G = (V,E) be a graph.
We denote the number of vertices in G by vG := |V (G)| and the number of edges in G
by eG := |E(G)|. Moreover, for graphs H1 and H2 we let v1 := |V (H1)|, e1 := |E(H1)|,
v2 := |V (H2)| and e2 := |E(H2)|.

Let H be a graph. We define

d(H) :=

{
eH/vH if vH ≥ 1,

0 otherwise;

m(H) := max{d(J) : J ⊆ H}.

We define the arboricity (also known as the 1-density measure) by

d1(H) :=

{
eH/(vH − 1) if vH ≥ 2,

0 otherwise;

ar(H) = m1(H) := max{d1(J) : J ⊆ H}.

In [11], Rödl and Ruciński introduced the following so-called 2-density measure:

d2(H) :=


(eH − 1)/(vH − 2) if H is non-empty with vH ≥ 3,

1/2 if H ∼= K2,

0 otherwise;

m2(H) := max {d2(J) : J ⊆ H} .

We say that H is strictly 2-balanced if for all proper subgraphs J ⊂ H, we have d2(J) <
m2(H).

Regarding asymmetric Ramsey properties, in [4], Kohayakawa and Kreuter introduced
the following asymmetric versions of d2 and m2. Let H1 and H2 be any graphs, and define

d2(H1, H2) :=

{
e1

v1−2+ 1
m2(H2)

if H2 is non-empty and v1 ≥ 2,

0 otherwise;

m2(H1, H2) := max {d2(J,H2) : J ⊆ H1} .
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We say that H1 is strictly balanced w.r.t. d2(·, H2) if for all proper subgraphs J ⊂ H1 we
have d2(J,H2) < m2(H1, H2).

The relevance of strictly balanced graphs is as follows. Let H1, H2 be graphs with
m2(H1) ≥ m2(H2). We call (H1, H2) a heart if

• H2 is strictly 2-balanced,

• when m2(H1) = m2(H2), H1 is strictly 2-balanced,

• when m2(H1) > m2(H2), H1 is strictly balanced w.r.t. d2(·, H2).

It is easy to show that for any pair of graphs (H1, H2) with m2(H1) ≥ m2(H2), there exists
a heart (H ′1, H ′2) with

• H ′i ⊆ Hi for each i ∈ [2],

• m2(H
′
2) = m2(H2),

• m2(H
′
1, H

′
2) = m2(H1, H2) if m2(H1) > m2(H2), and

• m2(H
′
1) = m2(H1) if m2(H1) = m2(H2).

We call this pair a heart of (H1, H2). Now observe that in order to prove that G 6→
(H1, H2), it suffices to prove that G 6→ (H ′1, H

′
2) for some heart (H ′1, H ′2) of (H1, H2), since

any colouring avoiding a monochromatic copy of a subgraph of some H clearly avoids a
monochromatic copy of H itself.

1.2 Previous and new results

We can now state the aforementioned symmetric random Ramsey theorem and asymmetric
random Ramsey conjecture.

Theorem 1.1 (Rödl and Ruciński [11, 12, 13]). Let r ≥ 2 and let H be a non-empty graph
such that at least one component of H is not a star or, when r = 2, a path on 3 edges.
Then there exist positive constants b, B > 0 such that

lim
n→∞

P[Gn,p → (H, . . . , H︸ ︷︷ ︸
r times

)] =

{
0 if p ≤ bn−1/m2(H),

1 if p ≥ Bn−1/m2(H).

Note that the assumption on the structure of H is necessary, see e.g. [8] for details.

Conjecture 1.2 (Kohayakawa and Kreuter [4]). Let r ≥ 2 and suppose that H1, . . . , Hr

are non-empty graphs such that m2(H1) ≥ m2(H2) ≥ · · · ≥ m2(Hr) and m2(H2) > 1. Then
there exist constants b, B > 0 such that

lim
n→∞

P[Gn,p → (H1, . . . , Hr)] =

{
0 if p ≤ bn−1/m2(H1,H2),

1 if p ≥ Bn−1/m2(H1,H2).
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This statement of the conjecture involves a slight rephrasing of the original statement
as per [8], generalising from the case r = 2 and including the assumption of Kohayakawa,
Schacht and Spöhel [5] that m2(H2) > 1. This is in order to avoid possible complications
arising from H2 (and/or H1) being certain forests, such as those excluded in the statement
of Theorem 1.1.

The progress on Conjecture 1.2 so far is as follows.

Theorem 1.3. The 1-statement of Conjecture 1.2 holds ([8]). Further, the 0-statement
of Conjecture 1.2 holds for (H1, . . . , Hr) in each of the following cases. For some heart
(H ′1, H

′
2) of (H1, H2), we have that:

(i) H ′1 and H ′2 are both cycles ([4]);

(ii) H ′1 and H ′2 are both cliques ([7]);

(iii) H ′1 is a clique and H ′2 is a cycle ([6]);

(iv) H ′1 and H ′2 are a pair of regular graphs, excluding the cases when (a) H ′1 is a clique
and H ′2 is a cycle; (b) H ′2 is a cycle and v′1 ≥ v′2; (c) (H ′1, H ′2) = (K3, K3,3) ([3]).

Note that (i)–(iii) above were only stated for (H1, H2) of the precise form of (H ′1, H ′2)
stated (i.e. for (i), with H1 and H2 themselves both cycles). However, note that each such
pair is a heart itself, so the theorem, via the remark at the end of Section 1.1, extends to
the cases indicated.

Our main result is that we can vastly extend the number of cases for which the 0-
statement holds:

Theorem 1.4. The 0-statement of Conjecture 1.2 holds for the following cases:

(i) When r ≥ 3, i.e. we have at least 3 graphs H1, H2, H3;

(ii) When m2(H1) = m2(H2);

(iii) When there exists a heart (H ′1, H ′2) of (H1, H2) such that χ(H ′2) ≥ 3 or m(H ′2) > 2
or ar(H ′2) > 2.

We remark that Kuperwasser and Samotij announced independently a proof of case (ii)
above at Random Structures and Algorithms 2021/2022.

In the rest of this extended abstract, we shall outline the proof strategy of Theorem 1.4.

2 Proof strategy
Suppose that G is a graph with constant size and m(G) ≤ m2(H1, H2). It is easy to show
that for p = cn−1/m2(H1,H2), with at least constant probability, G will appear as a subgraph
of Gn,p. Therefore, it better be the case that G 6→ (H1, H2). It is natural to ask whether
this is in fact the only obstruction in proving a 0-statement.



A resolution of the Kohayakawa–Kreuter conjecture for the majority of cases 182

Question 2.1. Does it suffice to prove that for all G,H1, H2 with m2(H1) ≥ m2(H2) > 1
and m(G) ≤ m2(H1, H2) we have G 6→ (H1, H2), in order to prove the 0-statement of
Conjecture 1.2?

Further, recalling the definition of hearts earlier, observe that we only need to prove
such a statement for (H1, H2) which are hearts.

In the symmetric setting, the answer to this question is yes. Additionally, in [9], Ne-
nadov et al. showed that this same phenomenon occurs for a number of symmetric Ramsey-
style properties. Therefore, naturally, there have been attempts to answer this question in
the asymmetric setting. The first result on this question was given by Gugelmann et al. [2],
who additionally proved their result extends to the setting of k-uniform hypergraphs.

Theorem 2.2 ([2]). Let (H1, H2) be a heart. If

(i) a certain family of graphs F(H1, H2) is so-called ‘asymmetric-balanced’,

(ii) for all G such that m(G) ≤ m2(H1, H2) then G 6→ (H1, H2),

then the 0-statement holds for any pair of graphs with heart (H1, H2).

See [2] for the precise description of property (i). The next major step was made
by the third author, who was inspired by the proof techniques used in [7] for proving
Theorem 1.3(ii).

Theorem 2.3 ([3]). Let (H1, H2) be a heart. If there exists ε > 0 such that

(i) a certain family of graphs Â(H1, H2, ε) is finite,

(ii) for all G ∈ Â(H1, H2, ε) (which in particular satisfy m(G) ≤ m2(H1, H2) + ε) we
have G 6→ (H1, H2),

then the 0-statement holds for any pair of graphs with heart (H1, H2).

By streamlining the approach of the third author, we are able to prove the desired
results.

Theorem 2.4. Let (H1, H2) be a heart. There exists a family B̂(H1, H2) ⊆ Â(H1, H2, 0)
such that if

(i) B̂(H1, H2) is finite,

(ii) for all G ∈ B̂(H1, H2) we have G 6→ (H1, H2),

then the 0-statement holds for any pair of graphs with heart (H1, H2).

Theorem 2.5. Let (H1, H2) be a heart. Then B̂(H1, H2) is finite.
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Combining Theorems 2.4 and 2.5 shows that the answer to Question 2.1 is yes. In the
next section we will give a description of the families Â(H1, H2, ε) and B̂(H1, H2) in the
case of m2(H1) = m2(H2).

Now it suffices to prove the colouring result contained in Question 2.1. Note that in the
symmetric setting, this colouring result holds in all cases and has a short proof (see e.g.
Theorem 3.2 in [10]). By appropriately generalising this result, we can prove the following
cases of the asymmetric statement.

Lemma 2.6. For all G,H1, H2 with m2(H1) ≥ m2(H2) > 1 and m(G) ≤ m2(H1, H2), we
have G 6→ (H1, . . . , Hr) if any of the following conditions are satisfied:

(i) We have r ≥ 3, i.e. at least 3 graphs H1, H2, H3;

(ii) We have m1(H2) = m2(H2);

(iii) We have χ(H2) ≥ 3 or m(H2) > 2 or ar(H2) > 2.

Theorem 1.4 immediately follows from Theorems 2.4 and 2.5 combined with Lemma 2.6.
Note that the assumption in Theorem 2.5 that (H1, H2) is a heart is actually necessary.
This leads to the slightly technical nature of the set of graphs given in Theorem 1.4.

2.1 More details on Theorems 2.4 and 2.5

In the case where m2(H1) = m2(H2), we have G ∈ Â(H1, H2, ε) if G satisfies

• every edge e = E(R) ∩ E(L) for some R ∼= H1 and L ∼= H2, where L,R ⊆ G;

• m(G) ≤ m2(H1, H2) + ε;

• G is 2-connected.

For ` ≥ 4, define CK4
` to be the graph on 3` vertices and 6` edges obtained by taking a

cycle C` and extending each of its edges to a copy of K4. This graph satisfies that every
edge is the intersection of two triangles, m(CK4

` ) = m2(K3, K3) = 2 and is 2-connected,
and therefore the family Â(K3, K3, ε) is not finite for any ε > 0.

The key idea is to refine the family Â(H1, H2, ε) so that graphs such as CK4
` are excluded.

We now describe B̂(H1, H2) in the case where m2(H1) = m2(H2). Call an edge e open
in G if e 6= E(R) ∩ E(L) for any R ∼= H1 and L ∼= H2, where R,L ⊆ G. Define
λ(G) := vG − eG/m2(H1, H2). We have that B̂(H1, H2) is the collection of all outputs
G that can be returned in the running of algorithm Grow-B̂-Alt (see the figure below)
which additionally satisfy m(G) ≤ m2(H1, H2).

It is not too hard to see that B̂(H1, H2) ⊆ Â(H1, H2, 0), and further, CK4
` 6∈ B̂(K3, K3).

The proof of Theorem 2.4 follows from a careful analysis which is very similar to the
proof of Theorem 2.3 in [3]. So finally, we summarise how we prove Theorem 2.5.
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1: procedure Grow-B̂-Alt(H1, H2)
2: G0 ← H1

3: i← 0
4: while λ(Gi) ≥ 0 do
5: if ∃e ∈ E(Gi) s.t. e is open then
6: {L,R} ← any pair {L,R} s.t. L ∼= H2, R ∼= H1 and E(L) ∩ E(R) = {e}
7: Gi+1 ← Gi ∪ L ∪R
8: i← i+ 1
9: else
10: return Gi

11: e← any edge of Gi

12: {L,R} ← any pair {L,R} s.t. L ∼= H2, R ∼= H1, E(L) ∩ E(R) = {e}
and E(L) ∪ E(R) 6⊆ E(Gi)

13: Gi+1 ← Gi ∪ L ∪R
14: i← i+ 1
15: end if
16: end while
17: end procedure

Figure 1: The implementation of algorithm Grow-B̂-Alt.

Let η(G) be the number of open edges in G. First note that if G is an output of the
algorithm Grow-B̂-Alt, then it satisfies λ(G) ≥ 0 and η(G) = 0. Suppose the following
is true:

There exist constants κ, x, y > 0 depending only on H1 and H2 such that in each
iteration of the algorithm Grow-B̂-Alt, we either have:

(I) λ(Gi) ≤ λ(Gi−1)− κ and η(Gi) ≥ η(Gi−1)− x;

(II) λ(Gi) = λ(Gi−1) and η(Gi) ≥ η(Gi−1) + y.

Then, letting T i
1 and T i

2 count the number of iterations of type I and type II, respectively,
to construct Gi, we obtain η(Gi) ≥ T i

2 · y − T i
1 · x. Overall this implies that the number

of outputs of the algorithm Grow-B̂-Alt is finite, as required. This is the essence of how
we prove finiteness of B̂, however our actual approach involves more technical definitions
we wish to avoid here.

For the case where m2(H1) > m2(H2), the algorithm describing the family B̂(H1, H2)
is more complicated, but the overall idea is the same.
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Abstract
Given a pair of k-uniform hypergraphs (G,H), the Ramsey number of (G,H),

denoted by R(G,H), is the smallest integer n such that in every red/blue-colouring
of the edges of K(k)

n there exists a red copy of G or a blue copy of H. Burr showed
that, for any pair of graphs (G,H), where G is large and connected, the Ramsey
number R(G,H) is bounded below by (v(G) − 1)(χ(H) − 1) + σ(H), where σ(H)
stands for the minimum size of a colour class over all proper χ(H)-colourings of H.
Together with Erdős, he then asked when this lower bound is attained, introducing
the notion of Ramsey goodness and its systematic study. We say that G is H-good
if the Ramsey number of (G,H) is equal to the general lower bound. Among other
results, it was shown by Burr that, for any graph H, every sufficiently long path
is H-good.

Our goal is to explore the notion of Ramsey goodness in the setting of 3-uniform
hypergraphs. Motivated by Burr’s result concerning paths and a recent result of
Balogh, Clemen, Skokan, and Wagner, we ask: what 3-graphs H is a (long) tight
path good for? We demonstrate that, in stark contrast to the graph case, long tight
paths are generally not H-good for various types of 3-graphs H. Even more, we show
that the ratio R(Pn, H)/n for a pair (Pn, H) consisting of a tight path on n vertices
and a 3-graph H cannot in general be bounded above by any function depending only
on χ(H). We complement these negative results with a positive one, determining the
Ramsey number asymptotically for pairs (Pn, H) when H belongs to a certain family
of hypergraphs.
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1 Introduction
A k-uniform hypergraph H, or a k-graph for short, consists of a (finite) set V (H) of
vertices and a set E(H) of k-element subsets of V (H), called (hyper)edges. Given k-
graphs G and H, the Ramsey number of the pair (G,H), denoted by R(G,H), is the
smallest integer n such that, in every red/blue-colouring of the edges of the complete k-
graph K(k)

n , we can find a red copy of G or a blue copy of H. Ramsey’s seminal result [14]
implies that R(G,H) is finite for any pair of k-graphs G and H. Since then, the study
of Ramsey numbers has become a prominent area of research in combinatorics and has
inspired the development of many powerful tools in the field (see for example [9, 13] and
the references therein).

Even in the simplest setting, when the uniformity is two, Ramsey numbers are often
notoriously difficult to understand. The most well-studied case is when G = H = Kt. It is
known from the early work of Erdős [10] and Erdős and Szekeres [11] that, up to lower order
terms, 2t/2 ≤ R(Kt, Kt) ≤ 22t as t→∞; these bounds remained essentially best possible
for several decades, until very recently Campos, Griffiths, Morris, and Sahasrabudhe [6]
announced the first exponential improvement in the upper bound.

Apart from demonstrating the difficulty of understanding Ramsey numbers, this exam-
ple shows that Ramsey numbers can grow very quickly compared to v(G) and v(H). It
is then natural to ask: how small can Ramsey numbers be? Here we will always assume
that G is connected. As shown by Burr [4], following a slightly weaker observation by
Chvátal and Harary [8], for any G and H with v(G) ≥ σ(H)1, we have

R(G,H) ≥ (v(G)− 1)(χ(H)− 1) + σ(H). (1)

Indeed, colour the complete graph of order (v(G) − 1)(χ(H) − 1) + σ(H) − 1 so that the
red edges form χ(H) cliques, one of order σ(H)−1 and the rest of order v(G)−1; it is not
difficult to check that there is neither a red copy of G nor a blue copy of H in this colouring.
A classic result of Chvátal [7] shows that the bound in (1) is attained with equality when
the pair consists of a tree and a complete graph. Motivated by this result, Burr [4] and Burr
and Erdős [5] investigated what other pairs have this property, introducing the notion of
Ramsey goodness. More precisely, a graph G is said to be H-good if the lower bound in (1)
is attained for the pair (G,H). Since its introduction this notion has received considerable
attention (see [9, Section 2.5] and the references therein for some history and results).
Typically in this line of research H is thought of as a fixed graph and the task is to identify
what properties make a (sufficiently large) graph H-good. Several conjectures were made
(for example, by Burr [4] and Burr and Erdős [5]), suggesting that, for a fixed graph H,
every sufficiently sparse large graph G should be H-good. These conjectures turned out to
be false in general, as shown by Brandt [3]. On the other hand, it is known that there are
some families of graphs such that every sufficiently large member is H-good for every H.
In particular, Burr [4] showed that, for any graph H, any sufficiently long path is H-good.

1Here σ(H) is the smallest possible size of a colour class in a proper colouring of H using χ(H) colours.
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More generally, Allen, Brightwell, and Skokan [1] showed that, for every fixed H, every
large graph with bounded bandwidth is H-good.

We are interested in exploring the notion of Ramsey goodness for hypergraphs. Again,
if G is connected2, the lower bound in (1)3 holds for all k-graphs H with v(G) ≥ σ(H).
We say that G is H-good if equality holds in (1).

The study of Ramsey goodness in hypergraphs was first undertaken by Balogh, Clemen,
Skokan, and Wagner [2] and was motivated by a question of Conlon. The n-vertex 3-
uniform tight path Pn consists of n vertices v1, . . . , vn and hyperedges given by vivi+1vi+2

for all i ∈ [n − 2]. Letting F denote the Fano plane, that is, the unique 3-graph on seven
vertices in which every pair of vertices is contained in a unique edge, Conlon asked what
3-graphs are F-good. Balogh, Clemen, Skokan, and Wagner [2] made progress towards
answering this question by showing that any sufficiently long tight path is F-good. In light
of their work and Burr’s result for paths in the graph case [4], we seek to identify what
hypergraphs a tight path is good for. We focus specifically on 3-uniform hypergraphs.

2 Results
For a 3-graph H, we say that H is Ramsey-good for tight paths if every sufficiently long
tight path is H-good. Perhaps surprisingly, it turns out that there are plenty of classes of
3-graphs which are not Ramsey-good for tight paths. It is not difficult to check that the
Fano plane F can be properly 3-coloured so that each hyperedge intersects precisely two
different colour classes and that χ(F) = 3 and σ(F) = 1. The first property is crucial, as
demonstrated by the following proposition.

Proposition 2.1. Let H be a 3-graph with χ(H) = 3 and n ≥ 3σ(H) + 3. Assume that
in every proper 3-colouring of H, there exists an edge intersecting all three colour classes.
Then R(Pn, H) ≥ 2(n− 1) + b1

3
nc > 2(n− 1) + σ(H).

Proof. Let N = 2(n − 1) + b1
3
nc − 1. We first partition the vertex set of K = K

(3)
N into

sets V1, V2, V3 satisfying |V1| = n − 1 = |V2| and |V3| =
⌊
1
3
n
⌋
− 1. We then colour every

hyperedge intersecting exactly two different sets Vi blue and every other hyperedge red.
Suppose there exists a red tight path P on n vertices. Then P contains a matching of

size
⌊
1
3
n
⌋
> |V3|, so one of the matching edges does not intersect V3. This edge must then

be fully contained in some Vi for i ∈ [2], which in turn implies that P is fully contained in
this Vi. Hence v(P ) ≤ |Vi| < n, a contradiction.

To see why there is no blue copy of H, note that, since χ(H) = 3, any blue copy of H
in K must intersect all three sets Vi. But in every proper 3-colouring of H some edge
intersects all three colour classes. Since all edges intersecting all three sets Vi are red, there
cannot exist a blue copy of H in K.

2We say that G is connected if G is not a disjoint union of two smaller hypergraphs.
3As usual, a proper colouring of a hypergraph H is a colouring of the vertices of H such that no edge

of H is monochromatic; χ(H) is the minimum number of colours in a proper colouring of H, and σ(H) is
the smallest possible size of a colour class in a proper colouring of H using χ(H) colours.
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It is possible to obtain a result similar to Proposition 2.1 also when χ(H) > 3. Thus,
from now on, we concentrate on hypergraphs H that have at least one χ(H)-colouring in
which every edge intersects precisely two different colour classes. In fact, we restrict our
attention to a special subclass of hypergraphs of this kind, which we define below.

Definition 1. Let χ ≥ 1 be an integer and Tχ be a tournament on [χ]. We say that a
3-graph H is a tournament hypergraph associated to Tχ if V (H) can be partitioned into
sets A1 ∪ · · · ∪ Aχ so that E(H) = {xyz : x, y ∈ Ai, z ∈ Aj, (i, j) ∈ E(Tχ)}, that is, the
edge set of H consists of precisely those triples containing two vertices from some set Ai
and a third vertex from some set Aj, where (i, j) is an arc of Tχ. For an integer m ≥ 1, we
write H(Tχ,m) for a tournament hypergraph associated to Tχ in which each vertex class Ai
has size m.

Let χ ≥ 1 be an integer, Tχ be a non-transitive tournament on [χ], and H = H(Tχ,m).
It turns out that, in this case, not only is H not Ramsey-good for tight paths, but in fact
the ratio R(Pn, H)/n cannot be bounded above by any function depending only on χ. This
is the content of the next proposition.

Proposition 2.2. Let χ ≥ 3 and m ≥ 2 be integers and Tχ be a non-transitive tournament
on [χ]. Let n, t ≥ 1 be integers such that

⌊
3t
2

⌋
+1 < n. Then R(Pn, H(Tχ,m)) ≥ (m−1)t+1.

Proof. Let N = (m− 1)t. We partition the vertex set of K = K
(3)
N into sets V1, . . . , Vm−1

satisfying |Vi| = t for all i ∈ [m − 1]. We then colour every hyperedge xyz with x, y ∈ Vi
and z ∈ Vj for 1 ≤ i ≤ j ≤ m− 1 red and every other hyperedge blue.

It is not difficult to see that a red tight path in this colouring has at most n − 1
vertices. Indeed, any red tight path must contain either vertices from a single Vi, in which
case it has at most t < n vertices, or b vertices from a set Vi and at most

⌊
b
2

⌋
+ 1 vertices

from Vi+1 ∪ · · · ∪ Vm−1, in which case its number of vertices cannot exceed t+
⌊
t
2

⌋
+1 < n.

Now suppose there is a blue copy H ′ of H in K with vertex classes W1, . . . ,Wχ. For
each j ∈ [χ], we have |Wj| = m, and thus there exists an index kj ∈ [m − 1] such
that |Wj ∩Vkj | ≥ 2. Note that, since the edges fully contained in a single set Vi are red, for
every arc (j, `) of Tχ, no set Vi can contain three vertices x, y, z with x, y ∈ Wj and z ∈ W`.
Therefore, all kj are distinct. But then by the definition of our colouring H ′

[⋃
j∈[χ] Vkj

]
is a tournament hypergraph associated to a transitive tournament, which contradicts the
fact that H is associated to a non-transitive tournament.

Observe that the proof of Proposition 2.2 shows that the same result holds if H is
associated (in a similar way as in Definition 1) to any digraph containing a cycle.

The situation is fairly different when H is a tournament hypergraph associated to a
transitive tournament. We write TT` for the transitive tournament on [`]. Once again, H is
generally not Ramsey-good for tight paths, but as we will soon see, in this case R(Pn, H)/n
can be bounded above by a function depending only on χ(H). Given an integer ` ≥ 1,
let ~R(`) denote the smallest integer N such that any tournament on at least N vertices
contains a copy of TT`. It is well known that ~R(`) is finite for any ` ≥ 1.
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Proposition 2.3. Let χ ≥ 3 be an integer, R = ~R(χ), and m ≥ R. Then H = H(TTχ,m)
satisfies R(Pn, H) ≥

(
2
3
n− 6

)
(R− 1) + 1 = (1 + o(1))2

3
(R− 1)n as n→∞.

Proof. Let TR−1 be a tournament on vertex set [R − 1] that does not contain a copy
of TTχ, which exists by the definition of R. Let N =

(⌊
2
3
n
⌋
− 5
)
(R−1) ≥

(
2
3
n− 6

)
(R−1)

and K = K
(3)
N . Partition the vertex set of K into sets V1, . . . , VR−1 with |Vi| =

⌊
2
3
n
⌋
− 5

for all i ∈ [R − 1]. We now assign the colour red to all edges that are fully contained in
a single set Vi and all edges of the form xyz for x ∈ Vi and y, z ∈ Vj, where (i, j) is an
arc of TR−1. All remaining edges are coloured blue. Note in particular that the blue edges
intersecting precisely two vertex classes form a copy of H(TR−1,

⌊
2
3
n
⌋
− 5).

Using a similar argument as in the proof of Proposition 2.2, we conclude that there is
no red tight path on n vertices. Suppose there exists a blue copy H ′ of H with vertex
classes W1, . . . ,Wχ. Since |Wj| ≥ R for each j ∈ [χ], there exists an integer kj ∈ [R − 1]
such that |Wj ∩ Vkj | ≥ 2. As before, all of these kj are distinct. But then the hyper-

graph H ′
[⋃

j∈[χ] Vkj

]
is a tournament hypergraph associated to TTχ. But TR−1 does not

contain a copy of TTχ, a contradiction.

It turns out that the lower bound in Proposition 2.3 is asymptotically tight as n→∞.
More precisely, we are able to prove the following theorem.

Theorem 2.4. Given integers χ ≥ 2 and m ≥ 2 and a real number ε > 0, there exists an
integer n0 = n0(χ,m, ε) such that, for all n ≥ n0,

R(Pn, H(TTχ,m)) ≤

{
(1 + ε)n if χ = 2,(
2
3
+ ε
)
(~R(χ)− 1)n if χ ≥ 3.

Since ~R(3) = 4, Proposition 2.3 and Theorem 2.4 imply that R(Pn, H(TT3,m)) =
(2 + o(1))n as n→∞. This means that Pn is asymptotically H(TT3,m)-good as n→∞.
In particular, since the Fano plane is a subhypergraph of H(TT3, 4), Theorem 2.4 extends
the result of Balogh, Clemen, Skokan, and Wagner [2] asymptotically to a large family of
3-graphs.

We provide a brief sketch of the proof of Theorem 2.4. Some of the ideas resemble those
used in [2]. The proof uses induction on the chromatic number χ. We outline the induction
step. Suppose χ ≥ 3 and that the theorem holds for χ− 1. Let ε > 0 and m ≥ 2 be given
and H = H(TTχ,m). Set N =

(
2
3
+ ε
)
(~R(χ)−1)n and suppose there is a colouring of K(3)

N

with no red copy of Pn and no blue copy of H.
We first find a red tight path P of length approximately 2

3
n with a special property:

there exist disjoint intervals I1, . . . , Ic covering most vertices of P such that the vertices
of each interval induce a red clique. Our task is then to absorb more vertices from the
rest of K(3)

N in between the vertices of each interval Ij. A key idea here is that, since the
vertices of each Ij form a clique, we can change the order in which they appear on the
path. We then go through the intervals Ij in turn and repeatedly apply the induction
hypothesis to K(3)

N \ V (P ) to find copies of H(TTχ−1,m
′) for some appropriately chosen
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large constant m′. For each such copy H ′ of H(TTχ−1,m
′), either there will be a lot of blue

edges with two vertices in Ij and a third vertex in V (H ′), in which case we can embed a
copy of H, or we will find enough red edges of this kind to allow us to absorb a number
of vertices from V (H ′) into the interval Ij (after possibly rearranging the vertices of Ij).
Eventually, unless we find a blue copy of H, we will be able to absorb approximately 1

2
|Ij|

vertices into each interval Ij, resulting in a tight path of total length at least n.

3 Conclusion and open problems
A number of natural questions arise from our work.

First of all, it would be interesting to determine the Ramsey numbers of more pairs
of the form (Pn, H), for instance, those discussed in Propositions 2.1 and 2.2, at least
asymptotically. Similarly, a natural way to improve Theorem 2.4 and Proposition 2.3 is to
remove the error term and prove a precise result.

In a slightly different direction, in the examples given in Propositions 2.2 and 2.3, our
tournament hypergraphs are fairly dense. It would be interesting to consider subhyper-
graphs of tournament hypergraphs and investigate how sparse such a subgraph H can be
made before (Pn, H) meets the lower bound. We are able to find reasonably sparse hyper-
graphs H, albeit not subgraphs of tournament hypergraphs, such that (Pn, H) exceeds the
general lower bound.

A third possible direction for further research is to consider higher uniformities. Do
long k-uniform tight paths behave similarly to 2-uniform paths or 3-uniform tight paths
as k increases? We note here that we tried to generalise the result of Balogh, Clemen,
Skokan, and Wagner in a different direction, by replacing the Fano plane by a higher-order
projective plane Fq for some prime power q. Surprisingly, long tight paths are generally
not Fq-good. It is a simple exercise to show that, when q ≥ 3, we have χ(Fq) = 2. Then
a result of Keevash and Zhao [12] allows us to build colourings showing that Fq is not
Ramsey-good for tight paths for an infinite sequence of values of q.
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The induced size-Ramsey number r̂kind(H) of a graph H is the smallest number
of edges a (host) graph G can have such that for any k-coloring of its edges, there
exists a monochromatic copy of H which is an induced subgraph of G. In 1995, in
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dependence of C on k. We also prove r̂kind(Cn) ≤ eO(k log k)n for odd n, which almost
matches the lower bound of eΩ(k)n. Finally, we show that the ordinary (non-induced)
size-Ramsey number satisfies r̂k(Cn) = eO(k)n for odd n. This substantially improves
the best previous result of eO(k2)n, and is best possible, up to the implied constant
in the exponent. To achieve our results, we present a new host graph construction
which, roughly speaking, reduces our task to finding a cycle of approximate given
length in a graph with local sparsity.
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is one of the most central notions in combinatorics and it has been studied extensively
since Ramsey [23] showed their existence for every graph H. Motivated by this definition,
we say that a graph G is k-Ramsey for a graph H if any k-coloring of the edges of (the
host graph) G, contains a monochromatic copy of H, and we write G

k−→ H. Using this
notation, we have that rk(H) = min{|V (G)| : G k−→ H}.

The notion of Ramsey numbers is measuring the minimality of the host graph in terms
of the number of vertices. Are there graphs G with significantly fewer edges than the
clique on rk(H) vertices that are k-Ramsey for H? This general question is captured by
the notion of size-Ramsey numbers introduced in 1978 by Erdős, Faudree, Rousseau and
Schelp [11]. The size-Ramsey number of a graph H is defined as r̂k = min{E(G)|G k−→ H}.
In the last few decades, there has been extensive research on this notion, see, e.g., [3].

One of the main goals is to understand which classes of graphs have size-Ramsey num-
bers which are linear in their number of edges. Beck [2] showed that this is true for paths,
which was later extended to all bounded-degree trees by Friedman and Pippenger [14].
It is also known that logarithmic subdivisions of bounded degree graphs have linear size-
Ramsey numbers [6], as well as bounded degree graphs with bounded treewidth [18]. Given
all of the mentioned results, it might be tempting to assume that all graphs of bounded
degree have linear size-Ramsey numbers. In an elegant paper of Rödl and Szemerédi [25],
it was shown that this is not the case. Indeed, they showed that there exist n-vertex cubic
graphs which have size-Ramsey numbers at least n logc n, for a small constant c > 0. This
bound has only very recently been improved to cnec

√
logn for some c > 0 by Tikhomirov

[26]. For more results see [7] and references therein.
A related studied notion is that of induced size-Ramsey numbers. Given a graph H, the

induced size-Ramsey number r̂kind(H) is the smallest number of edges a graph G can have
such that any k-coloring of G contains a monochromatic copy of H which is an induced
subgraph of G. The existence of these numbers is an important generalisation of Ramsey’s
theorem, proved independently by Deuber [4], Erdős, Hajnal, and Pósa [12], and Rödl [24].
Naturally, this concept is much harder to understand for most classes of target graphs H
and much less precise bounds are known than for the (non-induced) size-Ramsey number.

Indeed, already for bounded degree trees we know that the size-Ramsey number is linear
in their number of vertices, whereas for its induced counterpart we have no good bounds
while we have every reason to believe that the answer should also be linear. Further, the
best general upper bound on r̂2

ind(H) for n-vertex graphs H is obtained by Conlon, Fox and
Sudakov [19], and is of the order 2O(n logn), while Erdős [10] conjectured that r̂2

ind(H) ≤ 2cn.
In comparison, the bound for Ramsey numbers (and hence also for size-Ramsey numbers)
is known to be exponential in the number of vertices of the target graph. Further, it is
known that the size-Ramsey number of n-vertex graphs with degree bounded by a constant
d, is between neΩ(

√
logn) and O(n2− 1

d
+ε), proven by Tikhomirov [26], and by Kohayakawa,

Rödl, Schacht, and Szemerédi [20], respectively. On the other hand, the best upper bound
on the induced size-Ramsey number of these graphs, proved by Fox and Sudakov [13] is
of the order nO(d log d), while the best lower bound is still the bound for the (non-induced)
Ramsey number of those graphs, which is often the state of the art for such questions.
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For paths it is known that Ω(k2)n ≤ r̂k(Pn) ≤ O(k2 log k)n (see [9, 21] for the lower
bound and [22, 8] for the upper bound). In the induced case, by a recent result of Draganić,
Krivelevich and Glock [5], we have that r̂kind(Pn) ≤ O(k3 log4 k)n. For cycles, the discrep-
ancy between the size-Ramsey and the induced size-Ramsey number is significantly larger.
Indeed, by a recent result of Javadi and Miralaei [17], which improved another recent re-
sult by Javadi, Khoeini, Omidi and Pokrovskiy [16], we have r̂k(Cn) = O(k120 log2 k)n for
even n, and r̂k(Cn) = O(216k2+2 log k)n for odd n. On the other hand, the only known
upper bound on the induced size-Ramsey numbers of cycles was obtained in the seminal
paper of Haxell, Kohayakawa and Łuczak [15]. Their proof uses a technically very involved
argument relying on the use of the Sparse Regularity lemma and therefore shows that
r̂kind(Cn) ≤ Cn where C = C(k) has a tower type dependence on k.

In this paper, we prove the following theorem which quite significantly improves the
tower-type bounds of Haxell, Kohayakawa and Łuczak.

Theorem 1.1. For any integer k ≥ 1, there exists n0(k) such that for all n ≥ n0(k), the
following holds.

a) If n is even, then r̂kind(Cn) = O(k102)n.

b) If n is odd, then r̂kind(Cn) = eO(k log k)n.

While the focus of this paper is on induced size-Ramsey numbers of cycles, our method
can be also used to substantially improve the upper bound for the non-induced case as
well. Our next result gives an essentially tight estimate for the size-Ramsey numbers of
odd cycles.

Theorem 1.2. For any integer k ≥ 1, there exists n0(k) such that for all n ≥ n0(k), we
have r̂k(Cn) = eO(k)n.

The best known lower bound for size-Ramsey numbers of even cycles comes from the
bound for paths, which is of the order Ω(k2)n [9, 22]. In the odd case, there is a simple
construction of a coloring which gives a lower bound of 2k−1n (see [17]), showing that the
second result in Theorem 1.1 is tight up to an O(log k) factor in the exponent, while the
bound in Theorem 1.2 is tight up to a constant factor in the exponent.

We remark that, as in [15], our proofs can easily be adapted to provide monochromatic
induced cycles of all (even) lengths between C log n and n for some constant C depending
only on k. We also note that our bound on the size-Ramsey number of even cycles r̂k(Cn) ≤
r̂kind(Cn) = O(k102)n can be further improved significantly, using the same methods, but
we chose not to present that here.

2 Proof outline
The main idea behind our proof is the following: consider a binomial random graph G ∼
G(N,C/N), where N = C ′n and C,C ′ are appropriately chosen large constants. Let G be
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adversarially k-edge-colored. Then, it is easier to find an induced monochromatic cycle of
length in [0.9n, 1.1n], say, then of length precisely n. Our host graph is constructed to take
advantage of this.

In the rest of the outline we focus on the proof of the induced odd case (Theorem 1.1 b))
and at the end we outline the changes needed for the other two statements.

Given k, we find a fixed “gadget” graph F = F (k) which is k-induced-Ramsey for a
5-cycle. We denote s = v(F ). We construct an s-uniform N -vertex hypergraph H by
taking CN random hyperedges. We clean H so it does not have any short Berge cycles so,
in particular, it is linear. Then we construct our host graph Γ by placing an isomorphic
copy of F inside every hyperedge of H. By definition, inside every copy of F , there is a
monochromatic induced copy of C5. The main object we work with will be an auxiliary
k-edge-coloured graph G on the same vertex set as Γ. For each placed copy of F in Γ, in
G we put an edge between a single pair of vertices which are at distance 2 in one of the
induced monochromatic copies of C5 in the copy of F , and colour this edge with the colour
of that cycle.

Now, suppose we find a monochromatic, say red, cycle Q of length ` ∈ [n/3, n/2] in G.
By definition, each edge of Q corresponds to an induced 5-cycle in Γ, where the endpoints
of the edge are at distance 2 in the cycle. For each of these 5-cycles, we can choose either
a path of length 2 or a path of length 3 in G to obtain a red cycle Q′ of length exactly n
in Γ (see Figure 1). The main technical difficulty is in obtaining certain properties of Q
such that the resulting cycle Q′ is induced in Γ.

More precisely, the following will be sufficient. Recall that every edge e ∈ E(G) comes
from a hyperedge in H which we denote by h(e). Suppose Q is a cycle in G with edges
e1, . . . , e` such that no hyperedge apart from h(e1), . . . , h(e`) in H intersects

⋃
i∈[`] h(ei) in

more than one vertex. Further, suppose that each h(ei) only intersects h(ei−1) and h(ei+1)
among the mentioned hyperedges. Then, it is not difficult to see that the cycle Q′ obtained
as above is induced in Γ. We will call such a cycle Q good.

Let us now explain how to find an induced monochromatic cycle of length between n/2
and n/3 in a k-edge-colored graph G ∼ G(N,C/N) with N = C ′n for some large constants
C,C ′. Our real task is more involved as we require a stronger condition on the found cycle
as discussed above, since we are not working with a binomial random graph. However,
most of the ideas can be described through the lens of this simpler problem.

We now sketch how to find a monochromatic induced cycle of length between n/2
and n/3 in G ∼ G(N,C/N). The proof strategy is illustrated in Figure 2. By standard
results, it is not difficult to clean G without losing many edges, so that it has no cycles
of length O(1). Further, we also know that it is locally sparse, that is, all sets U of size
|U | ≤ εN span at most 3

2
|U | edges, where ε > 0 is some constant depending on C. We

consider the subgraph corresponding to the densest colour class, say red and using a result
of Krivelevich [21], we find inside it a large expanding subgraph G′. Draganić, Glock and
Krivelevich [5] showed using a modified DFS algorithm that under the given assumptions,
G′ has a red induced path P of length 2n/5 and we adapt their argument to our setting.
Given such a red induced path of length 2n/5, from the endpoints we construct two trees
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T1, T2 each of depth O(logN) and with Ω(εN) leaves. Moreover, we do it in such a way
that any path containing the initial endpoints is good, i.e. if there is a red edge connecting
two vertices in different trees, it closes a good cycle in G′. Let W = V (P )∪V (T1)∪V (T2)
and remove from it a large constant number of the last layers in T1 and T2, so that the
resulting W is small enough compared to the leaf sets of T1 and T2. Denote by R1 and R2

the vertices in the deleted layers in T1 and T2, respectively. Finally, using the expanding
properties of G′, we may expand from the sets R1 and R2, while avoiding vertices which
are incident to W until the two balls around R1 and R2 of large enough constant diameter
intersect, and thus we close a cycle of desired length. Using the girth assumption on our
graph it is not difficult to show that this cycle is induced.

Let us now comment on the differences in the proofs for the three different statements.
In the odd induced case, we can take F to be Alon’s [1] celebrated construction of a dense
pseudorandom triangle-free graph on eΘ(k log k) vertices. We will prove that, every k-edge-
colouring of that graph will contain an induced monochromatic C5. However, when n is
even, we can instead take F to be k-induced-Ramsey for a 6-cycle with only O(k6) vertices
by taking a sufficiently dense bipartite C4-free graph. Again, in each copy of F, we find
a monochromatic induced 6-cycle and connect two vertices at distance 2 on the cycle to
form our auxiliary graph. The same argument as above shows that given a monochromatic
cycle of length ` in the auxiliary graph G, we can find a monochromatic cycle of any even
length between 2` and 4` in Γ. Finally, for the odd non-induced case, we can take F to be
the complete graph on 2k + 1 vertices. It is easy to see that any k-edge coloring of that
graph has a monochromatic odd cycle. For simplicity, we take the most common length
L among those cycles, and for each of these L-cycles, we connect two vertices at distance
(L− 1)/2 on the cycle to form the auxiliary graph. Then, a monochromatic good cycle of
length between 2n/(L− 1) and 2n/(L + 1) in the auxiliary graph yields a monochromatic
cycle of length n in our host graph. This required extra precision in the length of the good
cycle in the auxiliary graph will only cost us a factor of 2O(k) in the number of copies of F
we use in our construction.

Figure 1: Transforming an 8-cycle in the auxiliary graph (thick red edges) into a 21-cycle
in the original graph by using 5 paths of length 3 and 3 paths of length 2.
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R1 R2

nΘ(log n)
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Figure 2: Building an induced cycle
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We consider the single-conflict coloring problem, in which each edge of a graph
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always enough to color the vertices of G in a way that avoids every forbidden color
pair. This answers a question of Dvořák, Esperet, Kang, and Ozeki for simple graphs
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G. In this paper, we consider a special version of graph colorings known as single-conflict
colorings, defined as follows. Let G be a graph, and let C be a color set. Let f be a function
such that for each edge e ∈ E(G) with endpoints u and v, f maps the triple (u, e, v) to a
forbidden color pair (c1, c2), and f maps the triple (v, e, u) to the reverse forbidden color
pair (c2, c1). Then, we say that a (not necessarily proper) coloring φ : V (G) → C is a
single-conflict coloring with respect to f and C if f(u, e, v) 6= (φ(u), φ(v)) for each edge
e = uv of G. We call the image of a triple (u, e, v) under f a conflict, and we call f a
conflict function. If k is the minimum integer for which a graph G always has a single-
conflict coloring for any color set C of size k and any conflict function f , then we say that
k is the single-conflict chromatic number of G, and we write χ=(G) = k.

1.1 Background

Dvořák and Postle [5] first introduced a concept similar to single-conflict coloring, called
DP-coloring. Independently, single-conflict coloring was considered by Fraigniaud, Hein-
rich, and Kosowski [6]1, and the notion of single-conflict chromatic number was later intro-
duced by Dvořák, Esperet, Kang, and Ozeki [4]. In [4], the authors proved the following:

Theorem 1.1 ([4]). If G is a graph of maximum degree ∆, then χ=(G) ≤
⌈√

e(2∆− 1)
⌉
.

In fact, a stronger bound than in Theorem 1.1 with the leading multiplicative constant
of 2 (instead of

√
2e) can be shown. Surprisingly, the factor of 2 is asymptotically sharp,

as shown very recently by Groenland, Kaiser, Treffers, Wales [8]. For simple graphs, an
even better coefficient of 1 + o(1) holds, which can be derived from a result of Kang and
Kelly [11], or from an independent result Glock and Sudakov [7]. The last three cited
results were stated for independent transversals. Another noteworthy result concerning
the single-conflict chromatic number of graphs on surfaces was shown in [4].

Theorem 1.2 ([4]). If G is a simple graph of Euler genus g, then χ=(G) = O((g +
1)1/4 log(g + 2)).

Furthermore, the authors of [4] show that a graph of average degree d has a single-
conflict chromatic number of at least

⌊√
d

log d

⌋
.

The notion of a single-conflict coloring is a generalization of several graph coloring vari-
ants. Most immediately, single-conflict colorings generalize the notion of proper colorings
as follows. Given a graph G, let G(k) denote the graph obtained from G by replacing each
edge of G with k parallel edges. Then, χ(G) ≤ k if and only if G(k) has a single-conflict
coloring with a set C of k colors when each set of k parallel edges in G(k) is assigned k
distinct monochromatic conflicts.

A single-conflict coloring is also a generalization of a DP-coloring, first introduced by
Dvořák and Postle [5] under the name of correspondence coloring. One may define a DP-
coloring of a graph G as a single-conflict coloring of a graph G′ on V (G) which is obtained

1Although [6] was published before [5], the arXiv version of [5] appears approximately two months
before that of [6].
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as follows. First, for each edge uv ∈ E(G), select a matchingMuv in the complete bipartite
graph C × C. Then, for each edge (c1, c2) ∈ Muv, give G′ an edge e with endpoints u, v
and a conflict f(u, e, v) = (c1, c2). In this way, the single-conflict coloring problem can
represent every instance of a DP-coloring problem.

Furthermore, a single-conflict coloring is a generalization of an earlier concept known as
an adapted coloring, introduced by Hell and Zhu [10], which is defined as follows. Given a
graph G with a (not necessarily proper) edge coloring ψ, an adapted coloring on G is a (not
necessarily proper) vertex coloring φ of G in which no edge e is colored the same color as
both of its endpoints u and v—that is, ¬ (ψ(e) = φ(u) = φ(v)). In other words, if e ∈ E(G)
is a red edge, then both endpoints of e may not be colored red, but both endpoints of e
may be colored, say, blue, and the endpoints of e may also be colored with two different
colors. The adaptable chromatic number of G, written χad(G), is the minimum integer m
such that for any edge coloring of G using a set C of m colors, there exists an adapted
vertex coloring of G using colors of C. It is easy to see that an adapted coloring on G is
a single-conflict coloring on G when each edge e ∈ E(G) is assigned the monochromatic
conflict (ψ(e), ψ(e)). Therefore, for every graph G, χad(G) ≤ χ=(G).

For graphs G of maximum degree ∆, Molloy and Thron [15] show that χad(G) ≤
(1 + o(1))

√
∆. Molloy [13] shows furthermore that graphs G with chromatic number χ(G)

satisfy χad(G) ≥ (1 + o(1))
√
χ(G), implying that

√
χ(G), χad(G), χ=(G), and

√
∆ all

only differ by a constant factor for graphs G satisfying χ(G) = Θ(∆). The parameters√
χ(G), χad(G), and χ=(G) can also differ by a constant factor even when χ(G) is not of

the form Θ(∆). For instance, for graphs G of maximum degree ∆ without cycles of length
3 or 4, the parameters

√
χ(G), χ=(G), and χad(G) are all of the form O

(√
∆

log ∆

)
[2, 14],

and since randomly constructed ∆-regular graphs of girth 5 often have chromatic number
as high as 1

2
∆

log ∆
[14], this upper bound is often tight.

We note that adapted colorings are equivalent to the notion of cooperative colorings,
which are defined as follows. Given a family G = {G1, . . . , Gk} of graphs on a common
vertex set V , a cooperative coloring on G is defined as a family of sets R1, . . . , Rk ⊆ V such
that for each 1 ≤ i ≤ k, Ri is an independent set of Gi, and V =

⋃k
i=1Ri. A cooperative

coloring problem may be translated into an adapted coloring problem by coloring the edges
of each graph Gi ∈ G with the color i and then considering the union of all graphs in G.
Overall, this gives us the following observation.

Observation 1.3. Given a family G = {G1, . . . , Gk} of graphs on a common vertex set,
the cooperative coloring problem on G is equivalent to the adapted coloring problem on the
edge-colored graph G =

⋃k
i=1Gi in which each edge originally from Gi is colored with the

color i.

It is straightforward to show that Theorem 1.1 implies that a graph family G containing
k graphs of maximum degree ∆ on a common vertex set V has a cooperative coloring
whenever k ≥ 2e∆. In fact, Haxell [9] showed earlier that it is sufficient to let k ≥ 2∆.
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1.2 Our results

We have seen that for graphs G of maximum degree ∆, χ=(G) = O(
√

∆). However,
it is natural to ask whether we can obtain a better upper bound when G has bounded
degeneracy. For example, in the related problem of cooperative coloring, Aharoni, Berger,
Chudnovsky, Havet, and Jiang [1] obtained the following improved result by considering
families of 1-degenerate graphs, i.e. forests:

Theorem 1.4 ([1]). If T is a family of forests of maximum degree ∆ on a common vertex
set V , then there exists a value k = (1 + o(1)) log4/3 ∆ such that if |T | ≥ k, then T has a
cooperative coloring.

One key tool used to prove Theorem 1.4 is an application of the Lovász Local Lemma
in which each vertex v ∈ V receives a random inventory Sv of colors from a color set C
indexing the forests in T , and then a color c is deleted from Sv if c also belongs to the
inventory Sw of the parent w of v in the forest of T indexed by c. Dvořák, Esperet, Kang,
and Ozeki [4] also posed the following question, asking whether this upper bound can be
improved for certain degenerate graphs.

Question 1.5. Suppose G is a d-degenerate graph on n vertices. Is it true that χ=(G) =
O(
√
d log n)?

The authors remarked that a positive answer to Question 1.5 would give an alternative
proof of Theorem 1.2. In this paper, we will prove the following theorem, which shows the
upper bound of χ=(G) = O(

√
∆) can often be improved for graphs of bounded degeneracy.

Theorem 1.6. If G is a d-degenerate graph with maximum degree ∆ and edge-multiplicity
at most µ, then

χ=(G) ≤
⌈√

d · 2µ/2+2√µ
√

1 + log((d+ 1)∆)
⌉
.

Theorem 1.6 gives a large class of d-degenerate graphs G satisfying χ=(G) = O(d
1
2

+o(1)),
containing in particular those d-degenerate simple graphs G with maximum degree ∆ =
exp(do(1)). This upper bound is close to best possible, since Molloy [13] shows that d-
degenerate graphs G of chromatic number d+1 satisfy χ=(G) ≥ χad(G) ≥ (1+o(1))

√
d+ 1.

By applying the argument used for Theorem 1.6 to simple graphs, we also obtain the
following theorem.

Theorem 1.7. If G is a d-degenerate simple graph of maximum degree ∆, then

χ=(G) ≤
⌈
2
√
d [1 + log((d+ 1)∆)]

⌉
.

Theorem 1.7 immediately answers Question 1.5 for simple graphs and thus also implies
Theorem 1.2. In fact, the result that we will prove is slightly stronger than Theorem 1.7,
and we will obtain the following corollary, which generalizes Theorem 1.4 at the expense
of a constant factor.
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Corollary 1.8. Let G be a family of k graphs on a common vertex set V . Suppose each
graph G ∈ G is at most d-degenerate and of maximum degree ∆. Then, whenever k ≥
13(1 + d log(d∆)), G has a cooperative coloring.

One natural question is whether the logarithmic factors are necessary in these upper
bounds. While we are unable to answer these questions exactly, we note that an upper
bound of less than d + 1 is unachievable, as Kostochka and Zhu [12] give examples of d-
degenerate graphs G that satisfy χad(G) = d+ 1. Additionally, Question 1.5 remains open
for graphs of large edge-multiplicity.

2 Uniquely restrictive conflicts
It is well known that an oriented graph with maximum out-degree d is d-degenerate. There-
fore, rather than working directly with d-degenerate graphs, we will consider the larger class
of oriented graphs of maximum out-degree d. Given an oriented graph G, we write A(G)
for the set of arcs of G. For a vertex v ∈ V (G), we write A+(v) for the set of arcs outgoing
from v, and we write A−(v) for the set of arcs incoming to v. Given an arc e = uv in an
oriented graph G, and given a conflict function f on G, we will often write f(e) = f(u, e, v).

Consider a color set C and an oriented graph G with a conflict function f . First, given
a vertex v ∈ V (G) and an arc e ∈ A(G) containing v and second endpoint u, we say that
the (v, e) conflict color is the first color appearing in the ordered pair f(v, e, u). We write
cc(v, e) for the (v, e) conflict color. Then, we have the following definition.

Definition 2.1. Let w ∈ V (G). Suppose that for each parallel arc pair e1, e2 ∈ A−(w)
satisfying cc(w, e1) = cc(w, e2), it holds that cc(v, e1) = cc(v, e2), where v is the second
endpoint of e1 and e2. Then, we say f is uniquely restrictive at w. Furthermore, if f is
uniquely restrictive at each w ∈ V (G), then we simply say that f is uniquely restrictive.

An informal way of describing unique restrictiveness would be to say that if we color
a vertex w ∈ V (G) with some color, say red, then we only want this choice of red at w
to contribute to the exclusion of at most one color possibility at each in-neighbor of w.
We note that unique restrictiveness is a rather natural idea, as the conflict functions that
represent adapted coloring and proper coloring problems are uniquely restrictive; indeed,
in both of these settings, choosing the color red at a vertex v can only contribute to the
exclusion of the color red at neighbors of v. Furthermore, DP-coloring problems always give
uniquely restrictive conflict functions when represented as single-conflict coloring problems
since the conflicts between any two vertices form a matching in C × C.

We will also use the following form of the Lovász Local Lemma.

Theorem 2.2 ([16]). Let B be a set of bad events. Suppose that each event B ∈ B
occurs with probability at most p, and suppose further that each event B ∈ B is mutually
independent with all but at most d other events B′ ∈ B. If ep(d+1) ≤ 1, then with positive
probability, no bad event in B occurs.
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With these preliminaries in place, we have the following theorem, which gives an upper
bound on the number of colors needed for a single-conflict coloring of a d-degenerate graph
whose conflict function is uniquely restrictive. Since any conflict function on a simple
graph is uniquely restrictive, the following theorem implies Theorem 1.7 and hence gives an
affirmative answer to Question 1.5. Our main tool for this theorem will be the application
of the Lovász Local Lemma used by Aharoni, Berger, Chudnovsky, Havet, and Jiang [1] in
which each vertex receives a random inventory of colors.

Theorem 2.3. Let G be an oriented graph of maximum degree ∆ with a maximum out-
degree of at most d. Let C be a set of k colors, and let each arc e ∈ A(G) have an associated
conflict f(e) ∈ C2. If f is uniquely restrictive, and if k ≥ 2

√
d [1 + log((d+ 1)∆)], then

G has a single-conflict coloring with respect to f and C.

Proof. First, we note that since every subgraph of G has an average degree of at most
2d, G is (2d)-degenerate and hence has a single-conflict coloring whenever k ≥ 2d + 1.
Therefore, we may assume in our proof that k ≤ 2d.

First, for each vertex v ∈ V (G), we define a color inventory Sv, and for each color
c ∈ C, we add c to Sv independently with probability p = k

2d
≤ 1. Next, we let S ′v be a

copy of Sv. (We will need these copies for technical reasons related to the Lovász Local
Lemma.) Then, for each vertex v ∈ V (G), we consider each outgoing arc e of v, and we
write e = (v, w). If, for some color c ∈ Sv, we have f(e) ∈ {(c, c′) : c′ ∈ Sw}, then we
delete c from S ′v. In other words, if the color c at v contributes to the forbidden pair
f(v, w) = (c, c′) of an outgoing arc (v, w) ∈ A+(v), and if c′ ∈ Sw, then we delete c from
S ′v. Then, for each vertex v ∈ V (G), we let Bv denote the bad event that after this process,
S ′v is empty. We observe that if no bad event occurs, then we may arbitrarily color each
vertex v with a color from S ′v to obtain a single-conflict coloring of G. Indeed, if some arc
(v, w) is colored with a forbidden pair (c, c′) where c ∈ S ′v and c′ ∈ S ′v, then it must follow
that c was actually deleted from S ′v, a contradiction.

Now, given a vertex v ∈ V (G), we calculate the probability that the bad event Bv

occurs. For a given color c ∈ C, we write bc for the number of arcs e ∈ A+(v) for which
c = cc(v, e). If c does not belong to S ′v, then either c was never added to Sv, or c was added
to Sv and then deleted from S ′v. The probability that c was never added to Sv is equal to
1−p, and the probability that c was added to Sv and then deleted from S ′v is at most bcp2.
Therefore, the total probability that c 6∈ S ′v is at most 1− p + bcp

2. Furthermore, since f
is uniquely restrictive, the probabilities of any two given colors being absent from S ′v are
independent. Therefore, the probability of the bad event Bv is at most

∏
c∈C

(
1−

(
p− bcp2

))
< exp

(
−
∑
c∈C

(
p− bcp2

))
= exp

(
−pk + p2

∑
c∈C

bc

)
= exp

(
−pk + p2d

)
.

Substituting p = k
2d
, we see that Pr(Bv) < exp

(
−k2

4d

)
. Furthermore, as the bad event Bv

involves d + 1 vertices (namely v and at most d out-neighbors of v), each of maximum
degree ∆, Bv is dependent with fewer than (d + 1)∆ other bad events. Note that since
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we use unmodified inventories Sw to determine whether the copy S ′v is empty, we prevent
the dependencies of Bv from spreading past the out-neighbors of v. Therefore, using the
Lovász Local Lemma (Theorem 2.2), we see that G receives a single-conflict coloring with
positive probability as long as e(d + 1)∆ exp

(
−k2

4d

)
≤ 1. This inequality holds whenever

k ≥ 2
√
d[1 + log((d+ 1)∆)], which completes the proof.

Using Theorem 2.3, we can prove Corollary 1.8, which gives an upper bound on the
number of colors needed for a cooperative coloring of a family of degenerate graphs. The
proof is available in the full version on arXiv [3].

If G does not have parallel edges, then any conflict function f : E(G) → C2 must be
uniquely restrictive. Then, Theorem 2.3 tells us that χ=(G) ≤ 2

⌈√
d (1 + log((d+ 1)∆))

⌉
,

which gives an affirmative answer to Question 1.5 for simple graphs.

3 General conflicts
Given an oriented graph G with a conflict function f , we define the restrictiveness of f at v
as the maximum value rv for which there exists an rv-tuple of parallel arcs in A+(v) whose
conflicts form a set {(c1, c

∗), (c2, c
∗), . . . , (crv , c

∗)}, where the first entry in each conflict
corresponds to v, where c∗ ∈ C is any single color, and where c1, . . . , crv are all distinct
colors. Then, we say that the restrictiveness of f is the maximum restrictiveness rv of f at
v, taken over all vertices v ∈ V (G). The restrictiveness r of a uniquely restrictive conflict
function satisfies r = 1. If f is a conflict function on a graph G of edge-multiplicity at
most µ, then the restrictiveness r of f satisfies r ≤ µ.

Theorem 2.3 gives an upper bound on number of colors needed for a single-conflict
coloring given a conflict function with restrictiveness r = 1. In this section, we will show in
the following theorem that we can also find an upper bound on the number of colors needed
for a single-conflict coloring given a conflict function whose restrictiveness r is known but
may be greater than 1. Since r ≤ µ for any graph G with edge multiplicity at most µ, the
following theorem (proven in the full version [3]) also proves Theorem 1.6, giving an upper
bound for χ=(G) of d-degenerate graphs G with small edge-multiplicity.

Theorem 3.1. Let G be an oriented graph of maximum degree ∆ with a maximum out-
degree of at most d. Let C be a set of k colors, and let each arc e ∈ A(G) have an associated
conflict f(e). If the restrictiveness of f is at most r, and if

k ≥
√
d · 2r/2+2

√
r
√

1 + log((d+ 1)∆),

then G has a single-conflict coloring with respect to f and C.

Acknowledgements. The authors would like to thank Ladislav Stacho and Jana
Novotná for helpful discussions on the topic.
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1 Introduction
The development of stability theory in classical model theory, originating with Shelah’s
classification programme fifty years ago [12, 2], has sought to distinguish tame first-order
theories from wild ones. A key discovery is that combinatorial configurations serve as
dividing lines in this classification.

Separately, in the development of finite model theory, there has been in interest in inves-
tigating tame classes of finite structures. Here tameness can refer to algorithmic tameness,
meaning that algorithmic problems that are intractable in general may be tractable on
a tame class; or it can refer to model-theoretic tameness, meaning that the class enjoys
some desirable model-theoretic properties that are absent in the class of all finite struc-
tures. See [4] for an exposition of these notions of tameness. The tame classes that arise
in this context are often based on notions taken from the study of sparse graphs [9] and
usually extended to classes of relational structures beyond graphs by applying them to the
Gaifman graphs of such structures.

In the context of algorithmic tameness of sparse classes, this line of work culminated
in the major result of Grohe et al. [7] showing that the problem of model checking first-
order sentences is fixed-parameter tractable (FPT) on any class of graphs that is nowhere
dense. This generalized a sequence of earlier results showing the tractability of the model
checking problem on classes of graphs satisfying other notions of sparsity. Moreover, it is
also known [8] that this is the limit of tractability for monotone classes of graphs. That is
to say that (under reasonable assumptions) any monotone class of graphs in which first-
order model checking is FPT is necessarily nowhere dense. These results underline the
centrality of the notion of nowhere denseness in the study of sparse graph classes.

A significant line of recent research has sought to generalize the methods and results
on tame sparse classes of graphs to more general classes that are not necessarily sparse.
Interestingly, this has tied together notions of tameness arising in finite model theory and
those in classical model theory. Notions arising from stability theory play an increasingly
important role in these considerations (see [10, 6], for example). Central to this connection
is the realisation that for well-studied notions of sparseness in graphs, the first-order theory
of a sparse class C is stable. Thus, stability-theoretic notions of tameness, applied to the
theory of a class of finite structures, generalize the notions of tameness emerging from the
theory of sparsity.

A key result connecting the two directions is that a monotone class of finite graphs is
stable if, and only if, it is nowhere dense. This connection between stability and combinato-
rial sparsity was established in the context of infinite graphs by Podewski and Ziegler [11]
and extended to classes of finite graphs by Adler and Adler [1]. Indeed, for monotone
classes of graphs, stability is a rather robust concept as the theory of such a class is stable
if, and only if, it is NIP, and these conditions on monotone classes are in turn equivalent
to it being monadically stable and monadically NIP.

A question posed by Adler and Adler is whether their result can be extended from
graphs to structures in any finite relational language. We settle this question in the present
paper by establishing Theorem 1 below. In the following Gaif(C) denotes the collection
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of Gaifman graphs of structures in the class C. Note that the extension from graphs to
relational structures requires considerable combinatorial machinery in the form of Ramsey-
theoretic results, which we detail in later sections. We also relate the characterization to
the tractability of the classes. In summary, our key results are stated in the following
theorem.

Theorem 1. Let C be a monotone class of finite structures in a finite relational language.
Then, the following are equivalent:

1. C is NIP;

2. C is monadically NIP;

3. C is stable;

4. C is monadically stable;

5. Gaif(C) is nowhere dense; and

6. (assuming AW[∗] 6= FPT) C admits fixed-parameter tractable model checking.

Moreover, the equivalence of the first six notions also holds for classes containing infinite
structures.

The equivalence of the first four notions for any monotone class C is due to Braunfeld
and Laskowski [3]. The equivalence of the fifth and sixth notions follows by results in
sparsity theory (see [9]). We, therefore, establish the equivalence of the first with the
fifth and the sixth. More precisely, we show that if Gaif(C) is not nowhere dense, then C
admits a formula with the independence property. That nowhere density of Gaif(C) implies
tractability is implicit in [7]. We establish the converse of this statement here.

2 Preliminaries
We assume familiarity with first-order logic and the basic concepts of model theory and
graph theory. Throughout this paper, L denotes a finite, first-order, relational language.
Given an L-structure M , we write Gaif(M) for the Gaifman graph of M , i.e. the graph
on domain M with the property that two elements are adjacent if and only if they appear
together in a relation of M . For a class C of L-structures, we write Gaif(C) for the class
of graphs {Gaif(M) : M ∈ C}. We say that a class C is monotone if it is closed under
weak substructures, i.e. if (M,RM)R∈L ∈ C then (M ′, RM ′

)R∈L ∈ C for any M ′ ⊆ M and
RM ′ ⊆ RM .

We say that a class C of L-structures is NIP (Not the Independence Property) if there
is no L-formula φ(x̄, ȳ) satisfying that for all bipartite graphs G = (U, V ;E) ∈ B there is
some MG ∈ C and sequences of tuples (āi)i∈U and (b̄j)j∈V such that:

MG � φ(āi, b̄j) if, and only if, (i, j) ∈ E.
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Moreover, a class C of graphs is said to be nowhere dense if for every r ∈ N there is some
n ∈ N such that for all G ∈ C we have that K(r)

n is not a subgraph of G, and otherwise, C
is somewhere dense.

By the model checking problem on a class C, we refer to the parametrised decision
problem whereby, given a structure M ∈ C and an FO-sentence φ whose depth acts as
parameter, we want to decide if M satisfies φ. We say that the model checking problem
on a class C is fixed-parameter tractable, if there is an algorithm that decides on input
(M,φ) whether M |= φ, in time f(|φ|) · |M |O(1) for some computable function f . Model
checking on the class of all graphs is complete with respect to the complexity class AW[∗],
which is conjectured to strictly contain the class FPT. We shall assume throughout that
AW[∗] 6= FPT.

3 Main results
Here, we sketch the proofs of implications (1) =⇒ (5) and (6) =⇒ (5) from Theorem 1.
We first prove that for any monotone class C of relational structures whose Gaifman class
is somewhere dense, there is a formula which codes the edge relation of all bipartite graphs
uniformly over C. We work towards this theorem via a preparatory lemma, which has the
benefit of applying to classes that are not necessarily monotone. Intuitively, this tells us
that in any class of relational structures C whose Gaifman class is somewhere dense, there
is a primitive positive formula which codes the edge relation of any complete bipartite
graph with “sufficiently disjoint” witnesses.

Lemma 1. Let C be a class of L-structures such that Gaif(C) is somewhere dense. Then
there is a primitive positive formula φ(x̄, ȳ, z̄) = ∃w̄ψ(x̄, ȳ, z̄, w̄) with parameters p̄, and for
every n ∈ N there is some Mn ∈ C and tuples (āi)i∈[n], (b̄j)j∈[n], (c̄i,j)(i,j)∈[n]2 , (d̄i,j)i,j∈[n]2
from Mn such that the following hold for all i, i′, j, j′ ∈ [n]:

1. Mn |= ψ(āi, b̄j, c̄i,j, d̄i,j);

2. āi(k) 6= āi′(k), for i 6= i′ and all k ∈ [|x̄|];

3. b̄j(k) 6= b̄j′(k), for j 6= j′ and all k ∈ [|ȳ|];

4. c̄i,j(k) 6= c̄i′,j′(k) and c̄i,j(k) 6= c̄i,j(l), for (i, j) 6= (i′, j′) and all k 6= l from [|z̄|];

5. d̄i,j(k) 6= d̄i′,j′(k), for (i, j) 6= (i′, j′) and all k ∈ [|w̄|].

The proof of this lemma is a combinatorial argument, resting on few applications of
different Ramsey theorems. First, we ensure that the subdivided edges coming from the as-
sumption that Gaif(C) is somewhere dense are witnessed in everyMn by the same sequence
of relations R1, . . . , Rk; this requires an application of the finite Ramsey theorem (for local
uniformity within each structure), and of the pigeonhole principle (for global uniformity for
the whole class). Next, by consecutive applications of the canonical Erdős-Rado theorem
(see [5]), we may obtain a finite set of elements that are common in all such relations,
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and ensure that the remaining elements on these are essentially distinct. The level of dis-
jointedness achieved is precisely what allows us, under the additional assumption that C
is monotone, to remove relations so as to turn the encoded complete bipartite graphs into
arbitrary bipartite graphs and violate NIP. Consequently, we establish the following.

Theorem 2. Let C be a monotone class of L-structures such that Gaif(C) is somewhere
dense. Then there is a primitive positive formula φ(x̄, ȳ) = ∃w̄ψ(x̄, ȳ, w̄) with parameters
p̄ and for each bipartite graph G = (U, V ;E) there is some MG ∈ C and sequences of tuples
(āu)u∈U (b̄v)v∈V , (h̄u,v)(u,v)∈E from MG such that:

1. MG |= φ(āu, b̄v) if, and only if, (u, v) ∈ E (so, in particular C is not NIP);

2. If (u, v) ∈ E then MG |= ψ(āu, b̄v, h̄u,v);

3. The equality type of p̄u,v = ā_u b̄
_
v h̄u,v is constant for all (u, v) ∈ E(G);

4. Any two tuples in {āu, b̄v, h̄u,v : u ∈ U, v ∈ V } are disjoint and do not intersect the
parameters p̄.

Next, we prove that any monotone class of relational structures whose Gaifman class is
somewhere dense polynomially interprets the class of all bipartite graphs, and is therefore
intractable. Towards this, we first strengthen Theorem 2 to obtain a “simple path formula"
that performs the encoding; this is essentially a primitive positive formula φ(x̄, ȳ) that
describes a sequence of relation R1, . . . , Rk, with the property that x̄ ⊆ R1 and ȳ ⊆ Rk.
Moreover, having full control over the equality type of the elements inMG allows to obtain
a polynomial-time construction of MG from G.

Lemma 2. Let C be a monotone class of L-structures such that Gaif(C) is somewhere
dense. Then there is a simple path formula φ(x̄, ȳ) with parameters p̄ and a polynomial
time computable function Φ : B→ C, such that for each bipartite graph G = (U, V ;E) ∈ B
there are tuples (āu)u∈U (b̄v)v∈V , (h̄u,v)(u,v)∈E from Φ(G) satisfying:

Φ(G) |= φ(āu, b̄v) if, and only if, (u, v) ∈ E.
With this, we proceed to show intractability for monotone classes with somewhere

Gaifman class. Our proof is essentially based on the proof of [8, Theorem 6.1], which
covers the case of graphs. There, the aim is to definably distinguish the native points of an
r-subdivided graph G from the subdivision points. The idea is to distinguish points by their
degrees; however, while all subdivision points have degree two, other points in G may as
well have degree two. To address this, we first pre-process G to obtain a graph G′ by adding
two pendant vertices to each non-isolated vertex. Then, G is definably recovered from G′,
and moreover, given an r-subdivision of G′, we can definably distinguish the subdivision
points and the remaining points by their degrees. Our construction is essentially the
same, although the degree of a subdivision point is bounded by the length of paths in the
subdivision, rather than by two.

Theorem 3. Let C be a monotone class of L-structures such that Gaif(C) is somewhere
dense, and assume that AW[∗] 6= FPT. Then FO model-checking on C is not fixed-parameter
tractable.
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Abstract
Low treedepth decompositions are central to the structural characterizations of

bounded expansion classes and nowhere dense classes, and the core of main algorithmic
properties of these classes, including fixed-parameter (quasi) linear-time algorithms
checking whether a fixed graph F is an induced subgraph of the input graph G. These
decompositions have been extended to structurally bounded expansion classes and
structurally nowhere dense classes, where low treedepth decompositions are replaced
by low shrubdepth decompositions. In the emerging framework of a structural graph
theory for hereditary classes of structures based on tools from model theory, it is
natural to ask how these decompositions behave with the fundamental model theoretical
notions of dependence (alias NIP) and stability.

In this work, we prove that the model theoretical notions of NIP and stable classes
are transported by decompositions. Precisely: Let C be a hereditary class of graphs.
Assume that for every p there is a hereditary NIP class Dp with the property that the
vertex set of every graph G ∈ C can be partitioned into Np = Np(G) parts in such a
way that the union of any p parts induce a subgraph in Dp and logNp(G) ∈ o(log |G|).
We prove that then C is (monadically) NIP. Similarly, if every Dp is stable, then C
is (monadically) stable. Results of this type lead to the definition of decomposition
horizons as closure operators. We establish some of their basic properties and provide
several further examples of decomposition horizons.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-030
∗Computer Science Institute of Charles University (IUUK), Praha, Czech Republic.

E-mails: sbraunfeld@iuuk.mff.cuni.cz, nesetril@iuuk.mff.cuni.cz.
†CAMS (CNRS, UMR 8557), Paris, France. E-mail:pom@ehess.fr.
‡University of Bremen, Bremen, Germany. E-mail: siebertz@uni-bremen.de.

216



Decomposition horizons 217

1 Introduction and Previous Work
In the late 90’s, Baker [2] introduced the shifting strategy, allowing a linear time approxi-
mation scheme for independent sets on planar graphs. The idea is to start a breadth-first
search at a vertex v of a planar graph, which partitions the vertex set of the graph into
layers L1, . . . , Lh and to fix an integer D. Then, for given s ∈ [D], by deleting all the
layers Li with i ≡ s mod D, one gets a graph with treewidth bounded by 3D, on which a
maximum independent set can be found in linear time. Considering all the possible values
of s, we obtain a (1 + 1/D)-approximate solution of the problem. Note that grouping the
layers Li with i in a same class modulo D yields a partition of the vertex set into D parts
V0, . . . , VD−1 such that the union of any p < D of them induces a subgraph with treewidth
at most 3p + 4.

This approach was further developed by DeVos et al. [7], who proved in particular that
for every proper minor closed class of graphs C and every integer p, there exists an integer
Np such that the vertex set of every graph G ∈ C can be partitioned into Np parts, each p
of them inducing a subgraph with treewidth at most p− 1.

This result has been further extended by two of the authors of the present paper in
a characterization of both bounded expansion classes and nowhere dense classes. Before
stating these results, recall that the treedepth of a graph G is the minimum depth of a rooted
forest F , such that G is a subgraph of the closure of F (the graph obtained from F by adding
edges between each vertex and its ancestors). With this definition, the characterization
theorems read as follows.

Theorem 1.1 ([15]). A class C has bounded expansion if and only if, for every parameter p,
there is an integer Np such that the vertex set of each graph G ∈ C can be partitioned into
at most Np parts, each p of them inducing a subgraph with treedepth at most p.

Theorem 1.2 (see [16,17]). A class C is nowhere dense if and only if, for every parameter p
and for every graph G ∈ C there is an integer Np(G) ∈ |G|o(1), such that the vertex set
of G can be partitioned into at most Np(G) parts, each p of them inducing a subgraph with
treedepth at most p.

The notions of classes with bounded expansion and of nowhere dense classes are central
to the study of classes of sparse graphs [16]. Note that the treewidth of a graph is bounded
from above by its treedepth and hence by the result of DeVos et al. [7] and Theorem 1.1
every proper minor closed class has bounded expansion. Surprisingly, it appeared that for
monotone classes of graphs, the notion of nowhere dense class of graphs coincides with
fundamental dividing lines introduced in modern model theory [21]:

Theorem 1.3 ([1]). For a monotone class of graphs C , the following are equivalent:

(1) C is nowhere dense;
(2) C is stable;
(3) C is monadically stable;

(4) C is NIP;
(5) C is monadically NIP.
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For general hereditary classes of graphs, we do not have the collapse of the notions of
stability, monadic stability, NIP, and monadic NIP stated in Theorem 1.3 for monotone
classes. However, we still have the following collapses:

Theorem 1.4 ([5]). A hereditary class of graphs is monadically NIP if and only if it is NIP.
A hereditary class of graphs is monadically stable if and only if it is stable.

The study of monadic stability and monadic NIP and their relations with first-order
transductions [3] opened the way to the study of structurally sparse classes of graphs, that is
of classes of graphs that are first-order transductions of classes of sparse graphs [6,9,10,18–20].
Intuitively, a (first-order) transduction is a way to construct a set of target graphs from the
vertex-colorings of a source graph by fixed first-order formulas, and, by extension, a new
class of graphs from a given class of graphs.

Extending Theorem 1.1, first-order transductions of bounded expansion classes have
been characterized in terms of low shrubdepth colorings. Recall the following high level
characterization of classes with bounded shrubdepth [11, 12]: A class D has bounded
shrubdepth if it is a transduction of a class of bounded depth rooted forests.

Theorem 1.5 ( [10]). A class C is a first-order transduction of a class with bounded
expansion if and only if, for every parameter p, there is an integer Np and a class Dp with
bounded shrubdepth, such that the vertex set of each graph G ∈ C can be partitioned into at
most Np parts, each p of them inducing a subgraph in Dp.

Theorem 1.5 can be seen as a generalization of Theorem 1.1 as shrubdepth is a dense
analogue of treedepth. On the other hand, only one direction of Theorem 1.2 has been
extended to transductions of nowhere dense classes.

Theorem 1.6 ([8]). Let C be a first-order transduction of a nowhere dense class. Then,
for every parameter p there is a class Dp with bounded shrubdepth, such that for every graph
G ∈ C there is an integer Np(G) ∈ |G|o(1), with the property that the vertex set of G can be
partitioned into at most Np(G) parts, each p of them inducing a subgraph in Dp.

Similar decompositions, where p parts induce a subgraph with bounded rankwidth
were introduced in [13], while classes having such decompositions where p parts induce
a subgraph with bounded linear rankwidth were discussed in [20]. However, it was not
known whether such classes are monadically NIP. This question, which appears for instance
in [20, Figure 3] and again in [19], will get a positive answer as a direct consequence of
Theorem 2.1, which is our main result.

The theoretical significance of first-order transductions of nowhere dense classes is
witnessed by the following conjecture.

Conjecture 1.7 ([9]). A class of graphs is monadically stable if and only if it is a first-order
transduction of a nowhere dense class of graphs.

We show that Conjecture 1.7 can be refined as follows.
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Conjecture 1.8. For a hereditary class of graphs C , the following properties are equivalent:
(1) C is a first-order transduction of a nowhere dense class;
(2) C admits low shrubdepth decompositions with no(1) parts;
(3) C is monadically stable;
(4) C is stable.

By Theorem 1.6, property (1) implies property (2). That property (2) implies property
(3) will follow from our main result (Theorem 2.1). By Theorem 1.4, properties (3) and (4)
are equivalent. Closing the chain of implications corresponds to Conjecture 1.7, which we
now can decompose into two weaker statements: that property (3) implies property (2),
and that property (2) implies property (1).

2 Statement of the results
We show that NIP and stability are fixed under taking decompositions as in Theorems 1.1,
1.2, 1.5 and 1.6.

Theorem 2.1. Let C be a hereditary graph class. Suppose that for every parameter p
there is an NIP (resp. stable) class Dp such that for every graph G ∈ C there is an integer
Np(G) ∈ |G|o(1), with the property that the vertex set of G can be partitioned into at most
Np(G) parts, each p of them inducing a subgraph in Dp. Then C is NIP(resp. stable).

In particular, this proves that property (2) implies property (4) in Conjecture 1.8, and so
it follows that Conjectures 1.7 and 1.8 are equivalent. As mentioned after Theorem 1.6, this
also proves that classes admitting low (linear) rankwidth decompositions are monadically
NIP.

To place this theorem in a broader context, we introduce the notion of decomposition
horizons. These seem to be of significant independent interest, and we prove some general
properties. Theorem 2.1 can then be stated as “NIP and stability are decomposition
horizons”.

We define a hereditary class property to be a downset Π of hereditary graph classes, that
is, a set of hereditary classes such that if C ∈ Π and D is a hereditary class with D ⊆ C ,
then D ∈ Π.

Definition 1. Let Π be a hereditary class property, let f : N → N be a non-decreasing
function and let p be a positive integer. We say that a class C has an f-bounded Π-
decomposition with parameter p if there exists Dp ∈ Π such that, for every graph G ∈ C ,
there exists an integer N ≤ f(|G|) and a partition V1, . . . , VN of the vertex set of G with
G[Vi1 ∪ · · · ∪ Vip ] ∈ Dp for all i1, . . . , ip ∈ [N ].

When f is a constant function, we say that C has a bounded-size Π-decomposition with
parameter p; when f is a function with f(n) = no(1), we say that C has a quasi-bounded-size
Π-decomposition with parameter p. If a class C has a bounded-size (resp. a quasi-bounded-
size) Π-decomposition with parameter p for each positive integer p, we say that C has
bounded-size Π-decompositions (resp. quasi-bounded-size Π-decompositions).
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For instance, by Theorem 1.1 and Theorem 1.2, considering the hereditary class prop-
erty “bounded treedepth”, we have that a class C has bounded-size bounded treedepth
decompositions if and only if it has bounded expansion, and it has quasi-bounded-size
bounded treedepth decompositions if and only if it is nowhere dense. With these definition
in hand, it is natural to consider the following constructions of graph class properties:

Definition 2. For a hereditary class property Π we define the properties Π+ (resp. Π∗) as
follows:
• C ∈ Π+ if C has bounded-size Π-decompositions;
• C ∈ Π∗ if C has quasi-bounded-size Π-decompositions.

For every hereditary class property Π, we show that (Π+)+ = Π+ and (Π∗)+ = Π∗

(but we are not aware of any hereditary (NIP) class property Π, such that Π∗ 6= (Π∗)∗).
Also, for every two hereditary class properties Π1 and Π2, we show in the full paper that
(Π1 ∩Π2)

+ = Π+
1 ∩Π+

2 and (Π1 ∩Π2)
∗ = Π∗1 ∩Π∗2, which suggests that, for every hereditary

class property Π, there might exist an inclusion-minimum class Λ with Λ+ = Π+. On
the other hand, if (Πi)i∈I is a family of hereditary class properties indexed by a set I,
then (

⋃
i∈I Πi)

+ =
⋃

i∈I Π+
i and (

⋃
i∈I Πi)

∗ =
⋃

i∈I Π∗i . In particular, the inclusion order of
decomposition horizons is a distributive lattice.

Definition 3. We say that a hereditary class property Π is a decomposition horizon if
Π∗ = Π. If Λ is a hereditary class property, the decomposition horizon of Λ is the smallest
decomposition horizon including Λ.

For example, the hereditary class property of all hereditary classes excluding a fixed
graph H is a decomposition horizon. In the full paper, we also prove that several hereditary
class properties are decomposition horizons, including
• the class properties “bounded maximum degree after deletion of at most k vertices”,
• the class property “transduction of a class with bounded maximum degree” (this

property is equivalent to the model-theoretic property “mutually algebraic” [6], hence
to the model-theoretic property “monadic NFCP” [14]),
• the class property “weakly sparse” (i.e. “biclique-free”) of classes excluding a fixed

biclique as a subgraph,
• the class property “nowhere dense”.
Our examples include an infinite countable chain of decomposition horizons (the class

properties“bounded maximum degree after deletion of at most k vertices”), witnessing some
richness of the inclusion order on decomposition horizons.

While it is natural to conjecture that stable hereditary classes of graphs are exactly
those hereditary classes with quasi-bounded-size bounded shrub-depth decompositions, NIP
hereditary classes seem to be more elusive. It was proved in [4] that for hereditary classes of
ordered graphs, being NIP is equivalent to having bounded twin-width. On the other hand,
classes with quasi-bounded-size bounded twin-width decompositions are NIP (as classes
with bounded twin-width are NIP) and include transductions of nowhere dense classes
(thus, conjecturally, all stable hereditary classes). Hence, it is a natural question whether
every NIP hereditary class has quasi-bounded-size bounded twin-width decompositions.
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Abstract

We classify the countable ultrahomogeneous 2-vertex-colored graphs in which the
color classes form disjoint unions of cliques. This generalizes work by Jenkinson
et. al. [8], Lockett and Truss [11] as well as Rose [13] on ultrahomogeneous n-graphs.
As the key aspect in such a classification, we identify a concept called piecewise ultra-
homogeneity. We prove that there are two specific graphs whose occurrence essentially
dictates whether a graph is piecewise ultrahomogeneous, and we exploit this fact to
prove the classification.
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1 Introduction
Ultrahomogeneous structures are relational structures in which every isomorphism between
finite substructures can be extended to an automorphism of the entire structure.1 The
extensive study of ultrahomogeneous objects relates various areas of research, such as
model theory, permutation group theory and Ramsey theory (see [12] for a survey). A
vast collection of ultrahomogeneous classes of relational structures has been classified.
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For instance, apart from different classes of graphs, which we discuss below, there exist
classification results for partially ordered sets [14], tournaments [9, 2] as well as countably
infinite permutations [1].

In this article, we focus on a special class of countable ultrahomogeneous graphs. By
work of Sheehan [15] and Gardiner [3] as well as Golfand and Klin [4], the finite ultraho-
mogeneous graphs are known. Lachlan and Woodrow [10] gave a characterization of the
ultrahomogeneous graphs with countably infinitely many vertices. Cherlin [2] asked for a
classification of ultrahomogeneous n-graphs, that is, ultrahomogeneous graphs for which
the vertex set is partitioned into n subsets which are respected by the partial isomorphisms
considered.

Nowadays, one usually thinks of n-graphs as graphs with a vertex-coloring in n colors,
and considers isomorphisms preserving colors. Finite ultrahomogeneous vertex-colored
graphs were classified in [5]. Every color class in an ultrahomogeneous graph induces a
monochromatic ultrahomogeneous graph. In particular, every infinite color class forms an
independent set or a disjoint union of cliques, or it induces a Rado graph or a Henson
graph (see [10]). Jenkinson et. al. [8] considered vertex-colored graphs in which the color
classes form independent sets. Their work was extended by Lockett and Truss [11] who
allowed an additional coloring of the edges (while still requiring that every color class forms
an independent set). In his dissertation, Rose [13] investigates countable 2-colored graphs.
The main part of his work covers the case that one color class forms a disjoint union of
cliques and the other one induces a Rado graph or a Henson graph. For the case that both
color classes form disjoint unions of cliques, a partial list of possible cases is stated, but
not proven.

In this paper, we classify the countable 2-colored ultrahomogeneous graphs for which
both color classes form disjoint unions of cliques. We identify a new concept, which we call
piecewise ultrahomogeneity, as key aspect in such classifications. An ultrahomogeneous
graph whose color classes form disjoint unions of cliques is called piecewise ultrahomoge-
neous if each subgraph induced by a pair of maximal cliques of distinct color is ultraho-
mogeneous. As explained by Rose (see [13, Theorem 5.2]), this concept also appears in
the dissertation of Jenkinson [7]. We obtain the following characterization of piecewise
ultrahomogeneity (see Theorems 4.1 and 5.2):

Theorem A. Let G be a non-bipartite, countable, 2-colored ultrahomogeneous graph in
which the color classes form disjoint unions of cliques and that is not a blow-up. Apart
from one degenerate case F2,2, the graph G is piecewise ultrahomogeneous if and only if it
contains induced subgraphs isomorphic to the graphs Q and Q̃ depicted in Figure 1.

We leverage the theorem to completely classify countable 2-colored ultrahomogeneous
graphs in which the color classes form disjoint unions of cliques:

Theorem B. Let G be a countable 2-colored ultrahomogeneous graph in which the color
classes form disjoint unions of cliques and that is not a blow-up. Then (after possibly
interchanging the colors) exactly one of the following holds:



Countable ultrahomogeneous 2-colored graphs consisting of disjoint unions of cliques 225

(i) (Piecewise ultrahomogeneous, Theorem 6.1) Either both color classes in G form an in-
dependent set or a single clique, G belongs to a single biparametric family {Gr,b : r, b ∈
N ∪ {∞}}, or G is isomorphic to the specific graph F2,2.

(ii) (Not piecewise ultrahomogeneous, Theorem 5.2) The graph G belongs to one of two
monoparametric families {F k

∞,1 : k ∈ N≥2} or {F k
∞,2 : k ∈ N≥2}, or it is isomorphic

to one of four specific graphs F2,1, F∞,1, F∞,2 or F∞,∞.

This paper is organized as follows: Section 2 contains preliminary results. In Section 3,
we recall Fraïssé’s theory and study the structure of minimally omitted subgraphs. In Sec-
tion 4, we introduce the concept of piecewise ultrahomogeneity and prove one implication
of Theorem A. In Sections 5 and 6, we classify graphs that are not piecewise ultrahomoge-
neous and piecewise ultrahomogeneous, respectively, thereby proving Theorems A and B.
We conclude with some final remarks in Section 7.

2 Preliminaries
Let G be a (simple) graph. We denote by V (G) the vertex set of G. A 2-colored graph
is a graph whose vertices are colored in two distinct colors, which we usually call “blue”
and “red”. The graph G is ultrahomogeneous if every partial isomorphism between two
finite induced subgraphs of G extends to an automorphism of G. In order to shorten our
notation, we call a graph G clique-ultrahomogeneous (CUH) if G is a countably infinite
ultrahomogeneous graph on blue and red vertices such that both color classes are disjoint
unions of cliques. Two distinct vertices v, v′ ∈ V (G) are called twins if they have the same
color and the same neighbors in G − {v, v′}. The edges in G with endpoints of different
color are called cross edges. We write G̃ for the graph obtained from G by complementing
the cross edges while maintaining the edges within each color class. Let R and B denote
the sets of maximal red and blue cliques of G, respectively. By [10], the elements of R all
have the same size (similarly for B). Note that the automorphism group of G permutes
the set R. Similarly, it permutes B. From the definition of ultrahomogeneity, we obtain
the following statement (also see [5, Lemma 6.1]):

Lemma 2.1. Let G be a 2-colored ultrahomogeneous graph, and let H be obtained from
G by any combination of complementations of the edges within a color class or the cross
edges. Then H is ultrahomogeneous.

Let H be a 2-colored graph in which one color class is an independent set. We call G a
blow-up of H if G is obtained from H by, for some i ∈ N≥2 ∪ {∞}, replacing all vertices in
this color class by i-cliques and joining their vertices to the neighbors of the original vertex
in H. The following property is easily verified (also see [5, Lemma 6.2]):

Lemma 2.2. A blow-up of a graph H is ultrahomogeneous if and only if H is ultrahomo-
geneous.
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We call a CUH graph basic if |R|, |B| ≥ 2 holds, and G is not a blow-up. By complemen-
tation inside the color classes and reduction of blow-ups, which preserves ultrahomogeneity
(see Lemmas 2.1 and 2.2), we can always pass to a basic CUH graph. It therefore suffices
to consider basic graphs. A 2-colored graph G is called trivial if all or none of the pos-
sible cross edges in G are present. Concerning the sizes of the color classes, we note the
following:

Lemma 2.3. Let G be a basic CUH graph. If a color class of G is finite, then G is trivial.

By [8], there exists a unique countably infinite 2-colored ultrahomogeneous graph whose
color classes form independent sets and which is generic in the following sense: For every
c ∈ {red, blue} and all finite disjoint subsets S, T of color c, there exists a vertex of color
c′ 6= c adjacent to all vertices in S and to none of the vertices in T . This graph is called
the generic bipartite graph (GB-graph). We frequently use the following classification:

Theorem 2.4 ([8, Theorem 2.2]). Let G be a countable 2-colored ultrahomogeneous graph
whose color classes form independent sets. Either G is trivial, the cross edges in G form a
perfect matching or its complement, or G is isomorphic to the GB-graph.

Note that the graphs given in Theorem 2.4 are bipartite.

3 Fraïssé limits and omitted subgraphs
Let L be a countable relational language. An L-structure D is called ultrahomogeneous if
every isomorphism between finite substructures of D extends to an automorphism of D.
The age of an L-structure D is the class of all finite L-structures that are isomorphic to
induced substructures of D. An amalgamation class is a class of finite L-structures which
is closed under isomorphism and taking induced substructures, and has the amalgamation
property : For J,A1, A2 ∈ A and embeddings ιi : J → Ai (i = 1, 2), there exists A ∈ A and
embeddings κi : Ai → A (i = 1, 2) such that κ1 ◦ ι1 = κ2 ◦ ι2 holds. Then A is called an
amalgam of A1 and A2.

Theorem 3.1 (Fraïssé). Let D be a countable ultrahomogeneous L-structure. Then the
age of D is an amalgamation class. Conversely, for every amalgamation class C of finite
L-structures, there exists a countable ultrahomogeneous L-structure D with age C, and D
is unique up to isomorphism.

In the setting of Theorem 3.1, we call D the Fraïssé limit of C. Further information on
this topic can be found, for example, in [6]. We now return to the special case of countable
2-colored graphs. If H is a finite graph that is isomorphic to an induced subgraph of a
graph G, we say that H is realized in G. Otherwise, H is omitted in G. The graph H
is called minimally omitted if H is omitted in G and every proper induced subgraph of
H is realized in G. The set of minimally omitted subgraphs of G is denoted by O(G).
Concerning the structure of the color classes of a graph in O(G), we obtain the following
result, which forms the basis for all further arguments:
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Tr T̃r Tb T̃b Q Q̃

Figure 1: The graphs in T ∪ {Q, Q̃}

Theorem 3.2. Let G be a CUH graph. If H ∈ O(G) is not monochromatic, then for every
color c ∈ {red, blue}, one of the following holds:

(i) The vertices of color c in H form a clique of size at least 3 and they are all twins in
H,

(ii) the vertices of color c in H form a 2-clique, or,

(iii) the vertices of color c in H form an independent set.

4 Piecewise ultrahomogeneity
We call a CUH graph G piecewise ultrahomogeneous if for every R ∈ R and B ∈ B, the
graph G[R ∪ B] is ultrahomogeneous. Let Tr and Tb be the triangles containing a single
blue vertex and a single red vertex, respectively. We set T = {Tr, T̃r, Tb, T̃b}. Moreover,
let Q be the graph arising from a complete graph on two red and two blue vertices by
omitting one cross edge. The graphs in T as well as Q and Q̃ are depicted in Figure 1.

Theorem 4.1. Let G be a basic CUH graph. If Q and Q̃ are realized in G, then G is
piecewise ultrahomogeneous.

Proof (Sketch). Let R ∈ R and B ∈ B. We show that G[R ∪ B] is the complement of the
GB-graph. To this end, consider finite disjoint subsets S and T of R. We need to show
that there exists a vertex v ∈ B adjacent to all vertices in S and to none of the vertices
in T . The vertices in S ∪ T form a red clique of size |S| + |T |. In a series of lemmas, we
show that there exists a vertex v′ ∈ B whose neighborhood in S ∪ T is a set S ′ of size
|S|. Here, the main technical difficulty is to ensure that the blue vertex with the required
neighborhood can be found in the clique B. Moreover, we prove that there exists a joint
neighbor b ∈ B of the vertices in S ∪ T . Now consider the partial isomorphism ϕ of G
obtained by bijectively mapping S ′ to S and (S ∪ T ) \ S ′ to T while fixing b. Let ϕ̂ be an
automorphism of G extending ϕ. Then ϕ̂(v) ∈ B is a vertex adjacent to all vertices in S
and to none of the vertices in T . For the other color class, one can argue similarly. Hence
G[R ∪B] is ultrahomogeneous.

5 CUH graphs omitting Q or Q̃

In this section, we classify the basic CUH graphs which omit Q or Q̃. We first determine
the possible graphs in O(G).
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Theorem 5.1. Let G be a basic CUH graph in which Q or Q̃ is omitted, and which is not
isomorphic to one of the graphs in Theorem 2.4. Then every non-monochromatic graph in
O(G) is contained in T ∪ {Q, Q̃}. Moreover, we have Tr ∈ O(G) if and only if T̃r ∈ O(G)
holds, and the same is true for Tb and T̃b as well as Q and Q̃.

Proof (Sketch). One first shows that Tr ∈ O(G) holds if and only if T̃r ∈ O(G) holds,
and that this is the case precisely if the maximal red cliques in G have size 2 (similarly
for the blue color class). Moreover, we show that if neither the blue nor the red vertices
in G form an independent set, then for every R ∈ R and B ∈ B, there exist partitions
R = R1∪̇R2 and B = B1∪̇B2 such that (R1 × B1) ∪ (R2 × B2) is precisely the set of cross
edges between R and B. Using this structure, we show that the maximal monochromatic
cliques in G either have size 1 or 2, or they are infinite.

Let H ∈ O(G) and assume that H is not monochromatic. Using Theorem 3.2, we show
that either H ∈ T ∪ {Q, Q̃} holds, or that the color classes in H form independent sets of
size at least 2 (all other possibilities can be eliminated by using the structure of G[R ∪B]
described above). We then show that the second case cannot occur. The main technical
difficulty is to show that for a given monochromatic independent set J ⊆ V (G) of color
c ∈ {red, blue} and a vertex v of color c′ 6= c, there exist sufficiently many maximal cliques
of color c′ containing vertices with the same neighbors in J as v. Using this property, we
can then successively show that G contains a subgraph isomorphic to H.

Let C be the class of finite graphs on red and blue vertices whose color classes form
disjoint unions of cliques.

Theorem 5.2. Let G be a basic CUH graph that omits Q or Q̃, and that is not isomorphic
to one of the graphs in Theorem 2.4. Up to exchanging the color classes, one of the following
cases arises:

(i) If k := |R| is finite, then G is isomorphic to one of the following graphs:

(a) The Fraïssé limit F k
∞,1 of the class of graphs in C that omit a red independent set

of size k + 1 and the blue 2-clique.

(b) The Fraïssé limit F k
∞,2 of the class of graphs in C that omit a red independent set

of size k + 1, the blue triangle as well as Tb and T̃b.

(ii) Otherwise, G is isomorphic to one of the following graphs:

(a) The Fraïssé limit F2,1 of the class of graphs in C that omit the red triangle, the
blue 2-clique, Tr and T̃r.

(b) The Fraïssé limit F∞,1 of the class of graphs in C that omit the blue 2-clique.

(c) The Fraïssé limit F2,2 of the class of graphs in C that omit monochromatic trian-
gles and the graphs in T .
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(d) The Fraïssé limit F∞,2 of the class of graphs in C that omit the blue triangle as
well as Tb and T̃b.

(e) The Fraïssé limit F∞,∞ of the class of graphs in C that omit Q and Q̃.

Proof (Sketch). One needs to verify that the given graph classes fulfill the amalgamation
property. Proving that the above list is exhaustive is done by using Theorem 5.1.

We remark that the graph F2,1 given in Theorem 5.2 appears to be excluded by the
(unproven) enumeration of possible CUH graphs stated in [13]. Combining Theorems 4.1
and 5.2 yields the characterization of piecewise ultrahomogeneity stated in Theorem A.

6 Classification of piecewise ultrahomogeneous graphs
Using the results in Theorem 2.4, we obtain the following classification:

Theorem 6.1. Let G be a basic piecewise ultrahomogeneous CUH graph. Then G is iso-
morphic to one of the graphs in Theorem 2.4, to the specific graph F2,2, or to the Fraïssé
limit G|R|,|B| of the class A|R|,|B| of finite graphs on red and blue vertices in which the red
and the blue color class form disjoint unions of at most |R| and |B| cliques, respectively.

For the proof, one first proves that if G is neither isomorphic to one of the graphs
in Theorem 2.4 nor to F2,2, then G[R ∪ B] is the complement of the GB-graph for every
R ∈ R and B ∈ B. Using the structure of the GB-graph, one then shows that every graph
in A|R|,|B| is realized in G. By Fraïssé’s theorem, this implies G ∼= G|R|,|B|. This completes
the classification given in Theorem B.

7 Conclusion
In this paper, we classified the countable 2-colored ultrahomogeneous graphs in which each
color class forms a disjoint union of cliques. Our key tool was the concept of piecewise
ultrahomogeneity introduced in Section 4. We showed that with one exception, a basic non-
bipartite CUH graph is piecewise ultrahomogeneous if and only if two specific graphs appear
as induced subgraphs (see Theorem A). Using this result, we obtained the classification of
countable 2-colored CUH graphs given in Theorem B.

There are several natural continuations of this paper. For example, it would be in-
teresting to classify edge-colored versions of CUH graphs, extending the work of Lockett
and Truss [11]. Moreover, one could investigate n-colored versions of CUH graphs for
an arbitrary number n ∈ N. In both cases, we believe that a suitable generalization of
piecewise ultrahomogeneity could play a central role. Just as in the case studied in this
paper, one could hope to characterize the piecewise ultrahomogeneous graphs in terms of
a small number of induced subgraphs, and then use the classifications of ultrahomoge-
neous multipartite graphs given in [8] and [11]. Conversely, if a graph fails to be piecewise
ultrahomogeneous, its structure might again be very limited.



Countable ultrahomogeneous 2-colored graphs consisting of disjoint unions of cliques 230

References
[1] P. J. Cameron. Homogeneous permutations. Electron. J. Combin., 9(2), 2002.

[2] G. Cherlin. The classification of countable homogeneous directed graphs and countable
n-tournaments, volume 621 of Mem. Amer. Math. Soc. Amer. Math. Soc., Providence,
1998.

[3] A. Gardiner. Homogeneous graphs. J. Comb. Theory, Ser. B, 20(1):94–102, 1976.

[4] Y. Golfand and M. Klin. On k-regular graphs. Algorithmic Research in Combinatorics,
186:76–85, 1978.

[5] I. Heinrich, T. Schneider, and P. Schweitzer. Classification of finite highly regular
vertex-coloured graphs. https://arxiv.org/abs/2012.01058.

[6] W. Hodges. Model Theory, volume 42 of Encyclopedia of Mathematics and its Appli-
cations. Cambridge University Press, Cambridge, 1993.

[7] T. Jenkinson. The construction and classification of homogeneous structures in model
theory. Dissertation, University of Leeds, 2006.

[8] T. Jenkinson, J. K. Truss, and D. Seidel. Countable homogeneous multipartite graphs.
Europ. J. Combin., 33(1):82–109, 2012.

[9] A. H. Lachlan. Countable homogeneous tournaments. Trans. Amer. Math. Soc.,
284:431–461, 1984.

[10] A. H. Lachlan and R. E. Woodrow. Countable ultrahomogeneous undirected graphs.
Trans. Amer. Math. Soc., 262:51–94.

[11] D. C. Lockett and J. K. Truss. Homogeneous coloured multipartite graphs. Europ. J.
Comb., 42:217–242, 2014.

[12] D. Macpherson. A survey of homogeneous structures. Discrete Mathematics,
311(15):1599–1634, 2011.

[13] S. E. Rose. Classification of countable homogeneous 2-graphs. Dissertation, University
of Leeds, 2011.

[14] J. H. Schmerl. Countable homogeneous partially ordered sets. Algebra Universalis,
9:317–321, 1979.

[15] J. Sheehan. Smoothly embeddable subgraphs. J. London Math. Soc., s2-9(2):212–218,
1974.

https://arxiv.org/abs/2012.01058


Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications
EUROCOMB’23

Prague, August 28 - September 1, 2023

Raising the roof on the threshold for
Szemerédi’s theorem with random

differences

(Extended abstract)

Jop Briët∗ Davi Castro-Silva†

Abstract

Using recent developments on the theory of locally decodable codes, we prove
that the critical size for Szemerédi’s theorem with random differences is bounded
from above by N1− 2

k
+o(1) for length-k progressions. This improves the previous best

bounds of N1− 1
dk/2e+o(1) for all odd k.
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1 Introduction
Szemerédi [14] proved that dense sets of integers contain arbitrarily long arithmetic pro-
gressions, a result which has become a hallmark of additive combinatorics. Multiple proofs
of this result were found over the years, using ideas from combinatorics, ergodic theory
and Fourier analysis over finite abelian groups.

Furstenberg’s ergodic theoretic proof [12] opened the floodgates to a series of powerful
generalizations. In particular, it led to versions of Szemerédi’s theorem where the common
differences for the arithmetic progressions are restricted to very sparse sets. We say that
a set D ⊆ [N ] is `-intersective if any positive-density set A ⊆ [N ] contains an (` + 1)-
term arithmetic progression with common difference in D. Szemerédi’s theorem implies
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that for large enough N0, the set {0, 1, . . . , N0} is `-intersective for N ≥ N0. Non-trivial
examples include a special case of a result of Bergelson and Leibman [3] showing that the
perfect squares are `-intersective for every `, and a special case of a result of Wooley and
Ziegler [17] showing the same for the prime numbers minus one.

The existence of such sparse intersective sets motivated the problem of showing whether,
in fact, random sparse sets are typically intersective. The task of making this quantitative
falls within the scope of research on threshold phenomena. We say that a property of
subsets of [N ], given by a family F ⊆ 2[N ], is monotone if A ∈ F and A ⊆ B ⊆ [N ] imply
B ∈ F . The critical size m∗ = m∗(N) of a property is the least m such that a uniformly
randomm-element subset of [N ] has the property with probability at least 1/2. (This value
exists if F is non-empty and monotone, as this probability then increases monotonically
with m). A famous result of Bollobás and Thomason [4] asserts that every monotone
property has a threshold function; this is to say that the probability

p(m) = Pr
A∈([N ]

m )[A ∈ F ]

spikes suddenly from o(1) to 1− o(1) when m increases from o(m∗) to ω(m∗).1 In general,
it is notoriously hard to determine the critical size of a monotone property.

This problem is also wide open for the property of being `-intersective, which is clearly
monotone, and for which we denote the critical size by m∗`(N). Bourgain [5] showed that
the critical size for 1-intersective sets is given by m∗1(N) � logN ; at present, this is the
only case where precise bounds are known. It has been conjectured [11] that logN is the
correct bound for all fixed `, and indeed no better lower bounds are known for ` ≥ 2. It
was shown by Frantzikinakis, Lesigne and Wierdl [10] and independently by Christ [9] that

m∗2(N)� N
1
2
+o(1). (1)

The same upper bound was later shown to hold for m∗3(N) by the first author, Dvir and
Gopi [6]. More generally, they showed that

m∗`(N)� N1− 1
d(`+1)/2e+o(1), (2)

which improved on prior known bounds for all ` ≥ 3. The appearance of the peculiar ceiling
function in these bounds is due to a reduction for even ` to the case ` + 1. The reason
for this reduction originates from work on locally decodable error correcting codes [13]. It
was shown in [6] that lower bounds on the block length of (`+ 1)-query locally decodable
codes (LDCs) imply upper bounds on m∗` . The bounds (2) then followed directly from the
best known LDC bounds; see [7] for a direct proof of (2), however.

For the same reason, a recent breakthrough of Alrabiah et al. [1] on 3-query LDCs
immediately implies an improvement of (1) to

m∗2(N)� N
1
3
+o(1).

1Our (standard) asymptotic notation is defined as follows. Given a parameter n which grows without
bounds and a function f : R+ → R+, we write: g(n) = o(f(n)) to mean g(n)/f(n) → 0; g(n) = ω(f(n))
to mean g(n)/f(n) → ∞; g(n) � f(n) to mean that g(n) ≤ Cf(n) holds for some constant C > 0 and
all n; and g(n) � f(n) to mean both g(n)� f(n) and f(n)� g(n).
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For technical reasons, their techniques do not directly generalize to improve the bounds
for q-query LDCs with q ≥ 4, although they could potentially lead to improvements for all
odd q ≥ 3 (but not for even q). Here, we use the ideas of [1] to directly prove upper bounds
on m∗` . Due to the additional arithmetic structure in our problem, it is possible to simplify
the exposition and, more importantly, apply the techniques to improve the previous best
known bounds for all even ` ≥ 2. In particular, we remove the ceiling (raise the roof)
in (2).

Theorem 1.1. For every integer ` ≥ 2, we have that

m∗`(N)� N1− 2
`+1

+o(1).

2 Outline of the argument
We now give an outline of the proof of Theorem 1.1. Fix an integer k ≥ 3 and a positive
parameter ε > 0, and suppose N is sufficiently large relative to k and ε. Given a sequence
of differences D = (d1, . . . , dm) ∈ [N ]m and some set A ⊆ [N ], let ΛD(A) be the normalized
count of k-APs with common difference in D which are contained in A:

ΛD(A) = Ei∈[m]Ex∈[N ]

k−1∏
`=0

A(x+ `di).

Let m ≥ 1 be an integer, and suppose

PrD∈[N ]m
(
∃A ⊆ [N ] : |A| ≥ εN, ΛD(A) = 0

)
≥ 1/2. (3)

By a standard averaging argument originally due to Varnavides [16], we can conclude from
Szemerédi’s theorem that

Λ[N ](A)�k,ε 1 for all A ⊆ [N ] with |A| ≥ εN (4)

(where we identify [N ] with the sequence (1, 2, . . . , N) ∈ [N ]N). Noting that ED′∈[N ]mΛD′(A) =
Λ[N ](A), by combining inequalities (3) and (4) we conclude that

ED∈[N ]m max
A⊆[N ]: |A|≥εN

∣∣ΛD(A)− ED′∈[N ]mΛD′(A)
∣∣�k,ε 1.

From this last inequality, a simple “symmetrization argument” given in [6] implies

ED∈[N ]mEσ∈{−1,1}m max
A⊆[N ]: |A|≥εN

∣∣∣∣Ei∈[m]Ex∈[N ] σi

k−1∏
`=0

A(x+ `di)

∣∣∣∣�k,ε 1;

the appearance of the expectation over signs σ ∈ {−1, 1}m is crucial to our arguments. By
an easy multilinearity argument, we can replace the set A ⊆ [N ] (which can be seen as a
vector in {0, 1}N) by a vector Z ∈ {−1, 1}N :

ED∈[N ]mEσ∈{−1,1}m max
Z∈{−1,1}N

∣∣∣∣Ei∈[m]Ex∈[N ] σi

k−1∏
`=0

Z(x+ `di)

∣∣∣∣�k,ε 1; (5)
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here and in what follows we use the convention that Z(y) = 0 for all y > N when Z ∈
{−1, 1}N . The change from {0, 1}N to {−1, 1}N is a convenient technicality so we can
ignore terms which get squared in a product.

This last inequality (5) is what we need to prove the result for even values of k using the
arguments we will outline below. For odd values of k, however, this inequality is unsuited
due to the odd number of terms inside the product. The main idea from [1] to deal with
this case is to apply a “Cauchy-Schwarz trick” to pass from (5) to the inequality

ED∈[N ]mEσ∈{−1,1}m max
Z∈{−1,1}N

∑
i∈L,j∈R

∑
x∈[N ]

σiσj

k−1∏
`=1

Z(x+ `di)Z(x+ `dj)�k,ε m
2N, (6)

where (L,R) is a suitable partition of the index set [m] and we assume (without loss of
generality) that m is sufficiently large depending on ε and k.

From now on we assume that k is odd,2 and write k = 2r + 1. For i, j ∈ [m], denote
Pi(x) = {x + di, x + 2di, . . . , x + 2rdi} and Pij(x) = Pi(x) ∪ Pj(x). From inequality (6) it
follows that we can fix a “good” set D ∈ [N ]m satisfying

Eσ∈{−1,1}m max
Z∈{−1,1}N

∑
i∈L,j∈R

σiσj
∑
x∈[N ]

∏
y∈Pij(x)

Z(y)�k,ε m
2N (7)

and for which we have the technical conditions∣∣{i ∈ L, j ∈ R : |Pij(0)| 6= 4r
}∣∣�k m

2/N and (8)

max
x∈[N ]

m∑
i=1

2r∑
`=1

1{`di = x} �k logN, (9)

which are needed to bound the probability of certain bad events later on.
The next key idea is to construct matrices Mij for which the quantity

Eσ∈{−1,1}m
∥∥∥∥ ∑
i∈L,j∈R

σiσjMij

∥∥∥∥
∞→1

(10)

is related to the expression on the left-hand side of inequality (7). The reason for doing
so is that this allows us to use strong matrix concentration inequalities, which can be used
to obtain a good upper bound on the expectation (10); this in turn translates to an upper
bound on m as a function of N , which is our goal. Such uses of matrix inequalities go back
to work of Ben-Aroya, Regev and de Wolf [2], in turn inspired by work of Kerenidis and
de Wolf [13] (see also [8]).

The matrices we will construct are indexed by sets of a given size s, where (with
hindsight) we choose s = bN1−2/kc. For i ∈ L, j ∈ R, define the matrix Mij ∈ R([N ]

s )×([N ]
s )

by
Mij(S, T ) =

∑
x∈[N ]

1
{
|S ∩ Pi(x)| = |S ∩ Pj(x)| = r, S4T = Pij(x)

}
2The even case is similar but simpler. We focus on the odd case here since this is where we obtain new

bounds.
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if |Pij(0)| = 4r, and Mij(S, T ) = 0 if |Pij(0)| 6= 4r. From the definition of this matrix, it
is not hard to deduce from inequality (7) a lower bound on the expectation (10): one can
show that

Eσ∈{−1,1}m
∥∥∥∥ ∑
i∈L,j∈R

σiσjMij

∥∥∥∥
∞→1

�k,ε

(
N − 4r

s− 2r

)
m2N. (11)

Now we need to compute an upper bound for the expectation above. The key ingredient
for this is the following non-commutative version of Khintchine’s inequality, which can be
extracted from a result of Tomczak-Jaegermann [15]:

Theorem 2.1. Let n, d ≥ 1 be integers, and let A1, . . . , An be any sequence of d × d real
matrices. Then

Eσ∈{−1,1}n
∥∥∥∥ n∑
i=1

σiAi

∥∥∥∥
2

≤ 10
√

log d

( n∑
i=1

‖Ai‖22
)1/2

.

In order to apply this inequality, it is better to collect the matricesMij into groups and
use only one half of the random signs σi (another idea from [1]). For i ∈ L, σR ∈ {−1, 1}R,
we define the matrix

MσR
i =

∑
j∈R

σjMij.

Applying Theorem 2.1 to the expression

Eσ∈{−1,1}L
∥∥∥∥∑
i∈L

σiM
σR
i

∥∥∥∥
2

(for some fixed σR ∈ {−1, 1}R) and using properties (8) and (9) to bound the sum∑
i∈L ‖M

σR
i ‖22, one can show (with some effort) that

Eσ∈{−1,1}L
∥∥∥∥∑
i∈L

σiM
σR
i

∥∥∥∥
2

�k,ε

√
log

(
N

s

)
·m1/2(logN)k

m

N1−2/k (12)

holds whenever m ≥ N1−2/k (recall that we choose s = bN1−2/kc).
Finally, we note that∥∥∥∥ ∑

i∈L,j∈R

σiσjMij

∥∥∥∥
∞→1

=

∥∥∥∥∑
i∈L

σiM
σR
i

∥∥∥∥
∞→1

≤
(
N

s

)∥∥∥∥∑
i∈L

σiM
σR
i

∥∥∥∥
2

.

Averaging over all signs σ ∈ {−1, 1}m and combining inequalities (11) and (12), we con-
clude that m �k,ε N

1−2/k(logN)2k+1. As we started with the assumption (3), this shows
that m∗k−1(N)� N1−2/k(logN)2k+1 as wished.
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Abstract

Motivated by a problem in computational complexity, we consider the behavior
of rank functions for tensors and polynomial maps under random coordinate restric-
tions. We show that, for a broad class of rank functions called natural rank functions,
random coordinate restriction to a dense set will typically reduce the rank by at most
a constant factor.
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1 Introduction
Different but equivalent definitions of matrix rank have been generalized to truly different
rank functions for tensors. Although they have proved useful in a variety of applications,
the basic theory of these rank functions, describing for instance their interrelations and
elementary properties, is still far from complete. Without going into the definitions, we
mention below a number of these rank functions to indicate some of the contexts in which
they have appeared.

The slice rank of a tensor was introduced by Tao [15, 16] to reformulate the break-
through proof of the cap set conjecture due to Croot, Lev and Pach [3] and Ellenberg
and Gijswijt [4]. Slice rank is generalized by the partition rank, which was introduced by
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Naslund to prove bounds on the size of subsets of Fnq without k-right corners [12], as well as
provide exponential improvements on the Erdős–Ginzburg–Ziv constant [11]. The analytic
rank is based on a measure of equidistribution for multilinear forms associated to tensors
over finite fields, and was introduced by Gowers and Wolf to study solutions to linear
systems of equations in large subsets of finite vectors spaces [6]. Geometric rank, defined
and studied by Kopparty, Moshkovitz and Zuiddam in the context of algebraic complexity
theory [10], gives a natural analogue of analytic rank for tensors over infinite fields.

Closely related to these rank functions for tensors are notions of rank for multivariate
polynomials. A notion of polynomial rank akin to the partition rank of tensors was used
already in the ’80s by Schmidt in work on algebraic geometry [13], and has since been
re-discovered and proven useful on several occasions. Work on the Inverse Theorem for the
Gowers uniformity norms led Green and Tao to define the notion of degree rank [7], which
quantifies how hard it is to express the considered polynomial as a function of lower-degree
polynomials; this notion was shown to be closely linked to equidistribution properties
of multivariate polynomials over prime fields Fp. Tao and Ziegler [17] later studied the
relationship between the degree rank of a polynomial and its analytic rank, defined as the
(tensor) analytic rank of its associated homogeneous multilinear form, and exploited their
close connection in order to prove the general case of the Gowers Inverse Theorem over Fnp .

Recent work on constant-depth Boolean circuits by Buhrman, Neumann and the present
authors gave rise to a problem on equidistribution properties of higher-dimensional poly-
nomial maps under biased input distributions [1]. This motivated a new notion of analytic
rank for (high-dimensional) polynomial maps and prompted the study of rank under ran-
dom coordinate restrictions, which is the topic of this work.

Common to the tensors, polynomials and polynomial maps considered here is that they
can be viewed as maps on FX , where F is a given field and X is a finite set indexing the
variables. The main question we address is whether, if a map φ on FX has high rank, then
most of its coordinate restrictions φ|I on FI also have high rank for dense subsets I ⊆ X
(where we also respect the product structure of X in the case of tensors). Our main results
show that this is the case for all “natural” rank functions, which include all those mentioned
above.

2 The matrix case
It is instructive to first consider the case of matrices, which is simpler and illustrates the
spirit of our main results. For a matrix A ∈ Fn×n and subsets I, J ⊆ [n], denote by A|I×J
the sub-matrix of A induced by the rows in I and columns in J . Given σ ∈ (0, 1), consider
a random set I ⊆ [n] containing each element independently with probability σ; we write
I ∼ [n]σ when I is distributed as such. Note that, if I ∼ [n]ρ and J ∼ [n]σ are independent,
then I ∪ J ∼ [n]η with η = 1− (1− ρ)(1− σ).

Proposition 2.1. For every σ ∈ (0, 1] there exists κ ∈ (0, 1] such that for every matrix



Random restrictions of high-rank tensors and polynomial maps 240

A ∈ Fn×n we have

PrI∼[n]σ
[

rk(A|I×I) ≥ κ · rk(A)
]
≥ 1− 2e−κ rk(A).

Proof: Write ρ = 1 −
√

1− σ and let J, J ′ ∼ [n]ρ be independent random sets; note that
J ∪ J ′ ∼ [n]σ. Let r = rk(A), and fix a set S ⊆ [n] of r linearly independent rows of A.
By the Chernoff bound [8], the probability that the set J satisfies |J ∩ S| < ρr/2 is at
most e−ρr/8.

Now let B := A|(J∩S)×[n] be the (random) sub-matrix of A formed by the rows in J ∩S.
Since its rows are linearly independent, the rank of B is precisely |J∩S|; let T ⊆ [n] be a set
of |J ∩ S| linearly independent columns of B. Then the probability that |J ′ ∩ T | < ρ|T |/2
is at most e−ρ|T |/8, and the rank of B|(J∩S)×(J ′∩T ) = A|(J∩S)×(J ′∩T ) is equal to |J ′ ∩ T |.
It follows from the union bound and monotonicity of rank under restrictions that, with
probability at least 1− 2e−ρ

2r/16, the principal sub-matrix of A induced by J ∪ J ′ has rank
at least ρ2r/4. The result now follows since J ∪ J ′ ∼ [n]σ. �

3 Main results
Here we generalize Proposition 2.1 to tensors and polynomial maps for rank functions
that satisfy a few natural properties, namely “sub-additivity”, “monotonicity”, a “Lipschitz
condition” and, in the case of polynomial maps, “symmetry” (see below for the precise def-
initions). Those functions which satisfy these properties are called natural rank functions ;
we note that all notions of rank mentioned in the Introduction are natural rank functions.

Since our results are independent of the field considered (which can be finite or infinite),
we will always denote it by F and suppress statements of the form “let F be a field” or “for
every field F”.

3.1 Tensors

We begin by considering the case of tensors.

Definition 3.1. For finite sets X1, . . . , Xd ⊂ N, a d-tensor is a map T : X1×· · ·×Xd → F.
We will associate with any d-tensor T a multilinear map FX1×· · ·×FXd → F and an element
of FX1 ⊗ · · · ⊗ FXd in the obvious way, and also denote these objects by T .

For a tensor T as in Definition 3.1 and subsets I1 ⊆ X1, . . . , Id ⊆ Xd, denote I[d] =
I1 × · · · × Id and write T|I[d] for the restriction of T to I[d]. If T is viewed as an element of
FX1 ⊗ · · · ⊗ FXd , then T|I[d] is simply a sub-tensor.

We denote the set of d-tensors over F with finite support by (F∞)⊗d; note that the
tensors defined on finite sets naturally embed into this set, and that the rank functions for
tensors discussed above are invariant under this embedding. The notions of tensor rank
we will consider here are those called natural rank functions as defined below:
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Definition 3.2. We say that rk : (F∞)⊗d → R+ is a natural rank function if it satisfies
the following properties:

1. Sub-additivity:
rk(T + S) ≤ rk(T ) + rk(S) for all T, S ∈ (F∞)⊗d.

2. Monotonicity under restrictions:
rk
(
T|I[d]

)
≤ rk(T ) for all T ∈ (F∞)⊗d and all sets I1, . . . , Id ⊂ N.

3. Restriction Lipschitz property:
rk
(
T|J[d]

)
≤ rk

(
T|I[d]

)
+
∑d

i=1 |Ji \ Ii| for all T ∈ (F∞)⊗d and all sets I1 ⊆ J1, . . . , Id ⊆
Jd.

Our main result in this setting concerns how natural rank functions behave under
random coordinate restrictions. Intuitively, it shows that random restrictions of high-rank
tensors will also have high rank with high probability. It can be formally stated as follows:

Theorem 3.3. For every d ∈ N and σ ∈ (0, 1], there exist constants C, κ > 0 such that
the following holds. For every natural rank function rk : (F∞)⊗d → R+ and every d-tensor
T ∈

⊗d
i=1 Fni we have

PrI1∼[n1]σ ,...,Id∼[nd]σ
[

rk
(
T|I[d]

)
≥ κ · rk(T )

]
≥ 1− Ce−κ rk(T ).

From this theorem one can easily deduce a more symmetric version, which is valid in
the standard case of “cubic” tensors where every row is indexed by the same set:

Corollary 3.4. For every d ∈ N and σ ∈ (0, 1], there exist constants C, κ > 0 such that
the following holds. For every natural rank function rk : (F∞)⊗d → R+ and every d-tensor
T ∈ (Fn)⊗d we have

PrI∼[n]σ
[

rk
(
T|Id
)
≥ κ · rk(T )

]
≥ 1− Ce−κ rk(T ).

3.2 Polynomial maps

Next we consider the setting of polynomials and higher-dimensional polynomial maps.

Definition 3.5. A polynomial map is an ordered tuple φ(x) =
(
f1(x), . . . , fk(x)

)
of poly-

nomials f1, . . . , fk ∈ F[x1, . . . , xn]. We identify with φ a map Fn → Fk in the natural way.
The degree of φ is the maximum degree of the fi.

For a polynomial map φ : Fn → Fk and a set I ⊆ [n], define the restriction φ|I : FI → Fk
to be the map given by φ|I(y) = φ(ȳ), where ȳ ∈ Fn agrees with y on the coordinates in I
and is zero elsewhere.

We denote the space of all polynomial maps φ : Fn → Fk of degree at most d by
Pol≤d(Fn,Fk), and write

Pol≤d(F∞,Fk) =
⋃
n∈N

Pol≤d(Fn,Fk).

The notions of rank we consider are defined below:
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Definition 3.6. We say that rk : Pol≤d(F∞,Fk) → R+ is a natural rank function if it
satisfies the following properties:

1. Symmetry:
rk(φ) = rk(−φ) for all φ ∈ Pol≤d(F∞,Fk).

2. Sub-additivity:
rk(φ+ γ) ≤ rk(φ) + rk(γ) for all φ, γ ∈ Pol≤d(F∞,Fk).

3. Monotonicity under restrictions:
rk(φ|I) ≤ rk(φ) for all φ ∈ Pol≤d(F∞,Fk) and all sets I ⊂ N.

4. Restriction Lipschitz property:
rk(φ|I∪J) ≤ rk(φ|I) + |J | for all φ ∈ Pol≤d(F∞,Fk) and all sets I, J ⊂ N.

Our second main result shows that random restrictions of a high-rank polynomial map
will also have high rank with high probability. Its formal statement is given as follows:

Theorem 3.7. For every d ∈ N and σ, ε ∈ (0, 1], there exist constants κ = κ(d, σ) > 0
and R = R(d, σ, ε) ∈ N such that the following holds. For every natural rank function rk :
Pol≤d(F∞,Fk)→ R+ and every map φ ∈ Pol≤d(Fn,Fk) with rk(φ) ≥ R, we have

PrI∼[n]σ
[

rk(φ|I) ≥ κ · rk(φ)
]
≥ 1− ε.

3.3 The proofs

Whereas the proof of the matrix case (Proposition 2.1) uses in an essential way the fact that
a rank-r matrix contains a full-rank r × r submatrix, an analogous property is not known
to be true in general for tensors and polynomial maps. In fact, it was shown by Gowers
that such a property is false in the case of slice rank for 3-tensors (see [9, Proposition 3.1]).
Karam [9] recently studied the extent for which similar but quantitatively weaker properties
hold for tensor rank functions, but the quantitative bounds obtained are still insufficient
for an argument akin to that of Proposition 2.1 to work.

The proofs of our main theorems must then proceed differently from the simpler case
of matrices. Our proof of Theorem 3.3 (the tensor case) uses instead ideas from probabil-
ity theory, in particular concerning concentration inequalities on product spaces; it relies
mainly on an inequality of Talagrand [14, Theorem 3.1.1].

The proof of Theorem 3.7 (for polynomial maps) is again very different from the tensor
case, which implicitly makes use of multilinearity; it relies instead on results from the
analysis of Boolean functions, in particular Friedgut’s Junta Theorem [5], taken together
with elementary (but somewhat involved) combinatorial arguments. The full proofs can
be found in the full version of our paper [2].
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Theorem 1.1 (Erdős, Ko, and Rado [4]). Let r ≤ n/2. If F is a family of pairwise-
intersecting subsets of [n], each with r elements, then |F| ≤
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)
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That is, under the above hypotheses a family of pairwise-intersecting objects of maximal
size is given by a family with a common intersection. Moreover, under slightly stronger
hypotheses, this is the only such family. Hilton and Milner [8] later gave upper bounds for
pairwise-intersecting families that do not all contain a common element.

There are a large number of generalizations of Theorem 1.1. We focus on one in
particular. Holroyd and Johnson asked at the 1997 British Combinatorial Conference [13]
about whether an analogue of Erdős-Ko-Rado property holds for independent sets in cyclic
and similar graphs. Talbot showed the answer to be “yes” in a strong sense.

Theorem 1.2 (Talbot [22]). Let n, k, r be positive integers such that r ≤ n/(k+1). Let G be
the graph with vertex set Zn and edges consisting of those x, y such that x−y ∈ {1, . . . , k}.

If F is a family of pairwise-intersecting independent sets of G, each with r elements,
then |F| is smaller than the family B of all independent sets with r elements containing 0.
If |F| achieves the upper bound and n 6= 2r + 2, then F is B up to relabeling the vertices.

Holroyd and Talbot asked whether similar results hold for independent sets in other
graphs G. There are counterexamples for r around the size of a maximum independent
set, but not for somewhat smaller r. Since the collection of independent sets form a
simplicial complex, and since it is our main object of study, we introduce it now. A
simplicial complex K with vertex set V is a set system K ⊆ 2V that is closed under taking
susbset, i.e., if F ∈ K and G ⊆ F then G ∈ K. In this article we will assume that
the vertex set V is equipped with a total order and consequently we can identify it with
[|V |] = {1, . . . , |V |} respecting this order. The members of K are called faces, the faces of
size r are called r-faces, the number of r-faces in K is denoted by fr(K) and the maximal
faces with respect to inclusion are called facets. The dimension of a face F is defined by
dim(F ) = |F | − 1 and the dimension of K by dim(K) = maxF∈K dim(F ). The r-skeleton
of K, denote by K(r), is the set of faces from K of dimension at most r. The pure r-
skeleton of K is the simplicial complex given by all the faces from K of dimension r and
their subsets. Given a face F ∈ K, the link of F in K is defined as the simplicial complex
lk(F,K) = {G ∈ K : G∩F = ∅ and F ∪G ∈ K}. By K[S] = {F ∈ K : F ⊆ S} we denote
the induced simplicial complex on the vertices S. For two simplicial complexes K and L,
the join is defined by K ∗ L = {F tG : F ∈ K,G ∈ L}, where t denotes disjoint union.

Conjecture 1.3 (Holroyd and Talbot [10], extended by Borg to arbitrary simplicial com-
plexes [1]). Let K be a simplicial complex whose smallest facet has d vertices, and let
r ≤ d/2. If F is a family of pairwise-intersecting faces of K, each with r elements, then
there is some vertex v of K so that |F| ≤ fr−1(lk(v,K)). If r < d/2 and |F| achieves the
upper bound, then F consists of the faces containing some vertex v.

If a simplicial complex K satisfies the upper bound of Conjecture 1.3 at a specified
value of r, then we say that K is r-EKR. If every intersecting family of maximum size has
a common intersection, then we say that K is strictly r-EKR. We abuse terminology to
say that a graph is (strictly) r-EKR if its independence complex has the same property.

There has been considerable work on Conjecture 1.3. Hurlbert and Kamat showed [11]
that any chordal graph with an isolated vertex satisfies the upper bound of Conjecture 1.3.
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Borg showed [1] that the conjecture holds asymptotically, in the precise sense that if the
minimal facet cardinality of a simplicial complex K is at least (r − 1)

(
3r−3
2

)
+ r, then K

satisfies r-EKR. Other related works are [10, 9, 19]. Rather than working with arbitrary
simplicial complexes we will focus on the so called sequentially Cohen-Macaulay near-cones
which we introduce now. A simplicial complex K is a near-cone with apex v if for every
F ∈ K and every w ∈ F we have that F \ {w} ∪ {v} ∈ K. A simplicial complex is called
Cohen-Macaulay over F if for every face F ∈ K we have that H̃i(lk(F,K),F) = 0 for
i < dim(lk(F,K)), that is the reduced homology of every link vanishes on every dimension
except possibly the top one. A simplicial complex is said to be sequentially Cohen-Macaulay
over F if for every r, the pure r-skeleton of K is Cohen-Macaulay over F. From now on
we will assume that the field has characteristic 0 and drop it from the notation. The
second author showed more generally [25] that any sequentially Cohen-Macaulay near-
cone satisfies the upper bound of Conjecture 1.3. We note here that the independence
complex of a graph G is a cone if and only if G has an isolated vertex. Moreover, the class
of sequentially Cohen-Macaulay simplicial complexes is a broad class that includes the
independence complexes of chordal graphs and many others [2, 17, 24]. Neither Hurlbert
and Kamat nor the second author addressed the strict r-EKR property.

The main purpose of the current paper is to fill in this gap. We show:

Theorem 1.4. Let 2 ≤ r < d/2. If the simplicial complex K is a sequentially Cohen-
Macaulay near-cone with minimal facet cardinality d, then K is strictly r-EKR, that is
the pairwise-intersecting families of maximum size consist of all r-faces containing an apex
vertex.

The novelty of our techniques is to combine algebraic and combinatorial shifting oper-
ations. We also make use of some of the ideas behind proofs of the Hilton-Milner theo-
rem [7, 12].

This article is organized as follows, in Section 2 we review the main results needed for
the proof. In Section 3 we give the proof of Theorem 1.4.

2 Shifting

A set system F ⊆
(
[n]
r

)
is said to be shifted if for every F ∈ F and i, j ∈ [n] such that

i < j, j ∈ F and i /∈ F we have that F \ {j} ∪ {i} ∈ F . In this section we review two
operations that assign to a set system another set system that is shifted while preserving
several properties of interest.

Given a set system F ⊆
(
[n]
r

)
, and F ∈ F . Let i, j ∈ [n] such that i < j, the

combinatorial shift Shifti,j is defined by

Shifti,j(F ) =

{
F \ {j} ∪ {i} if j ∈ F, i /∈ F and F \ {j} ∪ {i} /∈ F ,
F otherwise.

Shifti,j(F) = {Shifti,j(F ) : F ∈ F}.
We will be using the following properties of combinatorial shifting [6].
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Theorem 2.1. Let F ⊆
(
[n]
r

)
and i, j ∈ [n] such that i < j.

1. | Shifti,j(F)| = |F|.

2. If G ⊆ F , then Shifti,j(G) ⊆ Shifti,j(F) where in each case we do the combinatorial
shifting according to the respective family.

3. If F is shifted, then Shifti,j(F) = F .

4. If F is pairwise-intersecting, then Shifti,j(F) is pairwise-intersecting.

By iterating the combinatorial shifting operation we will eventually obtain a set system
that is shifted, but the final set system is dependent on the order of the shifts.

Kalai [15] introduced a shifting operation that produces a shifted set system preserving
several algebraic properties, so-called (exterior) algebraic shifting. This operation assigns
to a simplicial complex K a shifted simplicial complex ∆(K). We would like to point out
that in contrast to combinatorial shifting, algebraic shifting works in one step rather than
an iterative procedure. Here we merely state the properties we will be using.

Theorem 2.2. Let K be a simplicial complex.

1. [15, Theorem 2.1.2] ∆(K) is shifted.

2. [15, Theorem 2.2.7] K ⊆ L, then ∆(K) ⊆ ∆(L).

3. [15, Theorem 2.1.1] fr(K) = fr(∆(K)).

4. [15, Theorem 4.1] K is Cohen-Macaulay then ∆(K) is Cohen-Macaulay.

5. [15, Theorem 6.2] If F ⊆
(
[n]
a

)
and G ⊆

(
[n]
b

)
are cross-intersecting, then ∆(F) and

∆(G) are cross-intersecting.

6. [18, Theorem 5.3] If K is a near-cone with apex v, then ∆(K) = (1∗∆(lk(v,K)))∪B
where B = {F ∈ ∆(K) : 1 /∈ F}. In particular, fr(lk(1,∆(K))) = fr(∆(lk(v,K))) =
fr(lk(v,K)).

Since the minimal facet cardinality plays a key role in Conjecture 1.3. We need to
be able to control its behavior when performing (algebraic) shifting operations. For this
purpose we introduce the following definition of depth of a simplicial complex K

depthK = max{d : K(d) is Cohen-Macaulay}.

The depth of a simplicial complex is one less than the depth of its Stanley-Reisner ring [21].

Corollary 2.3 ([3]). The minimum facet dimension of ∆(K) is at least d if and only if
K(d) is Cohen-Macaulay over F.

From the above corollary it follows that depthK + 1 is the minimum facet cardinality
of ∆(K) which is at most the minimal facet cardinality of K. Notice that when K is
sequentially Cohen-Macaulay, the minimal facet cardinality ofK coincides with depthK+1
and consequently with the minimal facet cardinality of its algebraic shift ∆(K).
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3 Proof of Theorem 1.4
First, we adapt the approach in [7, 12] for shifted simplicial complexes. For {i, j} ∈

(
[n]
2

)
,

let swapi,j denote the function exchanging vertices i and j.

Lemma 3.1. Let K be a shifted simplicial complex with minimal facet cardinality d and
F ⊆ K a non-trivial pairwise-intersecting family of r-faces with r ≤ d/2 of maximal size.
Then, there exists a shifted non-trivial pairwise-intersecting family F ′ ⊆ K of r-faces such
that |F| = |F ′|.

Proof. Consider F of maximal size. We apply Shifti,j repeatedly to F until it results in
a trivial pairwise-intersecting family. Let Shifts,t be the first shifting operation making
the family trivial and let H be the non-trivial family before applying the last shifting
Shifts,t. Because K is shifted, the repeated application of combinatorial shifting to the
pairwise-intersecting family keeps the family in the simplicial complex at each step. That
is, Shifti,j(F) ⊆ Shifti,j(K) = K, where the first inclusion follows from Theorem 2.1.2 and
the last step from Theorem 2.1.3.

If Shift1,s(H) is non-trivial and Shift2,t ◦ Shift1,s(H) is non-trivial then applying Shift1,2
to this last family gives a trivial one and we are in the same situation as [7, Proposition
1.6], that is s = 1 and t = 2. If Shift1,s(H) is trivial while Shift2,s(H) is non-trivial, then
Shift1,2 ◦ Shift2,s(H) is trivial and we are again in the same situation as above. The remain-
ing case is when we have that Shift1,s(H) and Shift2,s(H) (or Shift1,t(H) and Shift2,t(H))
are both trivial. We will use repeatedly the following argument: if F is non-trivial pairwise-
intersecting family of maximal size, and Shifti,j(F) is trivial then {i, j} ∩ F 6= ∅ for all
F ∈ F and, because of maximality of |F|, we have that

Ti,j = {T ∪ {i, j} : T ∈ lk({i, j}, K), |T | = r − 2} ⊆ F .

Let 3 ≤ s0 < s such that H′ = Shifts0,s(H) is non-trivial, we take the first one if it
exists, or we set s0 = s otherwise. We notice that s0 ≤ r+1, since otherwise every member
of H would contain [r+ 1] or s, since the first option is not possible due to its size then H′
is trivial, which is a contradiction. Since Shifti,s0(H′) is trivial for all i ∈ [s0 − 1] while H′
is not, a routine computation shows that the following holds: Ti,s0 ⊆ H′ for i ∈ [s0− 1]; for
each F ∈ H′ we have that [s0 − 1] ⊆ F or s0 ∈ F ; for each i ∈ [s0 − 1] there exist Fi ∈ H′
such that i /∈ Fi and s0 ∈ Fi; there exist F0 such that [s0 − 1] ⊆ F0 and s0 /∈ F0. Finally,
set G = swap1,s0(H

′) and Gi = swap1,s0(Fi), then 1 /∈ G0 and s0 /∈ G1.
Claim 1: G is intersecting. The only non-trivial case to verify is if F, F ′ ∈ H′ are

such that F ∩ [s0] = [s0 − 1] and F ′ ∩ [s0] = s0. Since H′ is intersecting, there exists
x ∈ F ∩ F ′. Then, x /∈ [s0] and consequently it is not affected by swap1,s0 . From this we
can conclude that x ∈ swap1,s0(F )

⋂
swap1,s0(F

′).
Claim 2: G is non-trivial. If x ∈

⋂
G, then since

⋂
H′ = ∅ we must have that x = 1

or x = s0. But, 1 /∈ G0 and s0 /∈ G1.
Claim 3: G ⊆ K. For F ∈ H′ such that s0 ∈ F and 1 /∈ F , swap1,s0(F ) ∈ K since K

is shifted. For F ∈ H′ such that 1 ∈ F and s0 /∈ F consider F ′ given by adding the first r
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vertices of [n] \ F to F , this is a face since the minimal facet cardinality is d ≥ 2r and it
contains s0 since s0 ≤ r + 1. Consequently swap1,s0(F ) ∈ K.

Claim 4: T1,2 ⊆ G. Since s0 ≥ 3, for i ∈ [s0 − 1] we have that Ti,s0 ⊆ H′ and
consequently T1,i = swap1,s0(Ti,s0) ⊆ swap1,s0(H

′) = G.
Next, we apply repeatedly Shifti,j with 3 ≤ i < j ≤ n to G until it is stable under this

restricted set of combinatorial shiftings. We notice that this does not change T1,2. Denote
the stable set by G ′.

Claim 5: G ′ is non-trivial. Since [s0 − 1] \ {1} ⊆ G0 ∈ G, then [r + 1] \ {1} =
[s0] \ 1 ∪ {s0 + 1, . . . , r + 1} ∈ G ′. On the other hand, since T1,2 ⊆ G ′ we have that
[r + 1] \ i ∈ G ′ for i ∈ {3, . . . , r + 1}. Because 1 ∈ G2 ∈ G while 2 /∈ G2, we also have that
[r + 1] \ {2} ∈ G ′. That is,

(
[r+1]
r

)
⊆ G ′.

Consequently applying Shifti,j for 1 ≤ i < j ≤ n to G ′ does not create a trivial family.
Finally, we apply Shifti,j for 1 ≤ i < j ≤ n repeatedly to G ′ until it is stable and denote
the resulting family by F ′.

We will need the following technical lemma.

Lemma 3.2 ( [7, 12]). Let F be an pairwise-intersecting shifted family. For every F ∈ F
there exists l ≥ 1 such that |F ∩ [2l − 1]| ≥ l. Moreover, the maximum such l = l(F )
satisfies |F ∩ [2l(F )]| = l(F ).

The following function was previously defined in [7] in the unrestricted context. We
extend it to the setting of simplicial complexes. Let K be a shifted simplicial complex with
vertex set [n] and F ⊆ K a shifted pairwise-intersecting family of r-faces, set

α : F → (st(1, K) \ st(1, K[[n] \ [2, r + 1]])) ∪ {2, . . . , r + 1}

given by

α(F ) =

{
F if 1 ∈ F or [2, r + 1] ⊆ F,

F∆[2l(F )] otherwise.

The following lemma shows that α is well defined and injective.

Lemma 3.3. For F ∈ F such that α(F ) 6= F we have that: (1) 1 ∈ α(F ). (2) α(F ) /∈ F .
(3) α(F ) ∩ [2, r + 1] 6= ∅. (4) α is injective. (5) α(F ) ∈ K.

Proof. Properties (1-4) were proved previously [7], we only need to verify property (5).
Notice that d/2 ≥ r ≥ |F ∩ [2l(F )]| = l(F ). In particular, |F ∪ [2l(F )]| = |F |+ |[2l(F )]| −
|F ∩ [2l(F )]| ≤ 2r ≤ d. Because K is shifted with minimal facet cardinality d we have that
F∪[2l(F )] ∈ K since it is the smallest face, with respect to the partial order, of size r+l(F )
containing F . Since α(F ) = F∆[2l(F )] ⊆ F ∪ [2l(F )] we conclude that α(F ) ∈ K.

Proposition 3.4. Let K be a shifted simplicial complex with vertex set [n] and minimal
facet cardinality d and r ≤ d/2. Let F ⊆ K be a non-trivial intersecting family of r-faces.
We have that

|F| ≤ fr−1(lk(1, K))− fr−1(lk(1, K[[n] \ [2, r + 1]])) + 1.
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Moreover, if 2 ≤ r < d/2 then |F| < fr−1(lk(1, K)).

Proof. By Lemma 3.1 we can assume that F is shifted. The first part follows from the
injectivity of α. For the second part, because 2r+1 ≤ d we have that {1, r+2, . . . , 2r+1}\
{i} ⊆ [d]\ [2, r+1] ∈ K for i ∈ [r+2, 2r+1]. Consequently fr−1(lk(1, K[[n]\ [2, r+1]])) ≥
r ≥ 2 and the conclusion follows.

Remark 3.5. It is not hard to show that if K be a near-cone with apex v and minimal facet
cardinality d, then for r ≤ d/2 we have that K(r) ⊆ v ∗ lk(v,K).

Theorem 3.6. Let K be a near-cone with apex v, then K is strict r-EKR for r < depthF K+1
2

.

Proof. Let F be a non-trivial intersecting family of r-faces. Since depthFK ≤ d then
r < d/2. By above remark we can conclude that F ⊆ v∗lk(v,K). Set F(v) = {F \{v} : F ∈
F , v ∈ F} and F(v̄) = {F : F ∈ F , v /∈ F}. Then F(v),F(v̄) ⊆ lk(v,K) are cross-
intersecting and F(v̄) is pairwise-intersecting. By Theorem 2.2.2 and Theorem 2.2.5 we
have that ∆(F(v)),∆(F(v̄)) ⊆ ∆(lk(v,K)) are cross-intersecting and ∆(F(v̄)) is pairwise-
intersecting. Consequently the family F ′ = {{1} ∪ F : F ∈ ∆F(v)} ∪ ∆(F(v̄)) ⊆ 1 ∗
∆(lk(v,K)) is non-trivial and intersecting. By Theorem 2.2.6, ∆(K) = (1∗∆(lk(v,K)))∪B
where B = {F ∈ ∆(K) : 1 /∈ F}, consequently F ′ ⊆ ∆(K) and non-trivial. Moreover, since
no member of ∆(F(v̄)) contains vertex 1 we have that

|F ′| = |∆(F(v))|+ |∆(F(v̄))| = |F(v)|+ |F(v̄)| = |F|

where we have used Theorem 2.2.3. Since K is shifted, by Theorem 2.2.1, with min-
imal facet cardinality depthFK + 1, by Proposition 3.4, we can conclude that |F| <
fr−1(lk(1,∆K)) = fr−1(lk(v,K)) by Theorem 2.2.6.

As a corrolary we obtain Theorem 1.4.
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We provide a new explicit formula enumerating graphs with constraints on their
degrees, such as regular graphs, and extend it to bipartite graphs. It relies on gener-
ating function manipulations and Hadamard products.
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Related work. The most famous graphs with degree constraints are k-regular graphs,
where all vertices have degree k. There are two natural generalizations: graphs with a
given degree sequence, and graphs where all vertices have their degree in a given set. In
this article, we consider the later. There is a large literature on the asymptotic enumeration
[1, 22, 7] and typical structure of graphs with degree constraints [25, 18, 15, 14, 3, 16, 8].
We focus on exact enumeration. The main result in this field is that the generating func-
tion of graphs with their degrees in a given finite set is D-finite, meaning that it is solution
of a differential equation with polynomial coefficients. The previous proofs relied on a
symmetric function approach [13, 12, 23, 24]. It starts by considering the infinite prod-
uct

ś

1ďiăjp1 ` xixjq representing graphs where the degree of vertex i is the power of xi.
Arguments on the D-finiteness of the scalar product of symmetric functions are then ap-
plied. In contrast, we obtain a formula (Theorem 1) for the generating function of those
graphs that is explicit and uses only a finite number of variables (assuming the degrees
are bounded). Our approach relies on direct translation of combinatorial properties into
∗Nokia Bell Labs, supported by the RandNET project, authors presented in alphabetical order.
†Nokia Bell Labs, supported by the RandNET project
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generating function equations (symbolic method [2, 11]), and manipulation of those equa-
tions, in particular using Hadamard products. Works of similar spirit include [4, Chapters
3,4,5,7] and [7]. Our expression provides a new proof of D-finiteness, as D-finite series are
stable by Hadamard product [21, 27] and evaluation [28]. Although effective algorithms ex-
ist [5] to compute the differential equation characterizing the generating function of graphs
with degree constraints, they are computationally costly and the differential equation is
only known up to k “ 4 for k-regular graphs. We hope our new formula will allow the
computation of differential equations for k-regular graphs with k ě 5 and fast enumeration
of those graphs [19]. Our results extend to bipartite graphs with different degree sets for
the left and right vertices. For bipartite graphs, we used a multidimensional version of
the Hadamard product, that has been well studied in the literature [9, 20, 26]. To our
knowledge, the asymptotic structure of those graphs has not been investigated [10], and
we hope our work will be a step in that direction.

Structure. We enumerate successively several graph-like families with degree constraints:
weighted multigraphs, loopless weighted multigraphs, weighted graphs and finally graphs in
Theorem 1. They are all depicted in Figure 1. The generating function of the first family
is expressed directly. Then, to go from each family A to the next family B, we first express
the generating function of A using the generating function of B, then invert this relation.
The extension to bipartite graphs is presented in Theorem 2.

a b

c d

e

(a) Graph

a b

c d

e

1

2

3
3

(b) Weighted graph

a b

c d

e

1 b

2

b
1a

2a
3
a

(c) Loopless
weighted multigraph
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c d

e

1 b

2

c
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2a
3
b

3
a

2

b

(d) Weighted multigraph

Figure 1: Steps of a possible transformation of a simple graph into a weighted multigraph.
Labels are represented by letters, while weights are represented by integers.

Notations. The nth coefficient of a formal power series is denoted by rzns
ř

m amz
m “ an.

The exponential Hadamard product ([17, Theorem 3], [2, Section 2.1]) is defined as
ˆ

ÿ

n

an
zn

n!

˙

dz

ˆ

ÿ

n

bn
zn

n!

˙

“
ÿ

n

anbn
zn

n!
.

We denote by dz“1 the exponential Hadamard product followed by the evaluation at z “ 1.
Throughout this article, the variable δd marks vertices of degree d. We denote by δ the
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infinite vector pδ0, δ1, δ2, . . .q. The same bold convention extends to other letters. An
interesting particular case is, given a set D of nonnegative integers, to set δd “ 1 if d P D,
and δd “ 0 otherwise. That way, only graphs with all their vertices having degree in D are
counted. We associate to those variables the generating function

∆pz, δq “
ÿ

dě0

δd
zd

d!
.

In the following, we consider graphs with vertices of degree at most D for some D ě 0, so
δj “ 0 whenever j ą D and ∆pz, δq is a polynomial.

1 Weighted multigraphs
Definition. A weighted multigraph G is a finite sequence

G “ pV pGq, E1pGq, E2pGq, . . .q

where V pGq “ t1, 2, . . . , npGqu is the set of npGq vertices, and for all j ě 1, EjpGq is the
finite set of mjpGq edges of weight j

EjpGq “ tpuj,1, vj,1, 1q, . . . , puj,mjpGq, vj,mjpGq,mjpGqqu

where each ui,j and vk,` belongs to V pGq. Thus, vertices are labeled, edges of weight j are
labeled (and have their own independent label set), and all edges are oriented. Furthermore,
loops and multiple edges are allowed. The degree degpuq of a vertex u is defined as the sum
of the weights of all edges adjacent to it, counted twice if they are loops. For examples, in
Figure 1 (d), vertex e has degree 8.

Generating function. We use the variable z to mark the vertices, and for all j ě 1,
we use wj{2 to mark each edge of weight j. This factor 1{2 is here for historical reasons
only [6, Section 2.3]. Additionally, for each d ě 0, the variable δd is introduced to mark
vertices of degree d. The generating function of weighted multigraphs WMGpz,w, δq is
then defined as a sum over all weighted multigraphs

WMGpz,w, δq “
ÿ

G

ˆ npGq
ź

u“1

δdegpuq

˙ˆ

ź

jě1

pwj{2q
mjpGq

mjpGq!

˙

znpGq

npGq!
. (1)

Lemma 1. Let PWMGpx, δq denote the polynomial

PWMGpx, δq “ ∆py, δq dy“1 e
řD

j“1 xjy
j

,

then the generating function of weighted multigraphs is equal to

WMGpz,w, δq “ e
řD

j“1 wjx
2
j {2 dx1“1 ¨ ¨ ¨ dxD“1 e

zPWMGpx,δq.
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Proof. Any weighted multigraph decomposes uniquely as a set of labeled vertices, each
attached to a set of labeled half-edges of weight j, for j ě 1. If the vertex has degree
d, then the sum of the weights of the half-edges attached to it should be d. Then, using
the variable xj to mark the half-edges of weight j, the generating function of such sets is
PWMGpx, δq. If the multigraph contains mj edges of weight j, then after cutting them in
two, we are left with 2mj half-edges of weight j. The symbolic method [11] implies

WMGpz,w, δq “
ÿ

m

p2mq!rx2m
sezPWMGpx,δq

ź

jě1

pwj{2q
mj

mj!
.

This expression is simplified using Hadamard products with the function

ÿ

mě0

p2mq!
pw{2qm

m!

x2m

p2mq!
“ ewx2{2.

A multigraph is loopless if it has no edge containing twice the same vertex. The
generating function LWMGpz,w, δq of those weighted multigraphs is defined by restricting
the sum from Equation (1) to them.

Lemma 2. Let PLWMGpx,w, δq denote the polynomial

PLWMGpx,w, δq “ ∆py, δq dy“1 e
řD

j“1 xjy
j´

řD
j“1 wjy

2j{2,

then the generating function of loopless weighted multigraphs is equal to

LWMGpz,w, δq “ e
řD

j“1 wjx
2
j {2 dx1“1 ¨ ¨ ¨ dxD“1 e

zPLWMGpx,w,δq.

Proof. Any weighted multigraph is uniquely obtained by adding a set of loops on each
vertex of a loopless weighted multigraph. During this operation, any vertex of degree d
becomes a vertex of degree d ` 2k, for some nonnegative integer k, and a set of weighted
loops whose weights sum to k. This corresponds to replacing δd with

δdpη,wq “
ÿ

kě0

ηd`2kry
k
se

1
2

ř

dě1 wdy
d

“
ÿ

jě0

ηjry
j
syde

1
2

ř

dě1 wdy
2d

. (2)

Thus, the generating functions of weighted multigraphs and loopless weighted multigraphs
are linked by the relation

WMGpz,w,ηq “ LWMGpz,w, δpη,wqq

Inverting Equation (2), we obtain

ηdpδ,wq “
ÿ

jě0

δjry
j
syde´

1
2

ř

iě1 wiy
2i
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so

∆pz,ηpδ,wqq “
D
ÿ

d“0

ÿ

jě0

δjry
j
syde´

řD
i“1 wiy

2i{2 z
d

d!
“ ∆py, δq dy“1 e

yz´
řD

i“1 wiy
2i{2.

Given the expression of WMGpz,w, δq from Lemma 1, we deduce

LWMGpz,w, δq “ WMGpz,w,ηpδ,wqq

“ e
řD

j“1 wjx
2
j {2 dx1“1 ¨ ¨ ¨ dxD“1 e

z∆py,ηqdy“1expp
řD

j“1 xjy
jq.

Finally, the properties F px yq dx Gpxq “ F pxq dx Gpx yq and F pxq d ex “ F pxq of the
exponential Hadamard product imply

∆py,ηq dy“1 e
řD

j“1 xjy
j

“ ∆py, δq dy“1 e
yz´

řD
i“1 wiy

2i{2
dy“1 e

řD
j“1 xjy

j

“ ∆py, δq dy“1 e
řD

j“1 xjy
j´

řD
j“1 wjy

2j{2
“ PLWMGpx,w, δq.

2 Graphs
Definitions. A weighted graph G is a finite sequence

G “ pV pGq, E1pGq, E2pGq, . . .q

where V pGq “ t1, 2, . . . , npGqu is the set of npGq vertices, and
Ť

j EjpGq is a finite set of
edges, which are unordered pairs of distinct vertices. EjpGq denotes the set of edges of
weight j and its cardinality is mjpGq. Thus, edges are unoriented and unlabeled, loops
and multiple edges are forbidden. The degree of a vertex is still defined as the sum of the
weights of its adjacent edges.

Unweighted graphs correspond to the case G “ pV pGq, E1pGqq, so Ej “ H for all j ě 2.

Generating function. The generating function of weighted graphs WGpz,w, δq is de-
fined as a sum over all weighted graphs

WGpz,w, δq “
ÿ

G

ˆ npGq
ź

u“1

δdegpuq

˙ˆ

ź

jě1

w
mjpGq
j

˙

znpGq

npGq!
.

This generating function is exponential with respect to the variable z marking the vertices,
and ordinary with respect to the variables pwjqjě1 marking the edges. Note that the
generating function of an edge of weight j is wj (for weighted multigraphs, we used the
convention wj{2, linked to the fact that edges were oriented).



Graphs with degree constraints 259

Lemma 3. For j ě 0, let vjpwq and PWGpx,w, δq denote the polynomials

vjpwq “ ry
j
s log

ˆ

1`
ÿ

jě1

wjy
j

˙

, PWGpx,w, δq “ ∆py, δq dy“1
e
řD

j“1 xjy
j

b

1`
řD

j“1wjy2j
,

then the generating function of weighted graphs is equal to

WGpz,w, δq “ e
řD

j“1 vjpwqx
2
j {2 dx1“1 ¨ ¨ ¨ dxD“1 e

zPWGpx,w,δq.

Proof. Consider a weighted graph G with md edge of weight d for each d ě 1. Then
there exist

ś

d 2mdmd! ways to orient and label those edges to turn G into a weighted
multigraph. Thus, the generating function of loopless weighted multigraphs that contain
no multiple edge is equal to the generating function of weighted graphs. To construct a
loopless weighted multigraph G from a loopless weighted multigraph H without multiple
edges, one replace each edge of H of weight d with a set of edges linking the same vertices
and whose weights sum to d. For each d ě 1, let us use the variable vd to mark edges of
weight d in loopless weighted multigraphs, and the variable wd to mark edges of weight d
in weighted graphs. The previous construction corresponds to replacing the variable wd

with
wdpvq “ ry

d
spe

ř

jě1 vjy
j

´ 1q.

Thus, the generating functions of weighted graphs and of loopless weighted multigraphs
are linked by the relation

WGpz,wpvq, δq “ LWMGpz,v, δq.

Inverting this relation, we obtain

vdpwq “ ry
d
s log

ˆ

1`
ÿ

jě1

wjy
j

˙

and
WGpz,w, δq “ LWMGpz,vpwq, δq.

Injecting the expression of LWMGpz,w, δq from Lemma 2 concludes the proof.

In particular, for w “ pw, 0, 0, . . . , 0q, we recover the case of classical graphs, and more
specifically the case of k-regular graphs, by setting δd “ 1 if d “ k, and δd “ 0 otherwise.
Theorem 1. Let PGpx, w, δq denote the polynomial

PGpx, w, δq “ ∆py, δq dy“1
e
řD

j“1 xjy
j

a

1` wy2
,

then the generating function of graphs is equal to

Gpz, w, δq “ e´
řD

j“1p´wq
jx2

j {p2jq dx1“1 ¨ ¨ ¨ dxD“1 e
zPGpx,w,δq.

In particular, the number of k-regular graphs with n vertices is

e
řk

j“1p´1qj`1x2
j {p2jq dx1“1 ¨ ¨ ¨ dxk“1

˜

ryks
e
řk

j“1 xjy
j

a

1` y2

¸n

.
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3 Bipartite graphs
Definition. A bipartite graph G is a triplet pV pGq, Ṽ pGq, EpGqq with V pGq (resp Ṽ pGq)
the set of labeled left-vertices (resp. right-vertices) and EpGq Ă V pGq ˆ Ṽ pGq the set of
edges.

Generating function. The generating function BGpz, z̃, w, δ, δ̃q of bipartite graphs with
degree at most D is defined as a sum over bipartite graphs

BGpz, z̃, w, δ, δ̃q “
ÿ

G

ˆ |V pGq|
ź

u“1

δdegpuq

˙ˆ |Ṽ pGq|
ź

u“1

δ̃degpuq

˙

w|EpGq| ˆ
z|V pGq|

|V pGq|!
ˆ

z̃|Ṽ pGq|

|Ṽ pGq|!

This generating function is exponential with respect to the variable z (resp. z̃) marking
the left vertices (resp. right vertices), and ordinary with respect to the variable w marking
the edges. For all d, δd (resp. δ̃d) marks the left vertices (resp. right vertices) of degree d.

Notation. The multivariate exponential Hadamard product is defined as

ÿ

m

Am
zm

m!
dm

ÿ

m

Bm
zm

m!
“
ÿ

m

AmBm
zm

m!
.

This extension is compatible with the univariate product in the sense

Apz1qBpz2q dz1z2 Cpz1, z2q “ Apz1q dz1 pBpz2q dz2 Cpz1, z2qq .

Theorem 2. Let v “
`

p´1qd`1wd{d
˘

1ďdďD
, ∆py, δq “

D
ř

d“0

δd
yd

d!
and let PBGpw, δq denote

the polynomial

PBGpw, δq “ ∆py, δq dy“1 e

D
ř

d“1
wdy

d

.

Then the generating function of bipartite graphs with degree constraints is equal to

BGpz, z̃, w, δ, δ̃q “ ezPBGpw,δq
dw“v e

z̃PBGpw,δ̃q.
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Abstract

Given a bipartite graphH = (V = VA∪VB, E) in which any vertex in VA (resp. VB)
has degree at most DA (resp. DB), suppose there is a partition of V that is a refine-
ment of the bipartition VA∪VB such that the parts in VA (resp. VB) have size at least
kA (resp. kB). We prove that the condition DA/kA +DB/kB ≤ 1 is sufficient for the
existence of an independent set of vertices of H that is simultaneously transversal to
the partition, and show moreover that this condition is sharp.
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1 Introduction
Consider the following question: how much easier is it to colour graphs that are bipartite
than to colour graphs in general? Of course, when considered in the context of the usual
chromatic number, this is utterly trivial: compared to the general case, for which the
chromatic number can be ∆(G) + 1 but no larger (with ∆(G) denoting the maximum
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degree of G), the factor of reduction in the number of necessary colours is of order ∆(G).
We treat some settings stronger than that of ordinary proper colouring, settings that have
both classic and contemporary combinatorial motivation.

Recall the definition of the list chromatic number, a notion introduced nearly half
a century ago independently by Erdős, Rubin and Taylor [5] and by Vizing [12]. Let
G = (V,E) be a simple, undirected graph. A mapping L : V (G) → 2Z+ is called a list-
assignment of G; if for some positive integer k, the mapping L satisfies |L(v)| = k for all
v then it is called a k-list-assignment; a colouring c : V → Z+ is called an L-colouring
if c(v) ∈ L(v) for any v ∈ V . We say G is k-choosable if for any k-list-assignment L of
G there is a proper L-colouring of G. The choosability χ`(G) (or choice number or list
chromatic number) of G is the least k such that G is k-choosable.

Framing the above question with respect to the list chromatic number, note first that
a greedy procedure implies χ`(G) ≤ ∆(G) + 1 always, which is exact for G a complete
graph. However, for bipartite G, it is a longstanding conjecture that χ`(G) must be lower
than this bound by a factor of order ∆(G)/ log ∆(G).

Conjecture 1.1 (Alon and Krivelevich [2]). There is some C ≥ 1 such that χ`(G) ≤
C log2 ∆(G) for any bipartite graph G with ∆(G) ≥ 2.

If true, this statement would be sharp up to the value of C, due to the complete bipartite
graphs [5]. For an idea of how stubborn this problem has been, we relate to the reader how
the current best progress was essentially already known to the conjecture’s originators. In
particular, a seminal result for triangle-free graphs of Johansson [8] from the mid-1990’s
implies that χ`(G) = O(∆(G)/ log ∆(G)) as ∆(G)→∞ for any bipartite G, so a reduction
factor only of order log ∆(G).

To stimulate activity, two of the authors with Alon [1, 4] proposed some natural refine-
ments and variations of Conjecture 1.1, and offered modest related progress. Although less
directly relevant to Conjecture 1.1, the present work has the momentum of this trajectory.
We introduce some definitions needed to properly describe this progression. In particular,
we cast the (bipartite) colouring task in a more precise and general way.

Let G and H be simple, undirected graphs. We say that H is a cover (graph) of G
with respect to a mapping L : V (G) → 2V (H) if L induces a partition of V (H) and the
bipartite subgraph induced between L(v) and L(v′) is edgeless whenever vv′ /∈ E(G). If
for some positive integer k, the mapping L satisfies |L(v)| = k for all v, then we call H a
k-fold cover of G (with respect to L). Moreover, if G and H are bipartite graphs, where
G admits a bipartition V (G) = AG ∪ BG and H admits a bipartition V (H) = AH ∪ BH ,
then we say that H is a bipartite cover (graph) of H with respect to L if L(AG) induces
a partition of AH and L(BG) induces a partition of BH , i.e. the bipartitions of G and H
suitably align. We will have reason to be even more specific for this situation by referring
to H as an (A,B)-cover of G (with respect to L). (Here we regard A as the pair (AG, AH)
of partitions, and B similarly.)

To connect the notions above to Conjecture 1.1, notice that, for any list-assignment
L of some graph G, one may construct a cover graph H as follows. The vertices of H
consist of all pairs (v, x) for v ∈ G and x ∈ L(v), and E(H) is a subset of the collection
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of pairs (v, x)(v′, x′) such that vv′ ∈ E(G) and x = x′. By regarding L as a mapping from
v to {(v, x) | x ∈ L(v)}, we can then regard H as a cover graph of G with respect to L.
Moreover, if G is bipartite, the corresponding H is a bipartite cover of G with respect to
L. We refer to any (bipartite) cover graph constructed as above as a (bipartite) list-cover.
Moreover, if E(H) is chosen maximally, we may refer to H as the maximal (bipartite)
list-cover of G with respect to L. Notice that a proper L-colouring of G is equivalent to
an independent set in the corresponding maximal list-cover H that is transversal to the
partition induced by L (that is, it intersects every part exactly once), or, in short, an
independent transversal (IT) of H.

Conjecture 1.1 redux. There is some C ≥ 1 such that, for any bipartite graph G of
maximum degree ∆ ≥ 2, any bipartite (C log2 ∆)-fold list-cover of G admits an independent
transversal.

There are three potential directions to highlight through adoption of the above notation.
First, note that list-covers form a proper subclass of all cover graphs, and so we might
consider the ‘colouring’ task under increasingly more general conditions with respect to
H. More specifically, we may ask analogous questions about sufficient conditions for the
existence of an IT in natural and successively larger superclasses of list-covers (among all
cover graphs). Second, note that if G has maximum degree ∆, then any list-cover of G has
maximum degree ∆, but the converse is not true in general. And, for instance, we may
consider a problem/result about list-colouring in some class of bounded degree graphs and
try to generalise it to the analogous class of bounded degree list-covers. This type of ‘colour-
degree’ problem was introduced by Reed [10]. Third, and specific to (A,B)-covers, we may
insist on a more refined viewpoint by imposing (degree/list-size/structural) conditions on
parts A and B separately. Two of the authors together with Alon [1] introduced this third
asymmetric perspective for studying Conjecture 1.1, and in a follow up [4] they furthermore
took on the first two perspectives, in particular by generalising the problem to so-called
correspondence-covers, which we discuss later. Here we concentrate on the most general
case for (asymmetric, bipartite) cover graphs with given degree bounds.

The following problem was posed in [4] (see therein the special case of Problem 1.1 with
∆A,∆B infinite).

Problem 1.2. Let H be an (A,B)-cover of G with respect to L. What conditions on
positive integers kA, kB, DA, DB suffice to ensure the following? If the maximum degrees in
AH and BH are DA and DB, respectively, and |L(v)| ≥ kA for all v ∈ AG and |L(w)| ≥ kB
for all w ∈ BG, then there is guaranteed to be an independent transversal of H with respect
to L.

We resolve Problem 1.2 through the following sufficient condition for a bipartite cover
graph to admit an IT.

Theorem 1.3. Let H be an (A,B)-cover of G with respect to L. Let positive integers kA,
kB, DA, DB be such that DB

kA
+ DA

kB
≤ 1. If the maximum degrees in AH and BH are DA

and DB, respectively, and |L(v)| ≥ kA for all v ∈ AG and |L(w)| ≥ kB for all w ∈ BG,
then H admits an independent transversal with respect to L.
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Figure 1: A bipartite graph with maximum degree 3 and partition classes of size 5 with no
IT

This result is corollary to a general result for independent transversals found in [6].
In fact, the condition in Theorem 1.3 is best possible, as follows.

Theorem 1.4. Let positive integers kA, kB, DA, DB be such that DB

kA
+ DA

kB
> 1. Then

there exists an (A,B)-cover H of G with respect to L such that the maximum degrees in
AH and BH are DA and DB, respectively, and |L(v)| = kA for all v ∈ AG and |L(w)| = kB
for all w ∈ BG, and such that H admits no independent transversal with respect to L.

It is worth isolating the symmetric situation where we maintain that DA = DB = D and
kA = kB = k; in this case the condition in Theorem 1.3 resolves to k ≥ 2D. In other
words, we have the following.

Corollary 1.5. Any bipartite (2D)-fold cover graph of maximum degree D admits an
independent transversal. Moreover, the conclusion may fail if the 2D part size condition is
relaxed to 2D − 1.

This condition coincides with that of a well-known, more general result of the second
author [7]: that any (2D)-fold cover graph of maximum degree D is guaranteed to admit an
IT. As such, one may see Theorem 1.4 as simultaneously a strengthening and generalisation
of a result of Szabó and Tardos [11] (which in turn built upon a series of results beginning
in the original paper of Bollobás, Erdős and Szemerédi [3]): that there exists a (2D − 1)-
fold cover graph of maximum degree D that does not admit an IT. Recalling the question
posed at the beginning, Theorem 1.4 shows in a wider sense how the bipartite assumption
does not help for the existence of ITs in cover graphs.

We remark that, while the construction of Szabó and Tardos is composed of the union of
complete bipartite graphs, its partition classes do not align with a bipartition. Corollary 1.5
affirms that it is possible to achieve such an alignment in some bipartite construction. For
an indication of the difference, Figure 1 depicts the D = 3 construction in Corollary 1.5,
and one can compare it with [11, Fig. 1].

Let us briefly discuss what happens in the special case of correspondence-covers, as
explored in [4]. Given a cover graphH ofG with respect to L, we sayH is a correspondence-
cover if the bipartite subgraph induced between L(v) and L(v′) is a matching for any
vv′ ∈ V (G). In other words, the maximum degree induced between two parts of H with
respect to L is at most 1. Clearly the class of all correspondence-covers strictly includes
that of all list-covers. The next result follows from a ‘coupon collector’ argument, and this
is counterbalanced by a simple probabilistic construction (that was given, for example,
in [9]).
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Theorem 1.6 ([4]). For any ε > 0, the following holds for all D sufficiently large. Any
bipartite (1 + ε) D

logD
-fold correspondence-cover graph of maximum degree D admits an in-

dependent transversal. Moreover, the conclusion fails if the (1 + ε) factor is weakened to a
(1

2
− ε) factor.

One reason for highlighting this case is that it could be interesting to gradually tune
(between 1 and D) the condition on maximum degree induced between two parts of H
with respect to L, in order to gain a better understanding of the transition between the
Θ(D/ logD) (probabilistic) part-size condition in Theorem 1.6 and the Θ(D) condition in
Corollary 1.5 (which was originally established in [7]).

Let us conclude by returning to the original motivation and a related challenge. With
Corollary 1.5 and Theorem 1.6 in mind, the following ‘colour-degree’ generalisation of
Conjecture 1.1 seems worth investigating.

Conjecture 1.7. There is some C ≥ 1 such that any bipartite (C log2D)-fold list-cover
graph of maximum degree D ≥ 2 admits an independent transversal.

To round out the story, we point out how Conjectures 1.1 and 1.7 are essentially equivalent.

Theorem 1.8. If Conjecture 1.1 is true for some constant C ≥ 1, then Conjecture 1.7
is true for some constant C ′ ≥ 1. The same implication holds when C and C ′ are both
replaced by 1 + o(1) (as ∆, D →∞).

Proof. Assume Conjecture 1.1 is true for some C ≥ 1. We choose D0 ≥ 2 such that√
D ≥ C log2D for every D ≥ D0, and take C ′ = 2D0 ≥ 2C2 ≥ 2C. We will prove that

any bipartite (C ′ log2D)-fold list-cover graph of maximum degreeD admits an independent
transversal. Let k = C ′ log2D and H be a k-fold list-cover of maximum degree D ≥ 2.
If D ≤ D0, then k ≥ C ′ ≥ 2D and it then follows from Haxell’s theorem [7] that H has
an independent transversal as desired. We may therefore assume D > D0. Let G be the
‘covered’ graph of H, i.e. uv is an edge of G if and only if L(u) ∩ L(v) is not empty. Then
by definition the maximum degree ∆ of G satisfies D0 ≤ D ≤ ∆ ≤ kD. By the choice of D0

it then follows that
√

∆ ≥ C log2 ∆. Suppose now for a contradiction that k < C log2 ∆.
Then ∆ < D · C log2 ∆ and so D > ∆

C log2 ∆
≥
√

∆. But D >
√

∆ and C ′ ≥ 2C imply that
k = C ′ log2D ≥ C log2 ∆, which is a contradiction. Hence k ≥ C log2 ∆. Now consider
the maximal list-cover H ′ ⊇ H of G with respect to L. By our assumption, H ′ admits an
independent transversal with respect to L, which implies the same conclusion for H, as
required.

The proof for the 1+o(1) version proceeds analogously. Fix ε > 0. Now one can take D0

sufficiently large such that C log2D ≤ Dε and Conjecture 1.1 is true with 1 + ε whenever
∆ ≥ D0. Then for any k-fold list-cover H of maximum degree D ≥ 2, where k ≥ 1+ε

1−ε log2D,
we conclude H has an independent transversal by the same strategy.

In a similar way, nontrivial progress on Conjecture 1.1 may imply nontrivial progress on
Conjecture 1.7. Conversely, lower bound constructions related to Conjecture 1.7 may
directly yield corresponding constructions related to Conjecture 1.1.
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2 A sufficient condition
In this section, we derive Theorem 1.3.

We say that a set U of vertices of a graph G dominates the set W ⊆ V (G) if every
vertex of W has a neighbour in U . (This is a somewhat nonstandard use of the term
since, contrary to the most common usage, here we require each vertex of U ∩W to have
a neighbour in U .) Theorem 1.3 is a straightforward consequence of the following result of
Haxell (see e.g. [6]), concerning critical graphs with respect to ITs.

Theorem 2.1 ([6]). Let H = (VH , EH) be a cover graph of some graph G = (VG, EG) with
respect to L. Suppose that H has no IT but H − e does for any e ∈ EH . Then for any
e ∈ EH , there exists a subset S ⊂ VG and a set Z of edges of the subgraph of H induced by
L(S) such that e ∈ Z, |Z| ≤ |S| − 1, and VH(Z) dominates L(S).

Proof of Theorem 1.3. Suppose H is a counterexample and take it to be edge-minimal.
By Theorem 2.1, there exist some a partition classes of AH and b partition classes of BH ,
and a set Z of edges of size at most a + b − 1 whose end-vertices dominate the union
of these a + b partition classes. The end-vertices of Z dominate at most (a + b − 1)DB

vertices in AH , while the a partition classes contain at least akA vertices. This implies that
akA ≤ (a+ b− 1)DB. Similarly, considering BH , we have bkB ≤ (a+ b− 1)DA. But then

DA

kB
+
DB

kA
≥ b

a+ b− 1
+

a

a+ b− 1
> 1,

contradicting the hypothesis.

3 Sharpness of the condition
A proof of Theorem 1.4 is deferred to the full manuscript associated to this extended
abstract.
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Given t ≥ 2 and 0 ≤ k ≤ t, we prove that the number of labelled k-connected

chordal graphs with n vertices and tree-width at most t is asymptotically cn−5/2γnn!,
as n→∞, for some constants c, γ > 0 depending on t and k. Additionally, we show
that the number of i-cliques (2 ≤ i ≤ t) in a uniform random k-connected chordal
graph with tree-width at most t is normally distributed as n→∞.

The asymptotic enumeration of graphs of tree-width at most t is wide open for
t ≥ 3. To the best of our knowledge, this is the first non-trivial class of graphs with
bounded tree-width where the asymptotic counting problem is solved. Our start-
ing point is the work of Wormald [Counting Labelled Chordal Graphs, Graphs and
Combinatorics (1985)], were an algorithm is developed to obtain the exact number
of labelled chordal graphs on n vertices..
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1 Introduction
Tree-width is a fundamental parameter in structural and algorithmic graph theory, as illus-
trated for instance in [8]. It can be defined in terms of tree-decompositions or equivalently
in terms of k-trees. A k-tree is defined recursively as either a complete graph on k + 1
vertices or a graph obtained by adjoining a new vertex adjacent to a k-clique of a smaller
k-tree. The tree-width of a graph Γ is then the minimum k such that Γ is a subgraph of
a k-tree. In particular, k-trees are the maximal graphs with tree-width at most k. The
number of k-trees on n labelled vertices was independently shown [3, 17, 15] to be(

n

k

)
(k(n− k) + 1)n−k−2 =

1√
2π k! kk+2

n−5/2 (ek)n n! (1 + o(1)), (1)

where the estimate holds for k fixed and n → ∞. However, there are relatively few
results on the enumeration of graphs of given tree-width or on properties of random graphs
with given tree-width. Graphs of tree-width one are forests (acyclic graphs) and their
enumeration is a classical result, while graphs of tree-width at most two are series-parallel
graphs and were first counted in [5]. The problem of counting graphs of tree-width three
is still open. From now on, we will use t to denote the tree-width while k will denote the
connectivity of a graph. All graphs considered in this work will be simple and labelled,
that is, with vertex-set [n].

Given that tree-width is non-increasing under taking minors, the class of graphs with
tree-width at most t is ‘small’ when t is fixed, in the sense that the number gn,t of labelled
graphs with n vertices and tree-width at most t grows at most like cnn! for some c > 0
depending on t (see [18, 13]). The best known bounds for gn,t are, up to lower order terms,(

2ttn

log t

)n

≤ gn,t ≤ (2ttn)n.

The upper bound follows by considering all possible subgraphs of t-trees, and the lower
bound uses a suitable construction developed in [2]. In the present work we determine
the asymptotic number of labelled chordal graphs with tree-width at most t, following the
approach in [14] and [11], and based on the analysis of systems of equations satisfied by
generating functions.

A graph is chordal if every cycle of length greater than three contains at least one
chord, that is, an edge connecting non-consecutive vertices of the cycle. Chordal graphs
have been extensively studied in structural graph theory and graph algorithms (see for
instance [16]), but not so much from the point of view of enumeration. Wormald [20] used
generating functions to develop a method for finding the exact number of chordal graphs
with n vertices for a given value of n. It is based on decomposing chordal graphs into
k-connected components for each k ≥ 1. As remarked in [20], it is difficult to define the
k-connected components of arbitrary graphs for k > 3, but for chordal graphs they are
well defined. It is a consequence of Dirac’s characterisation [10]: in a chordal graph every
minimal separator is a clique.
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For fixed n, t ≥ 1 and 0 ≤ k ≤ t, let Gt,k,n be the set of k-connected chordal graphs
with n labelled vertices and tree-width at most t. Our two main results are the following.

Theorem 1.1. For t ≥ 1 and 0 ≤ k ≤ t, there exist ct,k > 0 and γt,k > 1 such that

|Gt,k,n| = ct,k n
−5/2 γnt,k n! (1 + o(1)) as n→∞.

We remark that in principle, for fixed t and k the constants ct,k and γt,k can be com-
puted, at least approximately.

Theorem 1.2. Let t ≥ 1, 0 ≤ k ≤ t. For i ∈ {2, . . . , t} let Xn,i denote the number of
i-cliques in a uniform random graph in Gt,k,n, and set Xn = (Xn,2, . . . , Xn,t). Then Xn

satisfies a multivariate central limit theorem, that is, as n→∞ we have

1√
n

(Xn − EXn)
d→ N(0,Σ), with EXn ∼ αn and CovXn ∼ Σn,

and where α is a (t−1)-dimensional vector of positive numbers and Σ is a (t−1)× (t−1)-
dimensional positive semi-definite matrix.

Let us point that more structural asymptotic results can be expected. Notably, the
class of chordal graphs with tree-width at most t is subcritical in the sense of [12]. It
follows from [19] that the uniform random connected chordal graph with tree-width at
most t with distances rescaled by 1/

√
n admits the Continuum Random Tree (CRT) [1] as

a scaling limit, multiplied by a constant that depends on t.
A more complete version of the work presented here can be found in [6].

2 Decomposition of chordal graphs
Let k ≥ 1. A k-separator of a graph Γ is a subset of k vertices whose removal disconnects
Γ. And Γ is said to be k-connected if it contains no i-separator for i ∈ [k − 1]. With this
definition, we consider the complete graph on k vertices to be k-connected, for any k ≥ 1,
contrary to the usual definition of connectivity (see for instance [9]). A k-connected com-
ponent of Γ is a k-connected subgraph that is maximal, in term of subgraph containment,
with that property.

An essential consequence of chordality is that k-connected chordal graphs admit a
unique decomposition into (k + 1)-connected components through its k-separators. This
is a generalisation of the well-known decomposition of a connected graph into so-called
blocks, that are maximal 2-connected components. And it induces a system of functional
equations satisfied by the generating function counting chordal graphs of tree-width at
most k.

We now fix some t ≥ 1 and let G be the family of chordal graphs with tree-width at
most t. For a graph Γ ∈ G and j ∈ [t], let us denote by nj(Γ) the number of j-cliques of
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Γ. In the rest of the paper, we will write x as a short-hand for x1, . . . , xt, and define the
multivariate (exponential) generating function associated to G to be

G(x) = G(x1, . . . , xt) =
∑
Γ∈G

1

n1(Γ)!

t∏
j=1

x
nj(Γ)
j .

Let gn denote the number of chordal graphs with n vertices and tree-width at most t.
Then,

G(x, 1, . . . , 1) =
∑
n≥1

gn
n!
xn.

For 0 ≤ k ≤ t + 1, let Gk be the family of k-connected chordal graphs with tree-width
at most t and Gk(x) be the associated generating function. In particular, we have

Gt+1(x) =
1

(t+ 1)!

∏
j∈[t]

x
(t+1

j )
j . (2)

For other values of k, we need to consider graphs rooted at a clique. Rooting the graph
Γ ∈ Gk at an i-clique means distinguishing one i-clique K of Γ and choosing an ordering
of (the labels of) the vertices of K. In order to avoid over-counting, we will discount the
subcliques of K. Let i ∈ [k] and define G(i)

k to be the family of k-connected chordal graphs
with tree-width at most t and rooted at an i-clique. Let then G

(i)
k (x) be the associated

generating function, where now for 1 ≤ j ≤ i the variables xj mark the number of j-cliques
that are not subcliques of the root.

Lemma 2.1. Let k ∈ [t]. Then the following equations hold:

G
(k)
k+1(x) = k!

k−1∏
j=1

x
−(k

j)
j

∂

∂xk
Gk+1(x), (3)

G
(k)
k (x) = exp

(
G

(k)
k+1

(
x1, . . . , xk−1, xkG

(k)
k (x), xk+1, . . . , xt

))
, (4)

Gk(x) =
1

k!

k−1∏
j=1

x
(k
j)

j

∫
G

(k)
k (x) dxk. (5)

Finally, the fact that a graph is the set of its connected components can be translated
as G(x) = G0(x) = exp(G1(x)). Then, it is clear that one can derive G0(x) from Gt+1(x)
by successively using Identities (3), (4) and (5) from Lemma 2.1.

3 Asymptotic analysis
Fix t ≥ 1. To prove Theorems 1.1 and 1.2, we use rather classical methods from [14]
and [11, Chapter 2] which consist in deriving asymptotic estimates from local expansions
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of the generating functions from Section 2 at their singularities, typically by applying a
Transfer Theorem (for instance [11, Lemma 2.18]).

However, the main difficulties here are the multivariate nature of Lemma 2.1, in partic-
ular the fact that the local expansions are with respect to different variables from one step
to the next, and the fact that local expansions have to be “carried over” from Gt+1(x) to
G0(x1, 1, . . . , 1). To overcome this, we extend some of the tools and notions present in [11].

Sketch of the proofs of Theorems 1.1 and 1.2. Starting with Gt+1 which is an ex-
plicit monomial, we recursively compute via Lemma 2.1 local representations ofGt, Gt−1, . . . , G1

and finally of G0 = exp(G1).
The first step of the induction amounts to computing a multivariate local representation

of the generating function of t-trees. Let x2, . . . , xt ∈ R+. Then there exist two functions
h1(x) and h2(x), that are analytic and non-zero at x1 = 1/e, such that for x1 ∼ 1/e we
have

Gt(x) =

∏t
j=1 x

(t
j)

j

t!

(
h1(tX) + h2(tX)(1− etX)3/2

)
, where X =

t∏
j=1

x
( t
j−1)

j .

From there, one can prove that the above representation forGt(x) implies corresponding
representation for Gt−1(x), Gt−2(x), . . . , G1(x), then G0(x). And the main counting result
can be deduced by setting x2 = · · · = xt = 1 then applying a Transfer Theorem.

Finally, the joint central limit theorem can be obtained in a similar manner: first
showing that a local representation of Gk(x) can be extended uniformly in a neighbourhood
of (1, . . . , 1) ∈ Ct−1, then concluding with the Quasi-Powers Theorem [11, Theorem 2.22].

4 Concluding remarks
Let us mention a recent result [7] giving an estimate cn−5/2γnn! for the number of labelled
planar chordal graphs with γ ≈ 11.89. It turns pout that the class of chordal graphs with
tree-width at most three is exactly the same as the class of chordal graphs not containing
K5 as a minor, whose asymptotic growth is, according to Theorem 1.1 and some numerical
computations of the form cn−5/2δnn! with δ = 1/ρ3,1 ≈ 12.98.

Since the number of all chordal graphs grows like 2n2/4 (see [4]), the singularity ρt =
ρt,1 → 0 as t → ∞. Concerning the rate of convergence, since the exponential growth of
t-trees is (etn)n, we have ρt = O(1/t). And since the growth of all graphs of tree-width
at most t is at most (2ttn)n, we also have ρt = Ω (1/(t2t)). A remaining problem is to
narrow the gap between the upper and lower bounds. Heuristic arguments suggest that ρt
decreases exponentially in t.

As a final question, we consider letting t = t(n) grow with n. Recall that a class of
labelled graphs is small when the number of graphs in the class grows at most like cnn!
for some c > 0, and large otherwise. One can prove that if t = (1 + ε) log n then the class
of labelled chordal graphs of tree-width at most t is large for each ε > 0. We leave as an
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open problem to determine at which order of magnitude between t = O(1) and t = log n
the class ceases to be small.
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1 Introduction
Recently, several authors have considered the study of (large) discrete objects by, after
introducing an appropriate limit notion, draw conclusions of the sequence by studying the
objects that appear as their limits. Two of the most well known examples is the study of
limits of sequences of graphs (e.g. [2, 9, 4]) or of permutations (see [8]). In this work, we
focuss our attention to limits of graphs.

In the area of limits of graphs, one of the problems is that the properties of the sequences
of graphs are radically different depending on several parameters, one of them being the
density of edges. Thus, there have appeared several convergence notions depending on
different growth regimes, such as the notion of left-convergence [9, 4] that works well when
the density of edges is a positive proportion of the total number (dense case) yet trivializes
when the sequence is of sparse graphs (non-dense), or Benjamini-Schramm convergence
[2] when the sequence is of bounded degree graphs (very sparse case). Other notions of
convergence for limits of graphs have been introduced; these either generalize the previous
two in several ways, or consider some strenghthening of them. As some examples we can
mention: Lp convergence [5, 3], action convergence [1], log–convergence [11], convergence
in fragments of logic [10], for intermediate growth [6], or local-global convergence [7].

In the following, we give compactification results on the set of sequences of positive
real numbers Theorem 1 and Theorem 2 that, as far as we know, are new, and we give an
application of such results to limits of graphs by considering a graph limit notion that is
uniform regardless of the growth regime of the number of edges, thus generalizing both the
local convergence [2] and the left-convergence [9, 4]. This notion can be seen as a brute
force generalization of the one by Frenkel [6]. First let us present the compactification
results.

Theorem 1. Assume the continuum hypothesis. Let R>0 = {f | f : ω → R>0} be the set
of positive real sequences. Then there exists a set A ⊂ R>0 such that:

1. For each a, b ∈ A,
lim
n→∞

a(n)

b(n)
is either 0 or ∞.

2. For each g ∈ R>0 and each ordered embedding ι : (ω,<) → (ω,<), there exists an
ordered embedding ι0 : (ω,<)→ (ω,<), an a ∈ A, and a c ∈ (0,∞) such that

lim
n→∞

a(ι(ι0(n)))

g(ι(ι0(n)))
= c

Theorem 1 claims to obtain a totally ordered set A (ordered with the relation a <

b ⇐⇒ limn→∞
a(n)
b(n)

= 0) with the property that for any partial sequence (given by the
pair (g, ι)), there exists a subsequence (given by ι0), an element of A (given by a), and a
constant c ∈ (0,∞) such that, up to c, the sequence a gives the asympthotic behaviour of
g along a subsequence ι0. We interpret this result in two ways:
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• the set A is a set of test functions that verifies that R>0 satisfies the following
“compactification property”: “every sequence have a convergent partial subsequence”.

• the set of test functions A “captures” every possible asympthotic behaviour.

We can impose additional restrictions on A and on the set of sequences considered.

Theorem 2. Assume the continuum hypothesis. Let f0, f1 : ω → R>0 such that f0(i)
f1(i)

<
f0(i−1)
f1(i−1) for i > 0. Let R>0(f0, f1) = {f |f : ω → R>0, f(i) ∈ [f0(i), f1(i)]} the set of positive
real sequences between f0 and f1. There exists a set A ⊂ R>0(f0, f1) such that 1 and 2 in
Theorem 1 are satisfied and, moreover, f0, f1 ∈ A.

Applications to limits of graphs. Let G◦ be the set of finite graphs with one loop in
each vertex, and G the set of finite graphs. For each F ∈ G, let AF denote a set of sequences
of positive real numbers obtained by using Theorem 2 with f0(n) = n and f1(n) = n|V (F )|,
and with both sequences in AF , where V (F ) is the vertex set of F . Note that, for each
G ∈ G◦, |{h : F → G : h is a graph homomorphism}| ∈ [n, n|V (F )|].

Let {Gi}i∈I be a sequence of graphs in G◦ with strictly increasing number of vertices
(not necessarily |Gi| = i, just an strictly increasing sequence). We say that (see [12,
Definition 2.1])

{Gi}i∈I is q-convergent to {(fF , cF )}fF∈AF ,cF∈(0,∞) ⇐⇒

for each F ∈ G, lim
i→∞

|{h : F → Gi : h is a graph homomorphism}|
fF ( |V (Gi)| )

= cF (1)

Note that the use of G◦ instead of G is mostly for technical reasons, as we always want to
consider sequences of non-zero real numbers. Note also that, by doing inclusion–exclusion
arguments, the number of homomorphisms from F to G′ (with the loops removed) can
be recovered from the number of homomorphisms from Fi to G (graph with one loop on
each vertex), where {Fi} are the subgraphs of G. Now, a couple of results that gives the
application of the “compactification” result to limits of graphs.

Proposition 3. Assume the continuum hypothesis. Let {Gi}i∈I is an infinite sequence of
graphs, with strictly increasing number of vertices, then there exists an infinite I0 ⊆ I such
that {Gi}i∈I0 is q-convergent.

Equivalently, any sequence has a partial convergent subsequence.

Proposition 4. Let {Gi}i∈I is an infinite sequence of graphs in G◦, with strictly increasing
number of vertices, and such that for each F ∈ G,

lim
i→∞
|{h : F → Gi : h is a graph homomorphism}| /

[
|V (Gi)||V (F )|] = cF , cF > 0

then {Gi}i∈I is also q-convergent.
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Equivalently, if the sequence is convergent in the dense sense with positive probabilities
([9]), then it is also q-convergent using the same constants and functions n → n|V (F )| for
each F ∈ G. In this case, the same would be true for the sequences of graphs where the
loops have been removed.

Proposition 5. Let {Gi}i∈I be an infinite sequence of graphs each of which has maximum
degree upper bounded by d, belong to G◦, and the number of vertices is strictly increasing
along the sequence. Assume that, for each graph F ∈ G we have

lim
i→∞
|{h : F → Gi : h is an graph homomorphism}| /|V (F )| = cF , cF > 0

if and only if {Gi}i∈I is q-convergent.

Note that the fact that {Gi}i∈I is a sequence of bounded degree graphs we may ask
whether it converges in the Benjamini-Schramm sense [2]; in this case, by an inclusion-
exclusion argument, the convergence considered in Proposition 5 is equivalent to the local-
convergent considered by Benjamini-Schramm [2]. In this case, the loops ensures a bare
minimum of homomorphisms for each subgraph. Therefore, Proposition 5 claims that,
for bounded-degree graph sequences, Benjamini-Schramm convergence is equivalent to q-
convergent.

Altoghether, Proposition 5 and Proposition 4 shows that the notion of q-convergence
extends the notion of convergence for the limits of graphs in the dense case [9], and the
notion of convergence for in the case of sequences of bounded degree graphs considered
by Benjamini and Schramm [2] into a single, uniform framework. Here we should note
that asking for the constants cF > 0 in the dense case Proposition 4 is rather natural, as
there are many sequences that are convergent in the dense case and that, for instance, have
no triangles (or copies of K3), to the same limit, yet there are several subsequences with
different growth ratios of triangles, and thus the q-convergence will distinguish between
the two subsequences. The q-convergence may distinguish different sequences that the
dense notion considers to be equivalent; this is rather a natural behaviour since we want
to distinguish between sparse sequences that the dense notion of convergence maps to the
zero graphon [9]. The presence of Proposition 3 allows to claim reasonable compactification
properties for the set of q-convergent sequences of graphs.

2 Sketch of the arguments
Let us sketch the proof of Theorem 1 (the key difference in Theorem 2 is highlighted
below). The (positive) real numbers R>0 have the cardinality of the continuum, the set
of sequences of positive reals numbers

∏
i∈ω R>0 has the cardinality of the continuum,

since |
∏

i∈ω R>0| = (c)ℵ0 = (2ℵ0)ℵ0 = 2ℵ0ℵ0 = 2ℵ0 , and the set of ordered injections
I = {ι | ι : ω → ω ordered injection} has the cardinality of the continuum as well (note
that these injections are a subset of all possible subsets of the natural numbers). Therefore,
[
∏

i∈ω R>0]×I the set of infinite subsequences of positive real numbers has the cardinality
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of the continuum. Assuming the continuum hypothesis and the axiom of choice, we can
well-order [

∏
i∈ω R>0]× I and biject it with the countable ordinals (those ordinals < ω1).

Thus we write [
∏

i∈ω R>0]×I = {(fα, ια) | α < ω1} and use a transfinite induction along ω1

to find sets {Aα |α ≤ ω1} that have the desired properties (the sequences of Aα are pairwise
comparable, and each subsequence (fβ, ιβ), with β < α has a representative in Aα). The
sets Aα are built as A0 = ∅ (or A0 = {f0, f1} if we want to show Theorem 2), Aα = ∪β<αAβ
for limit ordinals, and where Aα+1 is build from Aα by adding a new sequence agreeing
uppon (fα, ια) along a subsequence and comparable with the others in Aα; to find this new
sequence we first examine whether there is already a test sequence in Aα that agrees with
(fα, ια) along a subsequence (up to a multiplicative c), if that is the case, then Aα+1 = Aα.
If that is not the case, then we can partition the at most countable (here we are using the
continuum hypothesis again) elements in Aα in two parts U and D, and find a sequence of
subsequences {ια,i}i<ω (ια,i subsequence of ια,i+1) for (fα, ια) such that (fα, ια) is below gi
along ια,i if gi ∈ Aα belongs to U , and is above gj along ια,j if gj ∈ Aα belongs to D. Then
we find a subsequence ια,ω of (fα, ια) along which (fα, ια) is below each element from Aα
in U and above each element in D. Finally, we complete the subsequence along ια,ω into a
full sequence between the elements of U and the elments of D by backwards extending the
elements along the subsequence ια,ω with elements between the lowest found elements in U
and the highest found elements in D (the current element of the subsequence ια,ω ensures
that the multiplicative distance to all the previously considered elements in U and D goes
to 0 and ∞ respectively). The transfinite induction then gives Aω1 .

Proposition 3 is proven finding an appropriate triple (subsequence, constant, test func-
tion) for each finite graph. These test functions capture the asympthotic growth fF for
each subgraph F , consistently along an increasing family of subgraphs F by considering
further subsequences of the graphs {Gi}. Then we use a diagonal argument, similar as be-
fore, to find a subsequence of graphs {Gi} that, for each F , the number of homomorphisms
from F to {Gi} has, along the subsequence of graphs {Gi}, the asympthotic growth fF up
to a multiplicative constant cF .

Proposition 5 and Proposition 4 follows by observing that, with their respective hy-
potheses, the test functions at which the subgraph count of a convergent graph sequence
grow are, up to a multiplicative factor, the minimum and maximum possible (given that
the graphs have loops on each vertex).

References
[1] Á. Backhausz and B. Szegedy. Action convergence of operators and graphs. Canadian

Journal of Mathematics, 74(1):72–121, 2022.

[2] I. Benjamini and O. Schramm. Recurrence of distributional limits of finite planar
graphs. Electron. J. Probab., 6:no. 23, 13 pp. (electronic), 2001.



Compactification of set of sequences; applications to limits of graphs 282

[3] C. Borgs, J. Chayes, H. Cohn, and Y. Zhao. An Lp theory of sparse graph convergence
I: Limits, sparse random graph models, and power law distributions. Transactions of
the American Mathematical Society, 372(5):3019–3062, 2019.

[4] C. Borgs, J. Chayes, L. Lovász, V. T. Sós, B. Szegedy, and K. Vesztergombi. Graph
limits and parameter testing. In Proceedings of the thirty-eighth annual ACM sympo-
sium on Theory of computing, pages 261–270, 2006.

[5] C. Borgs, J. T. Chayes, H. Cohn, and Y. Zhao. An Lp theory of sparse graph conver-
gence II: LD convergence, quotients and right convergence. The Annals of Probability,
46(1):337 – 396, 2018.

[6] P. Frenkel. Convergence of graphs with intermediate density. Transactions of the
American Mathematical Society, 370(5):3363–3404, 2018.

[7] H. Hatami, L. Lovász, and B. Szegedy. Limits of locally–globally convergent graph
sequences. Geometric and Functional Analysis, 24(1):269–296, 2014.

[8] C. Hoppen, Y. Kohayakawa, C. G. Moreira, B. Ráth, and R. Menezes Sampaio. Limits
of permutation sequences. Journal of Combinatorial Theory, Series B, 103(1):93–113,
2013.

[9] L. Lovász. Large networks and graph limits, volume 60 of American Mathematical
Society Colloquium Publications. American Mathematical Society, Providence, RI,
2012.

[10] J. Nešetřil and P. Ossona De Mendez. A model theory approach to structural limits.
Commentationes Mathematicae Universitatis Carolinae, 53(4):581–603, 2012.

[11] B. Szegedy. Sparse graph limits, entropy maximization and transitive graphs. arXiv
preprint arXiv:1504.00858, 2015.

[12] L. Vena. On limits of sparse random graphs. Electronic Notes in Discrete Mathematics,
54:343–348, 2016. Discrete Mathematics Days - JMDA16.



Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications
EUROCOMB’23

Prague, August 28 - September 1, 2023

A direct bijection between two-stack
sortable permutations and fighting fish

(Extended abstract)

Lapo CIONI∗ Luca FERRARI∗ Corentin HENRIET∗

Abstract

We define a bijection between two-stack sortable permutations and fighting fish,
enriching the garden of bijections linking the numerous combinatorial classes counted
by the sequence A000139 of the OEIS. Our bijection is (up to symmetry) the non-
recursive version of the one of Fang (2018). Along the way, we encounter labeled
sorting trees, a new class of trees that appear to have nice properties that seem worth
to explore.
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1 Introduction
The problem of sorting a permutation through a stack was addressed by Knuth in his

seminal work [9] (Section 2.2.1), initiating the development of the field of pattern-avoiding
permutations. While one-stack sortable permutations are characterized by their avoid-
ance of the pattern 231 and counted by the Catalan numbers, West [11] established the
pattern-avoidance characterization of two-stack sortable permutations, but did not succeed
in proving that the number of such permutations of size n is given by the nice formula

2

(n+1)(2n+1)(
3n

n
), leaving it as a conjecture. This formula was first proved by Zeilberger [12]

using generating functions, then refined according to certain statistics by Bousquet-Mélou
[1]. Other proofs of this enumeration were later found by Dulucq, Gire and Guibert [6], by
Goulden and West [8] establishing bijections between two-stack sortable permutations and
nonseparable planar maps using either generating trees or recursive decompositions. Hence
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two combinatorial explanations of the enumeration formula were found, but they were still
not completely satisfying because recursive. More recently, Fang [7] used another recursive
decomposition of two-stack sortable permutations to define a bijection with fighting fish, a
generalization of parallelogram polyominoes introduced in 2016 by Duchi, Guerrini, Rinaldi
and Schaeffer [2]. The main contribution of the present paper is a direct description of the
bijection of Fang using a particular class of trees that we call labeled sorting trees, which,
combined with the encoding of nonseparable planar maps by fighting fish given by Duchi
and the third author [4], leads to a direct bijective path from two-stack sortable permuta-
tions to nonseparable planar maps. This is one step further in the bijective understanding
of the connections between combinatorial structures enumerated by [10, A000139]: we refer
to the first page of [4] for a diagram summarizing known bijections.

The paper is organized as follows: we first present the objects involved in our bijection
(two-stack sortable permutations and fighting fish), we then describe our bijection going
through labeled sorting trees, and we finish by an overview of open questions arising
naturally in our work.

2 Preliminaries

2.1 Stack sorting on permutations

Let τ be a word made of distinct positive integers. If τ is empty, we define S(τ) = τ .
Else, if we denote by k the largest letter of τ , we can write τ = τ1kτ2, and we then define
S(τ) = S(τ1)S(τ2)k. A permutation σ ∈ Sn is identified with its one-line notation σ1...σn,
where we write σi for σ(i). Restricted to permutations, S is said to be the operator of
stack-sorting. Stack-sorting deserves its name because S(σ) is the word τ obtained from
σ via the following procedure on a stack constrained to be decreasing from bottom to top.
Initialize the stack to be empty and τ to be the empty word, and at each step, consider the
smallest i such that σi has not yet been put in the stack : if the stack is empty or if the top
element of the stack is greater than σi then put σi on the top of the stack, otherwise pop
the top element of the stack and append it to τ . If all elements of σ have been treated, then
pop out the top of the stack and append it to τ . The procedure ends when all elements
of σ have been treated and the stack is empty. We can encode this procedure by a Dyck
path : we add an up step u = (1, 1) to the path each time we put an element on the top of
the stack, and a down step d = (1,−1) each time we pop out the top element of the stack.
We denote by D(σ) the Dyck path obtained for a permutation σ ∈ Sn : it is a path from
(0, 0) to (2n, 0) staying weakly above the x-axis. For k ≥ 1, we define Dk(σ) = D(Sk−1(σ)).

For k ≥ 0, a permutation σ ∈ Sn is said to be k-stack sortable if Sk(σ) is the identity.
A k-stack sortable permutation σ is uniquely determined by the tuple (D1(σ), ...,Dk(σ))
because σ can be recovered from the identity by reverting the stack-sorting process encoded
by this tuple of Dyck paths. We denote by 2SSn the set of two-stack sortable permutations
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of Sn, and 2SS = ⋃n≥1 2SSn.

2.2 Fighting fish

While fighting fish have been introduced in [2] in terms of gluings of square cells, we
present them here as words on the alphabet {E,N,W, S} (see Figure 1):

Definition 1. A word w ∈ {E,N,W, S}∗ is a fighting fish if it can be obtained from the
word ENWS using a finite sequence of the following 3 operations:

• Upper gluing : replace a subword W by NWS.

• Lower gluing : replace a subword N by ENW .

• Double gluing : replace a subword WN by NW .

The size of a fighting fish is half of its length minus 1. We denote by FFn the set of fighting
fish of size n, and by FF = ⋃

n≥1

FFn.

W
N

W

N

W

W
N

N

N

W
E

S

E

NW

S

W N
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N

W

W
N

N

N

W

E
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S

E

NW

S

Figure 1: The tilted cardinal steps, a cell and operations of upper, lower and double gluing.

There is a natural notion of symmetry on fighting fish: if F is a fighting fish, its
conjugate, denoted Conj

FF(F), is the fighting fish obtained by reversing F and changing
its letters with the rules E ↔ S, W ↔ N . Conjugation is an involution on fighting fish,
that is Conj

FF ◦ConjFF is the identity on FF , and we can see it as the symmetry with
respect to the horizontal axis on our two-dimensional pictures.

3 The bijection from two-stack sortable permutations
to fighting fish

3.1 From permutations to labeled sorting trees

Let σ ∈ Sn be a permutation, and let us define σ̂ ∈ Sn+1 by setting σ̂(1) = n + 1
and σ̂(i) = σ(i − 1) for 2 ≤ i ≤ n + 1. We represent σ̂ as the set of points {(i, σ̂(i))}
in Z2 (its grid representation) and we construct a rooted plane tree on this set of points.
The sorting tree ST(σ) associated to σ is the rooted plane tree obtained by the following
top-to-bottom process :
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• Define the root to be (1, n + 1).

• At step j ≥ 1, we insert the point (k, σ̂(k)) in the tree, where k is such that σ̂(k) =
n − j. To do so, let us consider 0 = i1 < i2 < ... < ij the x-coordinates of all points
already inserted in the tree. There is then a maximal index m such that im < k. We
distinguish two cases :

– If m = j or σ̂(im) < σ̂(im+1), we define the parent of (k, σ̂(k)) to be (im, σ̂(im)).
– If m < j and σ̂(im) > σ̂(im+1), we consider the greatest m + 1 ≤ r ≤ n such

that σ̂(im) > σ̂(im+1) > ... > σ̂(ir), and we set the parent of (k, σ̂(k)) to be
(ir, σ̂(ir)).

• The process ends when all points have been inserted, i.e. after the nth step.

0

0

1

0

0

3

3

3

0

0

0

0

0

0 0

0

3

3 3

1

0

Figure 2: The permutation 617953842, its sorting tree and its labeled sorting tree

This procedure produces a tree since n edges are inserted and no cycles are created,
because each non-root vertex has a parent of strictly greater y-coordinate. The permutation
σ̂ can be split into maximal descending runs in a unique way. We associate to every element
of σ̂ its run label in the following way: if it is not the last element of its descending run, we
label it by 0, else we label it by the number of elements in its descending run. The labeled
sorting tree LST(σ) associated to σ is the plane rooted tree obtained by labeling each node
of ST(σ) with the run label of the element to which it corresponds in the permutation. As
an example, we give the (labeled) sorting tree of the permutation 617953842 in Figure 2.

Sorting trees and labeled sorting trees of permutations are intimately linked to the
Dyck paths corresponding to their first two passes into a stack:

Proposition 1. Let σ, τ ∈ Sn. Then:

• ST(σ) = ST(τ) if and only if D2(σ) = D2(τ).

• LST(σ) = LST(τ) if and only if (D1(σ),D2(σ)) = (D1(τ),D2(τ)) .
In particular, when σ, τ ∈ 2SSn, ST(σ) = ST(τ) if and only if S(σ) = S(τ).

The proof of the next proposition, that we do not present here, relies mainly on the
decomposition of two-stack sortable permutations presented in [7] and on its isomorphic
counterpart on labeled sorting trees, transferred by LST:
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Proposition 2. Let T be a rooted labeled plane tree with root r, and having n non-root
vertices (we say that it has size n). For a given node v ∈ T , we denote by λ(v) its
nonnegative label, deg(v) its number of children, sub(v) the subtree of T rooted at v and
anc(v) the nodes w such that v belongs to sub(w) (the ancestors of v).
Then there exists a permutation σ ∈ Sn such that LST(σ) = T if and only if:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
v∈T

λ(v) = n + 1

∀v ∈ T, λ(v) ≤ ∑
w∈anc(v)

(2 − deg(w)) − 1

∀v ∈ T \ {r}, ∑
w∈sub(v)

(λ(w) − 1) ≥ 1

Furthermore, denoting by LST n the set of trees satisfying these three conditions, the re-
striction of the map LST to two-stack sortable permutations is a bijection between 2SSn

and LST n.

Since LST(Sn) = LST n, we can call trees in LST = ⋃
n≥1

LST n labeled sorting trees.

3.2 From labeled sorting trees to fighting fish
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Figure 3: A tree in LST 9, its fish word displayed on the tree and the corresponding fighting
fish.

Let T be a tree in LST n. We build a word w on the alphabet {E,N,W, S} with the
following algorithm using a stack :

• Set w to be the empty word and the stack to be empty, and run a clockwise tour of
the tree T , starting from the root.

• Every time we encounter a vertex v for the first time, we read its label λ(v) : if
λ(v) = 0, then we put nothing in the stack and append E to w, else λ(v) > 0 and
we insert (in this order) a letter S and λ(v) − 1 letters W in the stack and append
N to w.

• Every time we encounter a vertex for the last time, we pop the top element of the
stack and append it to w.
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• The algorithm ends after we reach the root vertex for a second (and last) time.

The word w obtained via this procedure is called the fish word of T and we denote it
by FW(T ). We provide an example in Figure 3. It is not straightforward that the stack
is always not empty when we have to pop an element of the stack, but the conditions on
labels of labeled sorting trees ensure this property.

Proposition 3. The map FW ∶ LST → FF is a bijection preserving the size.

Our proof of the proposition relies on the isomorphic decompositions of labeled sorting
trees and of fighting fish (the wasp-waist decomposition presented in [3]) transferred by FW.
Combining the maps LST and FW, we then get (up to conjugation) a direct description
of the recursive bijection of Fang (see [7]) between two-stack sortable permutations and
fighting fish:

Theorem 1. The map FW ◦LST ∶ 2SS → FF is a bijection that sends two-stack sortable
permutations of size n to fighting fish of size n.

4 Perspectives
• Let T ∈ LST n a labeled sorting tree. Proposition 2 states that there is a unique

two-stack sortable permutation σ such that LST(σ) = T . It raises the natural question of
enumerating the set {τ ∈ Sn,LST(τ) = T}. An equivalent problem is to determine how
many permutations τ ∈ Sn satisfy (D1(τ),D2(τ)) = (D1(σ),D2(σ)).

• The conditions of the characterization of trees belonging to LST n in Proposition 2
do not depend on the order of the children of a given vertex. In particular, the mirror
tree (obtained by recursively reversing the order of the children of the nodes) of a tree in
LST n is also in LST n. This symmetry is surprising if we consider that LST n is the set
of labeled sorting trees of two-stack sortable permutations. On the other hand, it is also
not evident that the algorithm defining the bijection FW still produces a valid fighting fish
when considering the mirror tree of a tree in LST n. It might be interesting to investigate
the involutions on two-stack sortable permutations and on fighting fish induced by this
mirror involution on labeled sorting trees.

• Similarly, conjugation on fighting fish gives rise to involutions on labeled sorting trees
and on two-stack sortable permutations. It would be nice to have a direct description of
these involutions, since the counterpart of conjugation on nonseparable planar maps is the
important notion of duality (see [4]).

• A natural statistic to consider on fighting fish is the area: it is the number of square
cells composing it (or equivalently the area enclosed by the corresponding quadrant walk).
This statistic has an interesting counterpart on synchronized Tamari intervals (which are
bijectively linked to fighting fish in [5]), generalizing the notion of area on Dyck paths. We
tried to have a nice and direct interpretation on (two-stack sortable) permutations of the
area statistic on fighting fish (transferred by FW ◦LST), without success. Still, we were
able to characterize the permutations giving rise to a fighting fish of minimal area in terms
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of pattern avoidance. We also conjecture that they are enumerated according to their size
by the sequence [10, A131178].

References
[1] M. Bousquet-Mélou. Multi-statistic enumeration of two-stack sortable permutations.

The Electronic Journal of Combinatorics, 5(1):R21, 1998.

[2] E. Duchi, V. Guerrini, S. Rinaldi, and G. Schaeffer. Fighting Fish. Journal of Physics
A : Mathematical and Theoretical, 50.2, 2016.

[3] E. Duchi, V. Guerrini, S. Rinaldi, and G. Schaeffer. Fighting Fish: Enumerative Prop-
erties. In 29th International Conference on "Formal Power Series and Algebraic Com-
binatorics" (FPSAC 2017). Séminaire Lotharingien de Combinatoire 78B.43, 2017.

[4] E. Duchi and C. Henriet. A bijection between rooted planar maps and generalized
fighting fish, 2022.

[5] E. Duchi and C. Henriet. A bijection between Tamari intervals and extended fighting
fish. European Journal of Combinatorics, 110:103698, 2023.

[6] S. Dulucq, S. Gire, and O. Guibert. A combinatorial proof of J. West’s conjecture.
Discrete Mathematics, 187(1):71–96, 1998.

[7] W. Fang. Fighting Fish and Two-Stack Sortable Permutations. In 30th International
Conference on "Formal Power Series and Algebraic Combinatorics" (FPSAC 2018).
Séminaire Lotharingien de Combinatoire 80B.7, 2018.

[8] I. P. Goulden and J. West. Raney Paths and a Combinatorial Relationship between
Rooted Nonseparable Planar Maps and Two-Stack-Sortable Permutations. Journal of
Combinatorial Theory, Series A, 75(2):220–242, 1996.

[9] D. E. Knuth. The Art of Computer Programming, Vol. 1: Fundamental Algorithms.
Addison-Wesley, Reading, Mass., third edition, 1997.

[10] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. Published
electronically at http://oeis.org.

[11] J. West. Sorting twice through a stack. Theoretical Computer Science, 117(1):303–313,
1993.

[12] D. Zeilberger. A proof of Julian West’s conjecture that the number of two-stack-
sortable permutations of length n is 2(3n)!/((n+1)!(2n+1)!). Discrete Mathematics,
102(1):85–93, 1992.

http://oeis.org


Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications
EUROCOMB’23

Prague, August 28 - September 1, 2023

Counting tournament score sequences

(Extended abstract)

Anders Claesson∗ Mark Dukes† Atli Fannar Franklín‡

Sigurður Örn Stefánsson§

Abstract

The score sequence of a tournament is the sequence of the out-degrees of its ver-
tices arranged in nondecreasing order. The problem of counting score sequences of a
tournament with n vertices is more than 100 years old (MacMahon 1920). In 2013
Hanna conjectured a surprising and elegant recursion for these numbers. We settle
this conjecture in the affirmative by showing that it is a corollary to our main the-
orem, which is a factorization of the generating function for score sequences with a
distinguished index. We also derive a closed formula and a quadratic time algorithm
for counting score sequences.
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1 Introduction
This extended abstract summarises the results of our paper [4]. In 1953 Landau [9] used
oriented complete graphs—also called tournaments—to model pecking orders. If the ver-
tices of the complete graph represent players (rather than chickens), then the initial vertex
of a directed edge signifies the winner of a game between the two end-point players. The
number of wins of a player is equal to the number of outgoing edges from that vertex.
A score sequence is a sequence of these number of wins given in a nondecreasing order.
For instance, with 3 players there are two possible score sequences, namely (0, 1, 2) and
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(1, 1, 1). Note that non-isomorphic tournaments may give rise to the same score sequence.
With 5 players there are, up to isomorphism, 12 tournaments but only 9 score sequences.
To be even more specific, here are two non-isomorphic tournaments:

a

b

c d

e

a

b

c d

e

The score sequence associated with both is (1, 1, 2, 3, 3). The following characterization of
score sequences is known as Landau’s theorem.

Theorem 1 (Landau [9]). A sequence of integers s = (s0, . . . , sn−1) is a score sequence if
and only if

(1) 0 ≤ s0 ≤ s1 ≤ · · · ≤ sn−1 ≤ n− 1,

(2) s0 + · · ·+ sk−1 ≥
(
k
2

)
for 1 ≤ k < n, and

(3) s0 + · · ·+ sn−1 =
(
n
2

)
.

Let Sn be the set of score sequences of length n. There is no known closed formula for
the associated cardinalities (A000571 in the OEIS [7])(

|Sn|
)
n≥0 = (1, 1, 1, 2, 4, 9, 22, 59, 167, 490, 1486, 4639, 14805, . . . )

or their generating function.
It should be noted that Landau was not the first person to study score sequences, or

attempt to count them. MacMahon [10] used symmetric functions and hand calculations
to determine |Sn| for n ≤ 9 in 1920. Building on Landau’s work, Narayana and Bent [11],
in 1964, derived a multivariate recursive formula for determining |Sn|. They used it to give
a table for n ≤ 36. In 1968 Riordan [12] gave a simpler and more efficient recursion, but
unfortunately it turned out to be incorrect [13].

Let [a, b] denote the interval of integers {a, a+1, . . . , b}. We may view a score sequence
s ∈ Sn as an endofunction s : [0, n − 1] → [0, n − 1]. We now introduce the notion of a
pointed score sequence. Define S r

n as the Cartesian product S r
n = Sn × [0, n − 1]. We call

the members of S r
n pointed score sequences ; e.g. there are 6 pointed score sequences in S r

3:

((0, 1, 2), 0), ((0, 1, 2), 1), ((0, 1, 2), 2),

((1, 1, 1), 0), ((1, 1, 1), 1), ((1, 1, 1), 2).

Let (s, i) ∈ S r
n. Depending on the context, the element i will be interpreted as a position

(element in the domain) or a value (element in the codomain) of s. If i is a value, then
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the cardinality of the fiber s−1(i) is the number of times i occurs in s; this number may be
zero. Let

S
r
n(t) =

∑
(s,i)∈S r

n

t|s
−1(i)|

be the polynomial recording the distribution of the statistic (s, i) 7→ |s−1(i)| on S r
n. As an

example, S r
3(t) = 2 + 3t+ t3. Let

S
r
(x, t) =

∑
n≥1

S
r
n(t)xn.

To present the bijection that is the main result of this paper, we will first introduce a
particular type of multiset that is an essential ingredient in our deconstruction of a pointed
score sequence. At first glance it is not obvious what the relevance of these multisets to
score sequences is.

We define EGZn as the set of multisets of size n with elements in the cyclic group Zn
whose sum is

(
n
2

)
modulo n. To understand what the elements of EGZn look like it may

be helpful to note that
(
n
2

)
, as an element of Zn, is 0 if n is odd and n/2 if n is even. For

instance, EGZ3 consists of the 4 multisets {0, 0, 0}, {0, 1, 2}, {1, 1, 1}, and {2, 2, 2}.
The notation EGZn refers to the Erdős-Ginzburg-Ziv Theorem [5], which is stated be-

low. Following it we give a proposition motivating this terminology; its proof gives a simple
one-to-one correspondence between EGZn and the sets considered by Erdős, Ginzburg, and
Ziv.

Theorem 2 (Erdős, Ginzburg, and Ziv [5]). Each set of 2n − 1 integers contains some
subset of n elements the sum of which is a multiple of n.

Proposition 3. There is a one-to-one correspondence between EGZn and n-element sub-
sets of [1, 2n− 1] whose sum is a multiple of n.

Proof. Let A = {a1, . . . , an} be a subset of [1, 2n − 1] such that a1 + · · · + an is divisible
by n. Without loss of generality we can further assume that a1 < a2 < · · · < an. Let
bi = ai− i. The mapping A 7→ {b1, . . . , bn} is a bijection onto EGZn. Further proof details
are omitted but can be found in [4], as with other results presented in this abstract.

The sequence of cardinalities(
|EGZn|)n≥1 = (1, 1, 4, 9, 26, 76, 246, 809, 2704, 9226, 32066, . . . )

is entry A145855 in the OEIS [7]. As recorded in that OEIS entry, Jovović conjectured
and Alekseyev [1] proved in 2008 that

|EGZn| =
1

2n

∑
d|n

(−1)n−dϕ(n/d)

(
2d

d

)
, (4)

where the sum runs over all positive divisors of n and ϕ is Euler’s totient function. A
generalization of this result was given by Chern [3] in 2019.
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The zeros in a multiset M ∈ EGZn play a prominent role in our construction. We now
introduce a generating function to record their number. For a multisetM ∈ EGZn let |M |i
be the number of occurrences of i in M . Furthermore, let

EGZn(t) =
∑

M∈EGZn

t|M |0

be the polynomial recording the distribution of zeros in multisets belonging to EGZn. For
instance, EGZ3(t) = 2 + t+ t3 (looking at the distribution of 1s or 2s in EGZ3 would result
in the same polynomial). Define the generating functions

EGZ(x, t) =
∑
n≥1

EGZn(t)xn and S(x) =
∑
n≥0

|Sn|xn.

Our main result, Theorem 4, is a factorization of the generating function for pointed score
sequences:

S
r
(x, t) = EGZ(x, t)S(x). (5)

Let (s, i) ∈ S r
n. Viewing i is an element of the codomain of s we find that S r

(x, 0) consists
of terms stemming from pairs (s, i) such that s−1(i) is empty; i.e. i is outside the image of
s. Thus, S r

(x, 1)− S r
(x, 0) counts pairs (s, i) for which i is in the image of s. Let

S
b
n = {(s, i) ∈ S r

n : i ∈ Im(s)} = {(s, i) ∈ S r
n : i = sj for some j ∈ [n]}

and let S b
(x) = S

r
(x, 1)−S r

(x, 0) be the corresponding generating function. For instance,
S

b
3 consists of the 4 elements ((0, 1, 2), 0), ((0, 1, 2), 1), ((0, 1, 2), 2), and ((1, 1, 1), 1). We

will show (in Corollary 6) that S b
(x) = xC(x)S(x), where C(x) = (1−

√
1− 4x)/(2x) is the

generating function for the Catalan numbers Cn =
(
2n
n

)
/(1 + n). This striking occurrence

of the Catalan numbers was in fact the original inspiration for our work. It was in the
summer of 2019 that we experimented with score sequences and conjectured the identity.
Despite ample attempts we were for the longest time unable to prove it.

By setting t = 1 in Equation 5 and noting that S r
(x, 1) = xS ′(x) it follows that

xS ′(x) = EGZ(x, 1)S(x), (6)

a fact conjectured by Paul D. Hanna as recorded in the OEIS entry A000571 in 2013.
Equation 6 may alternatively be written

(
logS(x)

)′
= EGZ(x, 1)/x and so

S(x) = exp

(∑
n≥1

|EGZn|
n

xn

)
,

which arguably is the most elegant way of expressing the relation between |Sn| and |EGZn|.
The most efficient way of computing the numbers |Sn| is, however, to use the recursion
underlying Equation 6. Namely, |S0| = 1 and, for n ≥ 1,

|Sn| =
1

n

n∑
k=1

|Sn−k||EGZk|.

See Corollary 8 and the discussion following it.
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2 The main theorem and its bijection
Let the generating functions S r

(x, t), EGZ(x, t) and S(x) be defined as in Section 1.

Theorem 4. We have S r
(x, t) = EGZ(x, t)S(x).

The proof of Theorem 4 is combinatorial and is achieved by creating a bijection

Φ : S
r
n →

n⋃
k=1

EGZk × Sn−k

that maps a pointed score sequence to a pair consisting of a multiset and a score sequence.
A property of this bijection is that, for (M, v) = Φ(s, i), the number of occurrences of i in
s is equal to the multiplicity of zero in M . Before defining Φ we need to introduce several
necessary concepts.

A nonempty directed graph is said to be strongly connected if there is a directed path
between each pair of vertices of the graph. Note that we do not consider the empty
graph to be strongly connected. A strong score sequence is one which stems from a
strongly connected tournament. Equivalently (see Harary and Moser [6, Theorem 9]),
s = (s0, . . . , sn−1), with n ≥ 1, is a strong score sequence if the inequality (2) of Theorem 1
is always strict; that is, s0 + · · · + sk−1 >

(
k
2

)
for 1 ≤ k < n. Let us define the direct sum

of two score sequences u ∈ Sk and v ∈ S` by u ⊕ v = uv′, where v′ is obtained from v
by adding k to each of its letters and juxtaposition indicates concatenation. For instance,
(0) ⊕ (0) ⊕ (1, 1, 1) = (0, 1, 3, 3, 3). If U and V are tournaments having score sequences u
and v, one may view the direct sum u⊕ v as the score sequence of the tournament where
arrows are placed between the vertices of U and V such that they all point towards U :

This may easily be seen to be independent of the choice of tournaments.

Lemma 5. Let s ∈ Sn. If s0 + · · · + sk−1 =
(
k
2

)
for some k < n, then u = (s0, . . . , sk−1)

and v = (sk − k, . . . , sn−1 − k) are both score sequences, and s = u⊕ v.

A direct consequence of Lemma 5 is that every score sequence s can be uniquely written
as a direct sum s = t1 ⊕ t2 ⊕ · · · ⊕ tk of nonempty strong score sequences; in this context,
the ti will be called the strong summands of s. In terms of underlying tournaments we
have the picture:

We are now almost in a position to define the promised map Φ, but first a couple of
definitions. Assume that we are given a score sequence s = (s0, s1, . . . , sn−1) ∈ Sn.
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• For any integer j, let s+ j denote the sequence obtained by adding j to each element
of s, reducing modulo n, and sorting the outcome in nondecreasing order. Note
that s+ j need not be a score sequence even though s is. E.g. s = (1, 1, 1) is a score
sequence, but s+1 = (2, 2, 2) is not. On the other hand, if s = (0, 1, 2) then s+1 = s
is a score sequence. A characterization of when s + j is a score sequence is given in
[4, Lemma 7].

• Let µ(s + j) denote the multiset {s0 + j, s1 + j, . . . , sn−1 + j} with elements in the
cyclic group Zn.

Given a pointed score sequence (s, i) ∈ S
r
n, write s = t1 ⊕ t2 ⊕ · · · ⊕ tk and let j be

the smallest index such that i < |t1 ⊕ · · · ⊕ tj|. Another way to define j is as the smallest
prefix t1 ⊕ · · · ⊕ tj of strong summands of s that begins s0, s1, . . . , si. Define the two score
sequences u and v by

u = t1 ⊕ · · · ⊕ tj and v = tj+1 ⊕ · · · ⊕ tk.

Finally, we let
Φ(s, i) :=

(
µ(u− i), v

)
.

As an example, consider the score sequence s = (0, 2, 2, 3, 3, 5, 7, 7, 7); its decomposition
into strong summands is s = (0) ⊕ (1, 1, 2, 2) ⊕ (0) ⊕ (1, 1, 1). With i = 3 we get u =
(0)⊕ (1, 1, 2, 2) = (0, 2, 2, 3, 3), v = (0)⊕ (1, 1, 1) = (0, 2, 2, 2), u− 3 = (0, 0, 2, 4, 4) and so
Φ(s, 3) =

(
{0, 0, 2, 4, 4}, (0, 2, 2, 2)

)
.

Corollary 6. We have S b
(x) = xC(x)S(x), where C(x) is the generating function for the

Catalan numbers.

Corollary 7. We have S(x) = exp

(∑
n≥1 |EGZn|xn/n

)
.

We end by comparing our result (Corollary 7) with earlier results on the enumeration
of the ordered score sequences (s0, s1, . . . , sn−1), also called score vectors. That is, if G is
a tournament on the vertex set {v0, v1, . . . , vn−1}, then si is the out-degree of vi in G. For
instance, while there are only two score sequences of length 3, namely (1, 1, 1) and (1, 2, 3),
there are 7 score vectors of length 3: the vector (1, 1, 1) together with the 6 permutations
of (1, 2, 3).

Stanley and Zaslavsky [14] have shown that the number of score vectors of length n
equals the number of (labeled) forests on n nodes. A combinatorial proof was subsequently
given by Kleitman and Winston [8]. Cayley [2] famously gave the formula nn−2 for the
number of trees on n nodes. From the theory of exponential generating functions it imme-
diately follows that exp

(∑
n≥1 n

n−2xn/n!
)
is the exponential generating function of forests,

and thus also of score vectors.



Counting tournament score sequences 296

3 The number of score sequences
If two power series A(x) = 1 +

∑
n≥1 anx

n and B(x) =
∑

n≥1 bnx
n satisfy xA′(x)/A(x) =

B(x) and hence logA(x) =
∑

n≥1 bnx
n/n, then one readily obtains a closed formula for an

by expanding and identifying coefficients in A(x) = exp
(
b1x

1/1
)

exp
(
b2x

2/2
)
· · · . Applying

this to the equation in Corollary 7 we arrive at

|Sn| =
1

n!

∑
π∈Sym(n)

∏
`∈C(π)

|EGZ`|, (7)

where Sym(n) is the symmetric group of degree n and C(π) encodes the cycle type of π;
i.e. there is an ` ∈ C(π) for each `-cycle of π. While having the virtue of being closed,
this formula does not lend itself to quickly calculating |Sn|. For that purpose the following
recursion is better suited.

Corollary 8. For n ≥ 1, |Sn| =
n∑
k=1

|Sn−k||EGZk| =
1

n

n∑
k=1

|Sn−k|
2nk

∑
d|k

(−1)k−dϕ(k/d)

(
2d

d

)
.

This allows us to calculate all values of |Sk| for k ≤ n in Θ(n2) time, assuming con-
stant time integer operations. This is an improvement on earlier results by Narayana and
Bent [11]. Their recursive formula can be implemented to find |Sn| in Θ(n3) time, but
no faster since their recursive function must always visit Θ(n3) states to do so; to get all
|Sk| for k ≤ n takes Θ(n4) time due to lack of overlap in the states recursively visited for
different k.

Since S(x) = (1 − T (x))−1, where T (x) is the generating function for the number
of strong score sequences |Tk| having length k, this recursive computation method can be
extended to |Tk|. We first calculate the values |Sk| and use this recursion to calculate all the
values |Tk| for k ≤ n in Θ(n2) time. This is the same method as used by Stockmeyer [15],
just calculating the underlying |Sk| faster which brings the total time complexity down
from Θ(n4) to Θ(n2).
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Abstract

We provide a simplified proof of the random k-XORSAT satisfiability threshold
theorem. As an extension we also determine the full rank threshold for sparse ran-
dom matrices over finite fields with precisely k non-zero entries per row. This com-
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1 Introduction
A random k-XORSAT instance consists of a conjunction of random XOR clauses with
k literals. The goal of the well-known random k-XORSAT problem is to determine the
maximum number of XOR-clauses in a random k-XORSAT formula such that the formula
remains satisfiable with high probability (w.h.p. for short). This threshold was derived for
the random 3-XORSAT problem (k = 3) by Dubois and Mandler [14]. They stated that
their proof extends to the general case. But this turned out to be far from straightforward.
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Only more than ten years later did Pittel and Sorkin [26] publish the first complete yet
complicated proof based on moment computations. Their proof spans well over 30 pages
and resorts to computer-assistance. Subsequently, Ayre, Coja-Oghlan, Gao and Müller [4]
published a different but still complicated proof based on coupling arguments.

In this work we provide a relatively short proof for the random k-XORSAT satisfiabil-
ity threshold. Our proof is based on a novel combination of physics-inspired ‘quenched’
arguments and ‘annealed’ computations.

We start with a quenched argument. Using a message passing technique called Warn-
ing Propagation (‘WP’) we characterize typical solutions of random k-XORSAT instances.
Equipped with this characterization we then carry out a carefully truncated moment cal-
culation (‘annealed’ computation in physics jargon).

Let F = F k(n,m) be a random k-XORSAT instance consisting of n Boolean variables
and m random XOR-clauses with k literals, where the clauses are drawn independently
and uniformly from the set of all possible 2k

(
n
k

)
XOR-clauses of length k on n variables.

The k literals of a clause are drawn independently at random. The following theorem, first
established in [14] for k = 3 and in [26] for k > 3, provides the k-XORSAT satisfiablity
threshold.

Theorem 1. For k ≥ 3 and d > 0 let

Φd,k(α) = exp
(
−dαk−1

)
+ dαk−1 − d(k − 1)

k
αk − d

k
and (1.1)

dk = sup

{
d > 0 : max

α∈[0,1]
Φd,k(α) = 1− d/k

}
. (1.2)

For any ε > 0 w.h.p. the random k-XORSAT formula F is

(i) satisfiable if m ≤ (1− ε)dkn/k, (ii) unsatisfiable if m ≥ (1 + ε)dkn/k.

A k-XORSAT formula can naturally be translated to a linear system over F2 and
therefore it induces a random matrix over F2 where each column represents a variable and
each row a clause of the formula. Theorem 1 admits a natural generalisation to matrices
over finite fields beyond F2.

Thus, let q ≥ 2 be a prime power and let A = (Aij)i,j≥1 be an infinite matrix with non
zero entries Aij ∈ Fq \{0}. Further, we choose a sequence (ei)i≥1 of independent uniformly
random subsets of [n] of size |ei| = k. Define the randomm×n-matrixA = A(k,m, n, q,A)
over Fq by letting

Aij = Aij1{j ∈ ei} (i ∈ [m], j ∈ [n]).

For q = 2 we obtain the matrix induced by a k-XORSAT formula.

Theorem 2. For all k ≥ 3, all prime powers q ≥ 2 and all infinite matrices A composed
of non-zero elements of Fq the following hold. Let dk be the threshold from (1.2). Then for
any ε > 0,

(i) if m ≤ (1− ε)dkn/k, then A has full row rank w.h.p.
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(ii) if m ≥ (1 + ε)dkn/k, then A fails to have full row rank w.h.p.

Theorem 2 complements [4, Theorem 1.1], where only random matrices with identically
distributed rows were considered, while in Theorem 2 random matrices may proscribe dif-
ferent non-zero entries for each row. We proceed to outline the proof strategy of Theorem 2.

2 Proof strategy
The main task is to prove the positive statement Theorem 2(i). Assume that for m <
(1 − ε)dkn/k w.h.p. the values of a random kernel vector σ ∈ kerA are approximately
‘balanced’ such that each value s ∈ Fq appears in σ about n/q times. Via a moment
calculation we could show that the expected number of such balanced vectors σ ∈ kerA
equals (1 + o(1))qn−m. Thus | kerA| = (1 + o(1))qn−m w.h.p. and A has full row rank
w.h.p. via the second moment method.

Hence, it remains to show that a typical kernel vector σ ∈ kerA is balanced. However,
we are not able to prove directly that a random kernel vector is balanced w.h.p. Instead, we
will use a technique called Warning Propagation (‘WP’) to extract a quantitative picture
of the kernels vectors’ structure via a ‘quenched’ argument.

Pinning. We begin with an auxiliary result from [6]. Let A be an M × N matrix over
finite field Fq. We alter the matrix A using a technique called pinning: We add a few rows
to the matrix with exactly one non-zero entry at a random position which thus pin the
corresponding variables to zero. This randomised pinning operation, devised in this form
in [6], mostly removes ‘short linear relations’ from the matrix and actually works on any
arbitrary matrix.

Following [6] we call a set of columns J a relation of A if there exists a linear combination
of rows with J as the set of non zero entries. Hence J is a relation of A if there exists a
vector y ∈ FMq such that supp(y>A) is a non-empty subset of J . For a k-XORSAT formula
these relations can be interpreted as derived XOR-clauses.

Further we call a column or variable frozen in A, if the singleton {j} is a relation of
A. Thus, j is frozen iff every kernel vector is zero on position j. We denote F(A) as the
set of frozen coordinates in A and say that J 6= ∅ is a proper relation of A if J \ F(A) is
a relation of A. Finally, we say that A is (δ, `)-free if A possesses fewer than δ

(
N
h

)
proper

relations I of size |I| = h for any 2 ≤ h ≤ `. In other words, a matrix is (δ, `)-free if it
contains only few short relations that are not exclusively composed of frozen coordinates.

For an integer t ≥ 0 let A[t] denote a matrix obtained from A by adding t new rows,
each of which contains a single non-zero entry at a random position.

Lemma 1 ([6, Proposition 2.4]). For any δ > 0, ` > 0 there exists T0 = O(`3/δ4) > 0 such
that for any T ≥ T0 and any matrix A for a random t ∈ [T ] we have P [A[t] is (δ, `)-free] >
1− δ.
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Thus, with T = dlog ne, the matrix A† = A[t] is (ω−1, ω)-free with ω = dlog log ne
w.h.p. This allows us to characterize the set of frozen variables in A† in terms of the
Warning Propagation scheme.

Warning Propagation. We introduce WP for a general M ×N matrix A, not just for
A†. The matrix A naturally induces a bipartite graph G(A) called the Tanner graph with
two different kind of vertices, variable nodes and check nodes. The set of variable nodes
and check nodes coincide with the columns and rows of the matrix.

We define the WP scheme following [5]. The goal is to characterize the set of variables
frozen in the matrix A in terms of local interactions between variable nodes and their
adjacent checks using WP messages. Each edge vjai is endowed with two messages, one
sent by the variable node vj to the factor node ai and one from the factor node to the
variable node. Each message takes a symbolic value {u, f} to represent ‘unfrozen’ and
‘frozen’.

The standard messages mvj→ai(A) encompass the actual effects of adjacent variables and
factors emerging of the matrix. Let A \ {ai} be the matrix obtained from A by deleting
the row ai. Similarly A \ {∂vj \ {ai}} is the matrix where every other row adjacent to vj
except ai is removed. The standard message mvj→ai(A) = f indicates that the variable vj
is frozen in the matrix A \ {ai}. Similarly, mai→vj(A) = f expresses that vj needs to be
frozen in order to satisfy the check ai and thus is frozen in A \ {∂vj \ {ai}}.

Warning Propagation update provides a heuristic fixed point equation for these mes-
sages:

mvj→ai =

{
f if ∃ah ∈ ∂vj \ {ai} : mah→vj = f,

u otherwise,
(2.1)

mai→vj =

{
f if ∀vh ∈ ∂ai \ {vj} : mvh→ai = f,

u otherwise.
(2.2)

The idea is that freezing is caused by local effects only. For instance vj is expected to
be frozen in A \ {ai} iff some other check ah freezes vj via a standard message.

The fixed point equations (2.1),(2.2) are easily verified for matrices with acyclic Tanner
graphs. However, they do not hold for general matrices. Nonetheless, we show that for
the random matrix A† (2.1),(2.2) hold for all but o(n) adjacent pairs ai, vj w.h.p. and that
the messages correctly identify the set of frozen variables. Furthermore, we prove that in
most kernel vectors the values of the unfrozen variables are approximately ‘balanced’.

Quenched analysis. Recall that our goal is to show that a random kernel vector σ† ∈
kerA† is approximately balanced w.h.p. Since we know that this holds for the unfrozen
variables due to the WP-results, we only need to show that the fraction of frozen variables
is α = o(1) w.h.p. For this purpose we will extract detailed quantitative information about
combinations of messages belonging to an edge as well as the number of certain labels.
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Our next goal is to derive this information in terms of the (as of yet) unknown random
variable α.

We denote by ` = (`uu, `uf, `fu, `ff) ∈ Z4
≥0 a specification of message combinations, where

`uf equals the number of edges with message combination u (incoming) f (outgoing), etc.
Define ∆` as the number of variable nodes that receive/send out messages according to `.
Analogously, let Γ` be the number of factor nodes that receive/send according to `.

We are going to estimate |∆`| and |Γ`| in terms of the fraction α of frozen variables using
the hypothesis that the incoming messages at a check node ai are essentially independent.
We can derive predictions Γ̄`(α) and ∆̄`(α) in terms of the (obvious) Galton Watson tree
that mimics the Tanner graph ofA and show that these approximations are accurate w.h.p.

Proposition 1. Let d > 0, k ≥ 3. Then w.h.p. for all but o(n) adjacent pairs vj, ai the
fixed point equations (2.1),(2.2) hold. Moreover for all `

E
∣∣|∆`| − n∆̄`(α)

∣∣+ E
∣∣|Γ`| −mΓ̄`(α)

∣∣ = o(n).

Finally, for all but o(n) exceptions variable vj is frozen iff mai→vj = f for some ai ∈ ∂vj.

The proof of Proposition 1 is based on coupling arguments and does not reveal the
likely value of α.

Annealed argument. In the next and last step we aim to show that α = o(1) w.h.p.
if d < (1 − ε)dk. The present annealed computation differs significantly from the prior
works of [14, 26]. These prior works were based on blunt moment computations that
generally have the disadvantage that even extremely rare events contribute. These large
deviations result in intricate and technically demanding analytical optimisation problems.
In contrast, thanks to Proposition 1 we already know the typical shape of kernel vectors
and are therefore left with a straightforward and elegant computation.

To elaborate, we proceed in two steps. First, we estimate the expected number of α-WP
fixed points with an α-fraction of frozen variables, which turns out to be sub-exponential
for any 0 ≤ α ≤ 1. In the next step we estimate the number Xα of kernel vectors
σ† ∈ ker(A†) that extend a certain α-WP fixed point (frozen variable set to zero, unfrozen
variables balanced). Proposition 1 then implies that | kerA†| ∼ Xα w.h.p. Let D be the
σ-algebra generated by the degree-sequence of the Tanner graph. The following proposition
gives a first moment upper bound on Xα for any 0 ≤ α ≤ 1 in terms of the function Φd,k
from (1.1).

Proposition 2. Let d > 0, k ≥ 3. W.h.p. for all α ∈ [0, 1] we have

E[Xα | D] ≤ qnΦd,k(α)+o(n).

For d < dk the function Φd,k has its unique maximum at α = 0 and qnΦd,k(0) = qn−dn/k.
Thus, we can derive the estimate α = o(1) w.h.p. and finally we can deduce that w.h.p.
most kernel vectors σ† ∈ ker(A†) are ‘balanced’. This finishes our proof strategy outlined
at the beginning.
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An oriented graph is a digraph that does not contain a directed cycle of length two.
An (oriented) graph D is H-free if D does not contain H as an induced sub(di)graph.
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required to color the vertex set of D so that no directed cycle in D is monochromatic.

Aboulker, Charbit, and Naserasr’s −→χ -boundedness conjecture states that for ev-
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clique in the graph underlying D. In this paper, we perform the first step towards
proving Aboulker, Charbit, and Naserasr’s −→χ -boundedness conjecture by showing
that it holds when F is any orientation of a path on four vertices.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-042

1 Introduction
In a simple graph, the size of a maximum clique gives a lower bound on its chromatic
number. But if a graph contains no large cliques, does it necessarily have small chromatic
number? This question has been answered in the negative. In 1959, Erdős showed that
there exist graphs with arbitrarily high girth and arbitrarily high chromatic number [10].
Hence, if a graph H contains a cycle there a graphs with arbitrarily high chromatic num-
ber and no induced copy of H. Around the 1980s, Gyárfás and Sumner independently
conjectured [13, 25] that for any forest H, all graphs with bounded clique number and no
induced copy of H have bounded chromatic number. The conjecture has been proven for
some specific classes of forests but remains largely open; see [23] for a survey of related
results. This paper concerns an extension of the Gyárfás-Sumner conjecture to directed
graphs proposed by Aboulker, Charbit, and Naserasr [3].

We call a digraph oriented if it has no digon (directed cycle of length two). This paper
will focus on finite, simple, oriented graphs. For a digraph D = (V,E) we define the
underlying graph of D to be the graph D∗ = (V,E∗) where E∗ is the set obtained from E
by replacing each arc e ∈ E by an undirected edge between the same two vertices. We say
two vertices in D are adjacent or neighbors if they are adjacent in D∗. We denote the set
of neighbors of a vertex v ∈ V (D) by N(v) and we denote N(v) ∪ {v} by N [v]. For a set
of vertices S ⊆ V (D) we let N(S) and N [S] denote the sets ∪v∈SN(v) \ S and ∪v∈SN [v].
For a subdigraph H ⊆ D we let N(H) denote the set N(V (H)). We let Pt denote the path
on t vertices and

−→
Pt be the path p1 → p2 → · · · → pt. We call an oriented graph whose

underlying graph is a clique a tournament. Given a (di)graph G and S ⊆ V , we denote the
sub(di)graph of G induced by S as G[S]. We say that a (di)graph G contains a (di)graph
H if G contains H as an induced sub(di)graph. If G does not contain a (di)graph H we
say that G is H-free. The clique number and the chromatic number of a digraph are the
chromatic number and clique number of its underlying graph, respectively. We denote the
clique number and the chromatic number of a (di)graph G by ω(G) and χ(G), respectively.
We say that a graph H is χ-bounding if there exists a function f with the property that
every H-free graph G satisfies χ(G) ≤ f(ω(G)). In this language, the Gyárfás-Sumner
conjecture states that every forest is χ-bounding.

How can the Gyárfás-Sumner conjecture be adapted to the directed setting? A first
idea is to call an oriented graph H χ-bounding if there exists a function f with the property
that every H-free oriented graph D satisfies χ(D) ≤ f(ω(D)). Then, once again, by [10],
all χ-bounding oriented graphs are oriented forests. Note that if an oriented graph H is
χ-bounding, its underlying graph H∗ is also χ-bounding. However, the converse does not
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hold, as, for instance, P4 is χ-bounding, but there exist orientations of P4 that are not
χ-bounding. There are four different orientations of P4, up to reversing the order of the
vertices on the whole path:

−→
P4 : →→→,

−→
A4 : →←→,

−→
Q4 : →←←,

−→
Q4
′ : ←←→

Chudnovsky, Scott and Seymour showed
−→
Q4 and

−→
Q4
′ are χ-bounding in [8]. However,

−→
P4

and
−→
A4 are not −→χ -bounding as shown by Kierstead and Trotter [18] and Gyárfás [15],

respectively. Chudnovsky, Scott and Seymour [8] showed that
−→
Q4,
−→
Q4
′ are both χ-bound-

ing in 2019. In the same article, the authors show that orientations of stars are also
χ-bounding.

Our first attempt at adapting the Gyárfás-Sumner conjecture to oriented graphs failed
for oriented paths such as

−→
P4 and

−→
A4. Hence, we focus on a different approach proposed

by Aboulker, Charbit, and Naserasr [3] which uses a concept called “dichromatic number”
introduced in [21]. A dicoloring of a digraph D is a partition of V (D) into classes, or
colors, such that each class induces an acyclic digraph (that is, there is no monochromatic
directed cycle). The dichromatic number of D, denoted as −→χ (D), is the minimum number
of colors needed for a dicoloring of D. Notice that every coloring of a directed graph D is
also a dicoloring, thus −→χ (D) ≤ χ(D). We say a class of digraphs D is −→χ -bounded if there
exists a function f such that every D ∈ D satisfies −→χ (D) ≤ f(ω(D)) and we call such an f
a −→χ -binding function for D. We say that a digraph H is −→χ -bounding if the class of H-free
oriented graphs is −→χ -bounded.

We can now state Aboulker, Charbit, and Naserasr’s dichromatic analogue to the Gyár-
fás–Sumner conjecture for digraphs. For brevity, we will call this conjecture the “ACN
−→χ -boundedness” conjecture in the remainder of this extended abstract.

Conjecture 1.1 (The ACN −→χ -boundedness conjecture [3]). Every oriented forest is −→χ -
bounding.

The converse of the ACN −→χ -boundedness conjecture holds; all −→χ -bounding digraphs
must be oriented forests. Indeed, Harutyunyan and Mohar proved that there exist oriented
graphs of arbitrarily large undirected girth and dichromatic number [16]. Oriented graphs
of sufficiently large undirected girth (and no digon) forbid any fixed digraph that is not an
oriented forest.

The ACN −→χ -boundedness conjecture is still widely open. It is not known whether the
conjecture holds for any orientation of any tree T on at least five vertices that is not a
star. In particular, it is not known whether the conjecture holds for oriented paths. In
contrast, Gyárfás showed that every path is χ-bounding in the 1980’s [13, 14] via short
and elegant proof. For t ≤ 3, every orientation of Pt is trivially −→χ -bounding. However,
for t ≥ 4, the picture gets more complicated. Let T be any fixed orientation of K3.
In [3], Aboulker, Charbit and Naserasr showed that class of (T ,

−→
P4)-free oriented graphs

have bounded dichromatic number. The authors also show that
−→
P4-free oriented graphs

with clique number at most three have bounded dichromatic number. Recently, Aboulker,
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Aubian, Charbit, and Thomassé showed that
−→
P6-free oriented graphs with clique number

at most two also have bounded dichromatic number [1]. See [5] for further related results.
Let
−→
Kt denote the transitive tournament on t vertices. Steiner showed that the class of

(
−→
K3,
−→
A4)-free oriented graphs has bounded dichromatic number in [24]. In the same paper

Steiner asked whether the class of (H,
−→
Kt)-free oriented graphs has bounded dichromatic

number for t ≥ 4 and H ∈ {
−→
P4,
−→
A4}. Our main result answers this question in the

affirmative as corollary.

1.1 Our contributions

In this paper, we show that every orientation of P4 is −→χ -bounding and thus the ACN
−→χ -boundedness conjecture holds for all orientations of P4. The ACN −→χ -boundedness
conjecture is open for any orientation of Pt for t ≥ 5. Our main novel result is that

−→
P4 and−→

A4 are both −→χ -bounding. To summarize, our main result is the following:

Theorem 1.2. Let H be an oriented P4. Then, the class of H-free oriented graphs is
−→χ -bounded. In particular, for any H-free oriented graph D,

−→χ (D) ≤ (ω(D) + 7)(ω(D)+8.5).

2 Proof Sketch
In this section we will sketch the proof of Theorem 1.2. The full proof is available in the
arXiv version of this paper [9]. Our main tool in the proof is an object called a “dipolar
set” which was first introduced in [2] as a “nice set”.

Definition 2.1. A dipolar set of an oriented graph D is a nonempty subset S ⊆ V (D) that
can be partitioned into S+, S− such that no vertex in S+ has an out-neighbor in V (D \ S)
and no vertex in S− has an in-neighbor in V (D \ S).

We will use the following lemma from [2] which reduces the problem of bounding the
dichromatic number of D to bounding the dichromatic number of a dipolar set in every
induced oriented subgraph of D.

Lemma 2.2 (Lemma 17 in [2]). Let D be a family of oriented graphs closed under taking
induced subgraphs. Suppose there exists a constant c such that every D ∈ D has a dipolar
set S with −→χ (S) ≤ c. Then every D ∈ D satisfies −→χ (D) ≤ 2c.

We will give a way of finding a dipolar set in any oriented graph excluding some ori-
entation of P4 as an induced subdigraph and show how to bound its dichromatic number.
The backbone of our dipolar set is an object we call a closed tournament.

Definition 2.3. We say K and P form a closed tournament C = K ∪ V (P ) if K is a
tournament of maximum order and P is a directed path from a source component to a sink
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component of the directed graph induced by K. We say K and P form path-minimizing
closed tournament if |P | is minimized amongst all choices of K,P that form a closed
tournament.

Lemma 2.4. Let H be an orientation of P4 and D be an H-free oriented graph. Let C be
a closed tournament in D and let X be the set of vertices with both an in-neighbor and an
out-neighbor in C. Then N [C ∪X] is a dipolar set.

The proof follows from the fact that every v ∈ N(C) must have a non-neighbor in C
and from the definition of strong connectivity. See Lemma 3.1 in [9] for details.

Our proof that orientations of P4 are −→χ -bounding proceeds by induction. Let H be an
oriented P4 and let ω > 1 be an integer. We let γ be the maximum of −→χ (D′) over every
H-free oriented graph D′ satisfying ω(D′) < ω. We assume γ is finite. We let D be an
H-free oriented graph with clique number ω and assume D is strongly connected.

Observation 2.5. Every v ∈ V (D) satisfies −→χ (N(v)) ≤ γ.

Let C = K ∪ V (P ) be a path-minimizing closed tournament in D. Let X be the set
of vertices in N(C) with an in-neighbor and an out-neighbor in C. Then N [C ∪ X] is a
closed tournament. It remains to show that −→χ (N [C ∪X]) is bounded by a function of ω
and γ.

By Observation 2.5, −→χ (N [K]) ≤ ω ·γ+ω. Let the vertices of P be p1 → p2 → · · · → p`,
in order. Then since C is path minimizing, P is a shortest directed path from p1 to p`.
Hence:

Observation 2.6. For each integer 2 ≤ i+ 1 < j ≤ `, there is no arc from pi to pj.

It follows that −→χ (V (P )) ≤ 2. Hence, it is enough to show that −→χ (N(P ) \N [K]) and
−→χ (N(X)\N [C]) are bounded by a function of ω and γ. We obtain that −→χ (N(X)\N [C]) ≤
2γ by applying the following lemma with Q := C, R := X and S := N(X) \N [C].

Lemma 2.7. Let H be an oriented P4 and let D be an H-free oriented graph. Suppose
there is a partition of V (D) into sets Q,R, S such that there is no arc between Q and S,
every r ∈ R has both an in-neighbor and an out-neighbor in Q and every s ∈ S has a
neighbor in R. Let γ be an integer such that for every r ∈ R, we have −→χ (N(r)) ≤ γ. Then
−→χ (S) ≤ 2γ.

Lemma 2.7 follows from an easy inductive argument on |S|. (See Lemma 4.3 in [9] for
details). By Lemma 2.7, it only remains to show that −→χ (N(P ) \ N [K]) is bounded by
some function of γ and ω. Note, we cannot simply apply Observation 2.5 because P may
be arbitrarily long. For this part of the proof we proceed (slightly) differently for each
orientation of P4. Here, we present a sketch of the case when H =

−→
P4. The other cases are

similar.
We say the “first” and “last” neighbors of a vertex v ∈ N(P ) are the vertices pi ∈

N(v) ∩ V (P ) minimizing i and maximizing i, respectively. For each integer 1 ≤ i ≤ `,
we let Fi, Li denote the sets of vertices in N(P ) whose first neighbor is pi and whose last
neighbor is pi, respectively. Let F−i , L

+
i be the sets consisting of all out-neighbors of pi in

Fi and in-neighbors of pi in Li, respectively.
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Observation 2.8. Let 2 ≤ i < j ≤ ` − 1. Then there are no arcs from F−i to Fj and no
arcs from Li to L+

j .

Indeed, as otherwise D[N [{pi, pj}]] would contain a
−→
P4. Let W = ∪`−1i=2(F

−
i ∪ L+

i )
Then by Observation 2.5 and Observation 2.8, −→χ (W ) ≤ 2γ. Let R = N(P ) \ (W ∪
N({p1, p2, p`})). By Observation 2.5, we need only show showing −→χ (R) is at most some
function of γ and ω to complete the proof of Theorem 1.2. We will require a technical
lemma:

Lemma 2.9. Let v, w ∈ R, if (w, v) ∈ E(D), there is a directed path from v to w on at
most max{6, `− 1} vertices.

Lemma 2.9 follows from Observation 2.6 and a brief case analysis. See Lemma 5.4 from
[9] for details.

Lemma 2.10. −→χ (R) ≤ 6γ.

Proof. If P contains at most six vertices then −→χ (N(P )) ≤ 6γ, hence we may assume this is
not the case. We may assume that there is a tournament J of size ω in D[R] for otherwise
−→χ (R) ≤ γ. Since P 6= ∅ and C = K ∪ V (P ) was chosen to be path-minimizing it follows
that J cannot be strongly connected. Let v be a vertex in the sink component of J and
w be a vertex in the source component of J . Therefore, (w, v) ∈ E(D). Thus by Lemma
2.9 there is a path Q from v to w of length less than that that of P . Hence, J, P ′ form a
closed tournament. By definition since K,P were chosen to form a path-minimizing closed
tournament P ′ cannot be shorter than P , a contradiction.

By combining the results from this section, we obtain that −→χ (N [C ∪ X]) is at most
some function of γ and ω. Since N [C∪X] is dipolar, it follows from Lemma 2.2 that −→χ (D)

is at most some function of γ and ω. Hence, by induction
−→
P4 is −→χ -binding. The proofs

that
−→
A4,
−→
Q4 and

−→
Q4
′ are −→χ -binding are similar (and slightly simpler). Full details can be

found in [9].

3 Conclusion
Our result is an initial step towards resolving the ACN −→χ -boundedness conjecture for
orientation of paths in general. However, we think we are still far from this result. It
would already be interesting to hear the answer to the easier question: Is it true that for
every oriented path H there is a constant cH such that every oriented graph not containing
H or a tournament of size three has dichromatic number at most cH . By Theorem 1.2 this
is known when H is an orientation of a path of length at most four. It is proven in [1] that
this is true when H =

−→
P6.

Recall that the classes of
−→
Q4-free oriented graphs and

−→
Q4
′-free oriented graphs were al-

ready shown to be χ-bounded in [8]. The χ-binding function f ′ for these two classes from [8]
is defined using recurrence f ′(x) := 2(3f ′(x− 1))5 which leads to a double-exponential
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bound on χ, and cannot guarantee a better bound on −→χ . In this paper,Theorem 1.2 pro-
vides an improved −→χ -binding function for these classes. We would like to know whether
any orientation of P4 is polynomially −→χ -bounding. In other words, is there some oriented
P4 so that the class of oriented graphs forbidding it has a polynomial −→χ -binding function?
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Abstract

Let Σ = {a1, ..., an} be a set of positive integers with a1 < · · · < an such that all
2n subset sums are distinct. A famous conjecture by Erdős states that an > c · 2n for
some constant c, while the best result known to date is of the form an > c · 2n/

√
n.

In this paper, we propose a generalization of the Erdős distinct sum problem that
is in the same spirit as those of the Davenport and the Erdős-Ginzburg-Ziv constants
recently introduced in [7] and in [6]. More precisely, we require that the non-zero
evaluations of the m-th degree symmetric polynomial are all distinct over the sub-
sequences of Σ. Even though these evaluations can not be seen as the values assumed
by the sum of independent random variables, surprisingly, the variance method works
to provide a nontrivial lower bound on an. Indeed, the main result here presented is
to show that

an > cm · 2
n
m /n1− 1

2m .
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for some constant c > 0. Using the variance method, Erdős and Moser [10] (see also [1]
and [13]) were able to prove that an ≥ 1/4 · n−1/2 · 2n. No advances have been made
so far in removing the term n−1/2 from this lower bound, but there have been several
improvements on the constant factor, including the work of Dubroff, Fox, and Xu [11],
Guy [12], Elkies [9], Bae [4], and Aliev [3]. In particular, the best currently known lower
bound states that an ≥ (1 + o(1))

√
2
π

1√
n
2n. Two simple proofs of this result, first obtained

unpublished by Elkies and Gleason, are presented in [11]. In the other direction, the
best-known construction is due to Bohman [5] (see also [14]), who showed that there exist
arbitrarily large such sets with an ≤ 0.22002 · 2n.

Several variations on the problem appear during the years such as [2] and [8]. In
this paper, we generalize the Erdős distinct sum problem by requiring that the non-zero
evaluations of them-th degree symmetric polynomial are all distinct over the sub-sequences
of Σ. The problem here considered is inspired by those of the Davenport and the Erdős-
Ginzburg-Ziv constants recently introduced in [7] and in [6].

More formally, given a sequence of real numbers Σ = {a1, . . . , an} and a subset A ⊆
[1, n], we define the m-th (degree) evaluatio emΣ (A) =

∑
{i1,...,im}⊆A
i1<···<im

ai1 · · · aim , where we

adopt the convention that emΣ (A) = 0 if |A| < m.

Problem 1.1. For every positive integer n, find the least positive M = M(n) such that
there exists an increasing sequence Σ = (a1, . . . , an) of real numbers with ai ∈ [0,M ] for
every i such that for all distinct A1, A2 ⊆ [1, n] of size at least m we have that |emΣ (A1) −
emΣ (A2)| ≥ 1.

A sequence as in Problem 1.1 will be called M-bounded m-th evaluation distinct.
In Section 2, we provide lower bounds on the values of M in Problem 1.1 using the

variance method proving that
M > cm · 2

n
m/n1− 1

2m .

Then, in Section 3, we derive an upper bound presenting a direct construction.

2 Lower Bounds
One first lower bound to the value ofM of Problem 1.1 can be provided using the pigeonhole
principle. Indeed, since the number of non-zero evaluations of emΣ is 2n −

∑m−1
i=0

(
n
i

)
=

(1 + o(1))2n, these evaluations are spaced at least by one, and each of these is smaller than
emΣ ([1, n]) ≤

(
n
m

)
Mm ≤ nmMm/cm, it follows that M > cm · 2

n
m/n.

Now we see that using the variance method (see [1], [10] or [12]), it is possible to improve
this lower bound.

Theorem 2.1. Let Σ = (a1, . . . , an) be an m-th evaluation distinct sequence in R (resp.
Z) that is M-bounded. Then

M > (1 + o(1))
21− 1

m ((m− 1)!)
1
m

3
1

2m

2
n
m

n1− 1
2m

.
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Proof. Let Σ = (a1, . . . , an) be such a sequence of real (resp. integer) numbers. Pick a
subset A uniformly at random from 2[1,n] and define the real random variable X = emΣ (A).
We denote by µ := E[X] and σ2 := E[X2]−µ2 respectively the expected value and the vari-
ance of the random variable X. Clearly, µ = 1/2n

∑
A⊆[1,n]: |A|≥m e

m
Σ (A). Here we have that

the monomial ai1 . . . aim appears in the evaluation emΣ (A) whenever A contains i1, . . . , im
which happens for 2n−m subsets of [1, n]. Therefore, we have that µ = emΣ ([1, n])/2m. By
definition of variance we have that:

2nσ2 =
∑

A⊆[1,n]

(emΣ (A)− µ)2 =
∑

A⊆[1,n]

 ∑
i1<i2<···<im
i1,...,im∈A

ai1 . . . aim −
∑

i1<i2<···<im
i1,...,im∈[1,n]

ai1 . . . aim
2m


2

.

Due to the symmetry of emΣ , there exist coefficients C1, . . . , Cm such that the latter sum
can be written as follows:

C0

∑
i1<i2<...<i2m
i1,...,i2m∈[1,n]

ai1 . . . ai2m + C1

∑
i1<i2<...<i2m−1

i1,...,i2m−1∈[1,n]

∑
`∈[1,2m−1]

ai1ai2 . . . a
2
i`
. . . ai2m−1+ (1)

+ . . .+ Cm
∑

i1<i2<...<im
i1,...,im∈[1,n]

a2
i1
. . . a2

im .

One can prove that C0 = 0, C1 = 2n−2m
(

2m−2
m−1

)
and Ck = O(2n) for every k ∈ {2, . . . ,m}.

This can be seen since the coefficient of ai1 . . . ai2m is
(

2m
m

)
times that obtained by taking

the term ai1 . . . aim from the first (emΣ (A) − µ) in the product and aim+1 . . . ai2m from the
second one. Then, the coefficient of a2

i1
. . . ai2 . . . ai2m−1 is

(
2m−2
m−1

)
times that obtained taking

the term ai1 . . . aim from the first (emΣ (A) − µ) in the product and ai1aim+1 . . . ai2m−1 from
the second one. Symmetrically, the same is true for every term ai1 . . . a

2
i`
. . . ai2m−1 . Finally,

the coefficient of a2
i1
. . . a2

ik
aik+1

. . . ai2m−k
is
(

2m−2k
m−k

)
times that obtained taking the term

ai1 . . . aim from the first (emΣ (A)− µ) in the product and ai1 . . . aikaim+1 . . . ai2m−k
from the

second one. Summing up, we can rewrite equation (1) as

2nσ2 = C1

∑
i1<i2<...<i2m−1

i1,...,i2m−1∈[1,n]

∑
`∈[1,2m−1]

ai1ai2 . . . a
2
i`
. . . ai2m−1+ (2)

+O(2n)

 m∑
k=2

Ck
∑

i1<i2<...<i2m−k

i1,...,i2m−k∈[1,n]

∑
`1<...<`k

`1,...,`k∈[1,2m−k]

ai1ai2 . . . a
2
i`1
. . . a2

i`k
. . . ai2m−k

 .

In equation (2), each Ck multiplies a sum of
(

n
2m−k

)
·
(

2m−k
k

)
< n2m−k

(2m−2k)!k!
terms. Since
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an is the largest element of the sequence, we get:

2nσ2 <
n2m−1

(2m− 2)!

(
2m− 2

m− 1

)
2n−2ma2m

n (1 + o(1)) =

(
n2m−1

((m− 1)!)2
2n−2ma2m

n

)
(1 + o(1)).

(3)

On the other hand, for |A| ≥ m, the evaluations emΣ (A) are all different and spaced
at least by one, and hence we have that (emΣ (A)− µ)2 assumes at least 1

2
(2n −

∑m−1
i=0

(
n
i

)
)

different values. Since the sum
∑

A⊆[1,n](e
m
Σ (A) − µ)2 is minimized when the values are

around µ and are spaced by one, we obtain the lower bound:

1 + o(1)

12
23n = 2

1
2

(2n−
∑m−1

i=0 (n
i))∑

i=0

i2 ≤ 2nσ2. (4)

To conclude the proof, it is enough to compare (3) and (4).

3 Upper bounds
In this section we provide an upper bound to the value of M in Problem 1.1 by presenting
the following direct construction.

Lemma 3.1. Let ε1, ε2 be two reals such that ε1 > ε2 > 0 and let m ≥ 2 be an integer. Then
for every n large enough the sequence Σ = (a1, a2, . . . , an), where ai = (2+ε1)n−(2+ε2)i−1

for i = 1, 2, . . . , n, is m-evaluation distinct.

Proof. Suppose by contradiction there exists two distinct subsets B,C ⊆ [1, n] such that

|emΣ (B)− emΣ (C)| < 1 . (5)

For an arbitrary subset S ⊆ [1, n] with |S| ≥ m, by definition we have:

emΣ (S) =
m∑
j=0

(−1)j(2 + ε1)(m−j)n
(
|S| − j
m− j

) ∑
{i1,i2,...,ij}⊆S
i1<i2<...<ij

(2 + ε2)i1+i2+...+ij−j . (6)

We first show that inequality (5) implies |B| = |C|. Suppose without loss of generality
that |B| > |C|. Then (6) implies that:

emΣ (B)− emΣ (C) = (2 + ε1)mn
[(
|B|
m

)
−
(
|C|
m

)]
+

m∑
j=1

(−1)j(2 + ε1)(m−j)n

(|B| − jm− j

) ∑
{i1,i2,...,ij}⊆B
i1<i2<...<ij

(2 + ε2)i1+i2+...+ij−j −
(
|C| − j
m− j

) ∑
{i1,i2,...,ij}⊆C
i1<i2<...<ij

(2 + ε2)i1+i2+...+ij−j

 .
(7)
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Now it can be seen that each term in the first summation of equation (7) is of order

O

(
nm(2 + ε1)mn

(
2+ε2
2+ε1

)jn)
, for j = 1, 2, . . . ,m and n → ∞. Hence, asymptotically in n,

we can rewrite (7) as emΣ (B)−emΣ (C) = (2+ε1)mn
[(|B|

m

)
−
(|C|
m

)]
(1+o(1)), since ε1 > ε2.This

clearly contradicts (5), and hence we must have |B| = |C|.
Next, let t be an integer such that |B| = |C| = t and let B := {b1, b2, . . . , bt} and

C := {c1, c2, . . . , ct}, where b1 < b2 < . . . < bt and c1 < c2 < . . . < ct. Since B 6= C, there
exists an integer ` ∈ [1, t] such that b` 6= c` while b`+1 = c`+1, b`+2 = c`+2,. . ., bt = ct.
Suppose without loss of generality that b` > c`. Then we have:

|emΣ (B)− emΣ (C)| =

∣∣∣∣∣(2+ε1)(m−1)n

(
t− 1

m− 1

)(∑
i≤`

(2 + ε2)bi−1 − (2 + ε2)ci−1

)
+

m∑
j=2

(−1)j−1

(2+ε1)(m−j)n
(
t− j
m− j

) ∑
1≤i1<i2<...<ij≤t

i1≤`

(2 + ε2)bi1+bi2+...+bij−j − (2 + ε2)ci1+ci2+...+cij−j


∣∣∣∣∣ .
(8)

To conclude the proof, we need to lower bound equation (8). The summation formula for
the geometric series implies that:

∑
i≤`(2 + ε2)ci−1 ≤

∑
1≤i≤c`(2 + ε2)i−1 < (2 + ε2)c`/(1 +

ε2) ≤ (2 + ε2)b`−1/(1 + ε2), and since each term in the summation over j in equation (8) is,

as n→∞, of order O
(
nm(2 + ε1)(m−1)n(2 + ε2)b`−1

(
2+ε2
2+ε1

)(j−1)n
)
, we obtain the following

lower bound:

|emΣ (B)− emΣ (C)| >
∣∣∣∣(2 + ε1)(m−1)n

(
t− 1

m− 1

)
(2 + ε2)b`−1

(
1− 1

1 + ε2

)∣∣∣∣ (1 + o(1)) .

The theorem now follows since the right hand side of the above inequality is greater than 1
for sufficiently large n’s.

Along the same lines of Lemma 3.1, we can prove the following corollary. We do not
report here the proof due to space limitations.

Corollary 3.2. Let ε1, ε2 be two reals such that ε1 > ε2 > 0 and let m ≥ 2 be an
integer. Then for every n large enough the sequence Σ = (a1, a2, . . . , an), where ai =
b(2 + ε1)n − (2 + ε2)i−1c for i = 1, 2, . . . , n, is m-evaluation distinct.

We observe that Corollary 3.2 holds also for m = 1 but we obtain a bound that is worse
than the ones given in [5] and [14]. As an easy consequence of Corollary 3.2, one can prove
the following theorem.

Theorem 3.3. There exists a sequence Σ = (a1, a2, . . . , an) of n integers that is m-
evaluation distinct and M-bounded such that M ≤ 2n+o(n), for n→∞.
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i=1 di = 1 a Ramsey k-tuple if the following is true: in every two-colouring of the

circle of unit perimeter, there is a monochromatic k-tuple of points in which the
distances of cyclically consecutive points, measured along the arcs, are d1, d2, . . . , dk
in some order. By a conjecture of Stromquist, if di = 2k−i

2k−1 , then (d1, . . . , dk) is
Ramsey.

Our main result is a proof of the converse of this conjecture. That is, we show that
if (d1, . . . , dk) is Ramsey, then di = 2k−i

2k−1 . We do this by finding connections of the
problem to certain questions from number theory about partitioning N into so-called
Beatty sequences. We also disprove a majority version of Stromquist’s conjecture,
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1 Introduction
In the May 2021 issue of the American Mathematical Monthly, Robert Tauraso posed the
following problem [13]: If all the points of the plane are arbitrarily coloured blue or red,
find an acute pentagon with all vertices the same colour and with prescribed area 1. A
beautiful solution was suggested by Walter Stromquist, which reduced the question to a
Ramsey-type problem, interesting on its own right.

Consider 31 points evenly spaced on a circle, and colour each of them arbitrarily blue or
red. Then we can always find 5 points with the same colour that divide the circle into arcs
proportional to 1:2:4:8:16. (The arcs need not be in the order suggested by the proportion.
That is, 1:4:16:2:8 counts as a success.) Notice that no matter in what order 5 points divide
the circle into such arcs, their convex hull is a pentagon of the same area. Thus, all we
have to do is to start with a circle for which this area is 1. Stromquist managed to verify
the above statement by computer, and he formulated the following attractive conjecture.

Conjecture 1.1 (Stromquist’s conjecture). For any k ≥ 3, consider 2k − 1 points evenly
spaced on a circle, and colour each of them arbitrarily blue or red.

Then we can always find k points with the same colour that divide the circle into arcs
proportional to 1 : 2 : 4 : . . . : 2k−1, but not necessarily in this order.

The case k = 3 was settled a long time ago by Bialostocki and Nielsen [4], and it is not
hard to verify the case k = 4 either. Stromquist kindly informed us that he was able to
give a computer assisted proof for k ≤ 6.

In the present note, we study Stromquist’s conjecture. To simplify the presentation, we
introduce some notation. For k ≥ 3, let d = (d1, d2, . . . , dk) be a k-tuple with d1 ≥ d2 ≥
· · · ≥ dk > 0 and

∑k
i=1 di = 1. In a two-colouring of the circle S of unit perimeter, we

call a k-tuple (p1, p2, . . . , pk) of points from S monochromatic if the colour of every point
pi is the same. The main problem we study is whether for a given d it is true that in
every two-colouring of S we can find a monochromatic k-tuple in which the distances of
consecutive points, measured along the arcs, are exactly d1, . . . , dk in some order. We call
a k-tuple d with this property a Ramsey k-tuple, or simply Ramsey.

A permuted copy of a k-gon inscribed in S is another k-gon inscribed in S with the
same side lengths, but in a possibly different order. If the side lengths of the k-gon,
measured along the arcs, are d1, . . . , dk, we also call a monochromatic permuted copy of
the k-gon a monochromatic permuted copy, or simply a monochromatic copy, of the k-tuple
d = (d1, d2, . . . , dk).

Using this terminology, Stromquist’s conjecture is equivalent to that if k ≥ 3, and
di =

2k−i

2k−1 for every 1 ≤ i ≤ k, then d = (d1, . . . , dk) is Ramsey. Our main result is proving
the converse of the conjecture. That is, we prove that other k tuples are not Ramsey.

Theorem 1.2. If d = (d1, . . . , dk) is Ramsey, then di = 2k−i

2k−1 .

We call the k-tuple d = (d1, . . . , dk) with di = 2k−i

2k−1 the (k, 2)-power. To prove Theo-
rem 1.2, for every k-tuple d that is not the (k, 2)-power, we construct a two-colouring of
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S that does not contain a monochromatic copy of d. In fact, we show that for any other
tuple d there exists a t ∈ N, for which the colouring that consists of 2t arcs of equal length,
coloured alternating red and blue, does not contain a monochromatic copy of d. Theorem
1.2 is an immediate corollary of the following lemma, proved in Section 2.

Lemma 1.3. Let ct be a uniform colouring of S obtained by dividing it into 2t equal
circular arcs, and colouring them alternating the two colours. If for every t ∈ N the
uniform colouring ct contains a monochromatic copy of d = (d1, . . . , dk), then di = 2k−i

2k−1 .

Our proof proceeds by establishing a connection to a conjecture of Fraenkel about
Beatty sequences, and solving a special case of it, which may be of independent interest.

A Beatty sequence is a sequence of the form {bαn + βc}∞n=1 for some α, β ∈ R. The
term Beatty sequence was first used by Connell [5], after a problem proposed by Beatty [3].
Let α = (α1, . . . , αk) with 0 < α1 ≤ · · · ≤ αk and β = (β1, . . . , βk) be two k-tuples of real
numbers. We say that the pair (α, β) partitions N, if the Beatty sequences {bαin+βic}∞n=1

partition N.
Finding a characterisation of those pairs (α, β) which partition N is a well-studied

problem, which has connections to a combinatorial game, called Wythoff’s game, see for
example [5, 6, 7, 8, 9, 15]. For k = 2, the characterisation is well understood [8, 11].
Fraenkel [8] noted that for k ≥ 3 and for α = (α1, . . . , αk) with αi = 2k−1

2k−i for every
1 ≤ i ≤ k, there is a β such that (α, β) partitions N. According to Erdős and Graham,1
Freankel made the following conjecture.

Conjecture 1.4 (Fraenkel’s conjecture). If for α = (α1, . . . , αk) with k ≥ 3 and 0 < α1 <

· · · < αk the pair (α, β) partitions N, then αi = 2k−1
2i−1 for 1 ≤ i ≤ k.

Conjecture 1.4 is confirmed for k ≤ 7 [1, 2, 10, 16, 14], and is open for k ≥ 8. To prove
Theorem 1.2, we prove Fraenkel’s conjecture in a special case.

Theorem 1.5. If αi = βi
2
for every 1 ≤ i ≤ k, and (α, β) partitions N, then αi = 2k−1

2k−i for
every 1 ≤ i ≤ k.

We omit the details of the proof of Theorem 1.5 here, due to space restrictions.
In most of our proofs about Ramsey k-tuples, we work with a discrete version of the

problem. We can do so because if there is an i for which di∑
j dj

is irrational, then it is
easy to show that d is not Ramsey. Indeed, we can to two-colour the points of S with no
monochromatic pair of points at a given irrational distance apart.

Assuming
∑

i di = 1 and that every di is rational, then writing di = pi
qi
for every 1 ≤ i ≤

k, for N = lcm(q1, . . . , qk) the problem is equivalent to deciding if in any two-colouring of
the vertices of a regular N -gon inscribed in S, we can find a monochromatic copy of d. In
other words, the problem is equivalent to deciding if in every two-colouring of ZN we can
find a monochromatic k-tuple in which the differences of cyclically consecutive elements

1This appears at [6, page 19] but the there cited paper [8] of Fraenkel only states a weaker conjecture,
asserting that there are i, j with i 6= j such that the ratio αi/αj is an integer.
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are N · d1, . . . , N · dk in some order. We find connections between certain transformations
in the discrete version and avoiding monochromatic copies by using uniform colourings in
the original version.

Considering Stromquist’s conjecture, we could not answer the more specific question
whether every uniform two-colouring of S contains a monochromatic copy of the (k, 2)-
power, however, we confirmed this for very large values of k by a computer search. This
more specific question is related to another problem from number theory, which has con-
nections to vector balancing and combinatorial discrepancy; see Conjecture 5.1.

One might assume that if in a two-colouring one colour class is denser than the other,
then it will contain a (k, 2)-power. However, this is false. Let 0 < ε < 1/80, and divide S
into 10 intervals of lengths 1/8−ε, 1/16+ε, 1/8−ε, 1/16+ε, 1/8−ε, 1/16+ε, 1/8−ε, 1/8+
ε, 1/16−ε, 1/8+ε in this order, and colour them alternating red and blue, starting with red.
Then the set of red points has total length 1/2 + 1/16− 5ε > 1/2, but a straight-forward
case analysis shows that there is no red copy of a (k, 2)-power for k ≥ 8.

We also study what happens when instead of a copy of d, we only want to find a copy
ε-close to it. Two k-tuples (p1, . . . , pk) and (p′1, . . . , p

′
k) in S are ε-close if |p1−p′1|, . . . , |pk−

p′k| ≤ ε. A k-tuple of points p = (p1, . . . , pk) in S is an ε-close copy of d if it is ε-close to a
copy of d. We call a k-tuple nearly-Ramsey, if for every ε > 0 in every two-colouring of S
there is a monochromatic ε-close copy of d.

We show the following.

Theorem 1.6. If d1 = 1
2
, or d is (4

7
, 2
7
, 1
7
), (5

8
, 1
4
, 1
8
), (3

4
, 1
6
, 1
12
), ( 7

12
, 1
4
, 1
6
), then (d1, d2, d3) is

nearly-Ramsey.

We also conjecture that these are the only nearly-Ramsey triples.

2 Proof of Lemma 1.3
Proof. Assume that for every t the colouring ct contains a monochromatic copy of d. By
symmetry, we may assume that this copy is red. Going around the points corresponding
to this monochromatic copy in some cyclic order, we must jump over each blue interval.
An arc of distance di with red endpoints jumps over btdie blue intervals, where bxe is the
rounding of x to the closest integer. Thus, we must have

∑k
i=1btdie = t for every t ∈ N.

This implies that for every t > 0 we have
∑k

i=1 (btdie − b(t− 1)die) = t− (t− 1) = 1.
On the other hand, btdie − b(t − 1)die is either 0 or 1 for each 1 ≤ i ≤ k. For a fixed

i, we have btdie − b(t − 1)die = 1 exactly when t is in the sequence {b(n + 1
2
) 1
di
c}∞n=1 =

{bn 1
di
+ 1

2di
c}∞n=1. Thus, the sequences {bn 1

di
+ 1

2di
c}∞n=1 must partition N, and Theorem 1.5

implies that di = 2i−1

2k−1 .
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3 Discrete version
Assume that every di is rational,

∑
i di = 1, and write di = pi

qi
, and let N = lcm(q1, . . . , qk).

In ZN a copy of d = (d1, . . . , dk) is a k-tuple in which the distances of cyclically consecutive
elements are N · d1, . . . , N · dk in some order. A colouring of ZN is d-free if it does not
contain any monochromatic copy of (d1, . . . , dk).

Let χ : ZN → {red, blue} be a colouring of ZN and let t ∈ Z∗N be such that gcd(t, N) = 1.
Let χt : ZN → {red, blue} be defined by χt(x) = χ(tx). It is a simple fact that χ is
(d1, . . . , dk)-free if and only if χt is (t · d1, . . . , t · dk)-free.

It follows that finding a two-colouring of the vertices of a regular N -gon inscribed in
S without a monochromatic copy of a triple d = (d1, d2, d3) is equivalent to finding a
colouring of it without a monochromatic copy of dt = (dt1, d

t
2, d

t
3), where dti =

t·N ·di mod N
N

if
(t ·N · d1 mod N) + (t ·N · d2 mod N) + (t ·N · d3 mod N) = N , and dti =

N−(t·N ·di mod N)
N

if (t ·N · d1 mod N) + (t ·N · d2 mod N) + (t ·N · d3 mod N) = 2N .
Notice that if dt1, dt2, dt3 ≤ 1

2
, then colouring a half-arc in S blue, and the other in red,

avoids all monochromatic copies of dt. Thus, if there is a t such that gcd(t, N) = 1 and
dt1, d

t
2, d

t
3 ≤ 1

2
, then d is not Ramsey. The next claim explains how this property is closely

related to avoiding copies by using uniform colourings. Here we omit its proof.

Claim 3.1. If gcd(t, N) = 1, then the uniform colouring ct avoids all monochromatic copies
of d if and only if dt1, dt2, dt3 ≤ 1

2
.

4 Robust version
Theorem 1.6 states that additionally (5

8
, 1
4
, 1
8
), (3

4
, 1
6
, 1
12
), ( 7

12
, 1
4
, 1
6
) and any triple with d1 = 1

2

are also nearly-Ramsey. We conjecture that there are no other nearly-Ramsey triples.

Conjecture 4.1. (d1, d2, d3) is nearly-Ramsey if and only if it is (4
7
, 2
7
, 1
7
), (5

8
, 1
4
, 1
8
), (3

4
, 1
6
, 1
12
),

( 7
12
, 1
4
, 1
6
) or a triple with d1 = 1

2
.

We sketch the proof of Theorem 1.6 and provide some supporting evidence for Conjec-
ture 4.1. We recolour a point p ∈ S with black if there is a red and a blue point in every
neighbourhood of p. If a colouring of S is not monochromatic, then there is at least one
black point. If we can find an ε-close copy of d such that it only has red and black points
(or blue and black), then we can also find a 2ε-close copy of it with only red (or only blue)
points, by slightly moving the black points of the corresponding triple in S.

Proof sketch of Theorem 1.6. The proof for (5
8
, 1
4
, 1
8
), (3

4
, 1
6
, 1
12
), ( 7

12
, 1
4
, 1
6
) is by a case anal-

ysis of the possible colourings of a regular 8-gon/12-gon, respectively, with a black point.
For d1 = 1

2
, we show that for every ε > 0 every red-blue colouring contains a monochro-

matic ε-close copy of a given triple (d1, d2, d3) with d1 = 1
2
. We may assume that the

colouring is not monochromatic, otherwise the statement is trivial. Thus, we may assume
the existence of a black point p. Let p′ be the point diametrically opposite to p, and q
and q′ be two other diametrically opposite points, such that any three of the four points
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p, p′, q, q′ form a copy of (d1, d2, d3). By the pigeonhole principle, without loss of generality,
we may assume that at most one of p′, q, q′ is blue. But then the other three points form
a copy of (d1, d2, d3) without a blue point.

Let d = (d1, d2, d3) be a triple that Conjecture 4.1 asserts to be not nearly-Ramsey. We
believe that for any such d, there is a uniform colouring ct as in Lemma 1.3 that contains no
monochromatic ε-close copies of d. We call t ∈ N suitable if ct contains no monochromatic
copies of d, and nearly-suitable, if ct contains no monochromatic ε-close copies of d. In ct
the black points are exactly the endpoints of the intervals. Thus, t is nearly-suitable if and
only if it is suitable and ct avoids copies of d with two points coinciding with endpoints
of the segments. As the distance of any two black points (along the circumference) is a
multiple of 1

2t
, we obtain the following observation.

Observation 4.2. A suitable t is nearly-suitable if and only if none of 2td1, 2td2, 2td3 is
an integer.

If one of d1, d2, d3 is irrational, then any suitable t is also nearly-suitable, thus such
(d1, d2, d3) is not nearly-Ramsey. Otherwise, we write di = pi

qi
such that pi, qi are integers

and gcd(pi, qi) = 1 for i = 1, 2, 3. To prove Conjecture 4.1, it is thus sufficient to find a
suitable t in T := {t : q1, q2, q3 - 2t}. We can prove that there is such t if q1, q2, q3 are all
odd, as well as in several other cases, but here we omit these proofs.

5 (k, 2)-powers in uniform colourings
We conjecture that for every t, the uniform colouring of ct from Lemma 1.3 contains a
monochromatic copy of the (k, 2)-power for every k. We have seen in the proof of Lemma
1.3 that in this case the sides of a red copy ‘jump’ over the t blue intervals. However, this
is only a necessary condition, and not a sufficient one. Indeed, if a jump starts from a ‘bad’
part of a red interval, it might end up inside a blue one. More precisely, we can consider
the problem as follows.

Let N = 2t(2k− 1) and colour vertices of a regular N -gon such that t reds are followed
by t blues in an alternating manner, so that vertices 0, . . . , 2k − 1 are red, 2k, . . . , 2 · 2k − 1
are blue, 2·2k, . . . , 3·2k−1 are red etc. If there is a monochromatic copy of the (k, 2)-power,
there is also a red copy. For each vertex of the red copy of the (k, 2)-power, consider its
index modulo 2k+1−2. Each of these needs to be at most 2k−1. Moreover, the differences
among the consecutive vertices need to be 2t (mod 2k+1 − 2), 4t (mod 2k+1 − 2), . . . , 2kt
(mod 2k+1 − 2), in some order. To have such a k-tuple of indices modulo 2k+1 − 2 is a
necessary and sufficient condition for the existence of a red copy.

By computer, we verified this up to a large k. We phrase a problem in a more natural
and general form. Interpret the numbers 2it (mod 2k+1 − 2) that are larger than 2k − 1
as 2k+1 − 2 − 2it, and denote these k numbers by v1, . . . , vk. With this, the numbers vi
will determine how one vertex moves compared to the preceding vertex in the 0, . . . , 2k− 1
interval. Note that none of these numbers can be equal to 2k − 1. Thus, −2k + 1 <
v1, . . . , vk < 2k − 1, and

∑k
i=1 vk = 0, since the k-gon with these side-distances exists.
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We get the following even nicer question if we divide by 2k − 1.

Conjecture 5.1. If a sequence of reals −1 < x1, . . . , xk < 1 satisfies

xi+1 =


2xi, if 2|xi| < 1

2xi − 2, if 2xi > 1

2− 2xi, if 2xi < −1

for i = 1, . . . , k, such that xk+1 = x1, then there is a permutation π of {1, . . . , k} such that
0 ≤

∑j
i=1 xπ(i) < 1 for every j.

This conjecture is similar to Steinitz’s theorem [12], and to other vector balancing
problems. Indeed, it can be proved for any xi’s satisfying the conditions of the conjecture,∑k

i=1 xi = 0. We note that if the xi’s are any sequence satisfying
∑k

i=1 xi = 0 and |xi| < 1/2

for every i, then one can easily find a permutation for which 0 ≤
∑j

i=1 xπ(i) < 1 for every
j. But without this bound, we have to exploit that xi+1 = 2xi, as otherwise there would
be counterexamples, i.e., 0.6, 0.6, 0.6,−0.9,−0.9. Could it be that the conjecture is true
because we always have many i’s such that |xi| < 1/2, and these can be used somehow to
take care of the other xi’s?
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1 Introduction
One of the most classical questions in graph theory is to determine the number of edges in
a host graph G that forces the existence of a copy of another guest graph H. For H with
chromatic number at least 3, this is well understood thanks to the Erdős–Stone–Simonovits
theorem [9, 8]. For bipartite H much less is known, and even the case of trees is widely
open. A seminal conjecture by Erdős and Sós [7] says that graphs with average degree
larger than k − 1 should contain all k-edge trees.

Conjecture 1 (Erdős-Sós conjecture). Every graph G with average degree d(G) > k − 1
contains every tree with k edges.
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The conjecture has been verified for certain families of trees (see [14]). A solution for
all large enough trees was announced by Ajtai, Komlós, Simonovits and Szemerédi [1, 3, 2],
but remains unpublished.

It is well-known that any graph that satisfies d(G) > k − 1 contains a subgraph G′

with ∆(G′) ≥ k and δ(G′) ≥ k/2. However, this weaker condition on the host graph is
not enough to ensure the containment of all trees. It fails for trees of diameter four, as
shown by examples of Havet, Reed, Stein and Wood [10, Section 1]. It is natural to ask
how many vertices of degree at least k in G together with δ(G) ≥ k/2 would guarantee the
containment of all k-edge trees. A conjecture along these lines was proposed by Klimošová,
Piguet, and Rozhoň.

Conjecture 2 (Klimošová, Piguet, Rozhoň, [13, Conjecture 1.4]). Every n-vertex graph G
with δ(G) ≥ k/2 and at least n/(2

√
k) vertices of degree at least k contains all k-edge trees.

Our main result is an approximate version of Conjecture 2 for dense graphs.

Theorem 3. For any η, q > 0, there exists an n0 ∈ N so that for every n ≥ n0 and all
k ≥ qn, any n-vertex graph G with minimal degree δ(G) ≥ (1 + η)k/2 and with at least ηn
vertices of degree at least (1 + η)k contains all k-vertex trees.

Theorem 3 implies an approximate dense version of the Erdős-Sós conjecture.

Corollary 4. For any η, q > 0 there exists an n0 ∈ N so that for every n ≥ n0 and all
k ≥ qn any n-vertex graph with average degree at least (1 + η)k contains any tree on at
most k vertices as its subgraph.

Corollary 4 strengthens similar results by Rozhoň [13] and Besomi, Pavez-Signé and
Stein [4, Theorem 1.3]. They give the same result as our Corollary 4 but only for trees T on
k vertices which in addition satisfy ∆(T ) = o(k); in contrast, our result works for all trees.
It also gives a proof independent of the one proposed by Ajtai, Komlós, Simonovits, and
Szemerédi [1, 3, 2] in the case the host graph is dense with the very mild strengthening that
its average degree is required to be slightly larger than k. We also remark that Besomi,
Pavez-Signé and Stein [4, Theorem 1.1] proved a version of the Erdős–Sós conjecture for
k-edge trees which is sharp in the average degree condition (it only needs d(G) > k − 1)
but works only for large bounded-degree trees (it needs that G is an n-graph, ∆(T ) ≤ ∆,
and k ≥ qn, with n large with respect to q and ∆).

1.1 Notation

As is somewhat standard, we write a� b in statements to mean “for all b > 0, there exists
a > 0 such that the following is valid”. Longer chains of constants are interpreted similarly,
choosing the constants from right to left. We always assume those constants are positive,
and if 1/n appears in such a chain of constants we assume that n is a positive integer.

For two disjoint subsets X and Y of V (G), the bipartite density of the pair (X, Y )
is given d(X, Y ) = |E(X, Y )|/(|X||Y |), where |E(X, Y )| denotes the number of edges
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between X and Y . For a graph G, we denote by d(G) the average degree of G, i.e.
d(G) := 2|E(G)|/|V |. For a vertex v ∈ V (G), let NG(v) denote the set of neighbours of v
in G. We will omit G from the notation if the graph is clear from context.

A digraph is a graph in which every edge is oriented, meaning that it consists of an
ordered pair of vertices. We admit cycles of length 2 (where the pairs of edges # »uv and # »vu
are both present), but we do not allow for parallel edges in the same direction, and we also
forbid loops.

2 Sketch of the proof and Main lemmas
Our proof has three main steps. First, we describe a way to cut the tree to be embedded
into suitable chunks. Secondly, we prepare the host graph to embed the tree. For this,
we use the Szemerédi’s Regularity Lemma, which is somewhat standard in this type of
proofs. A crucial definition, and our main innovation, in this step is what we call skew
matching pairs, which are required to describe the structure which we wish to find in the
host graph. The outcome of this step is summarised in what we call the Structural Lemma
(Lemma 12), which is the main technical lemma of our work. In the third and final step,
we construct an embedding given the structures in both the tree and the host graph, and
this process is summarised in the Tree Embedding Lemma (Lemma 13).

The rest of this extended abstract is structured as follows. First, we state the aforemen-
tioned lemmas in more detail. Next, assuming the validity of those lemmas, we give short
proofs of our main results: Section 3.1 contains the proof of Theorem 3 and Section 3.2
contains the proof of Corollary 4.

2.1 Preparing the tree

To prepare the embedding, we use the following handy concept used by Hladký, Komlós,
Piguet, Simonovits, Stein, and Szemerédi [11, Definition 3.3]. It gives a partition of a tree
into vertex-disjoint smaller trees which also satisfy several additional useful properties.

If T is a tree rooted at r, and T̃ ⊆ T is a subtree with r /∈ V (T̃ ), the seed of T̃ is
the unique vertex x ∈ V (T ) \ V (T̃ ) which is farthest from r and also belongs to every
(r, v)-path in T , for every v ∈ V (T̃ ).

Definition 5 (`-fine partition). Let T be a tree on k vertices rooted at a vertex r. An
`-fine partition of T is a quadruple (WA,WB,FA,FB), where WA,WB ⊆ V (T ) and FA,FB
are families of subtrees of T such that

(FP1) the three setsWA,WB, and {V (T ∗)}T ∗∈FA∪FB
partition V (T ) (in particular, the trees

in FA ∪ FB are pairwise vertex-disjoint),

(FP2) r ∈ WA ∪WB,

(FP3) max{|WA|, |WB|} ≤ 336k/`,
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(FP4) |V (T ∗)| ≤ ` for every T ∗ ∈ FA ∪ FB,

(FP5) V (T ∗)∩N(WB) = ∅ for every T ∗ ∈ FA, and V (T ∗)∩N(WA) = ∅ for every T ∗ ∈ FB;

(FP6) each tree of FA ∪ FB has its seeds in WA ∪WB,

The crucial fact, proven in [11, Lemma 3.5], is that any tree T admits an `-fine partition,
for any 1 ≤ ` ≤ |V (T )|. We denote by T ρa1,a2,b1,b2 the set of trees T , so that there is a
(ρ|V (T )|)-fine partition (WA,WB,FA,FB) of T so that |Vi(FA)| = ai, |Vi(FB)| = bi, for
i ∈ {1, 2}, where V1(FA) (resp. V2(FA)) is the set of vertices of FA that are at odd (resp.
even) distance from WA, and Vi(FB) are defined analogously with respect to WB.

2.2 Preparing the host graph

In this step, we find a suitable structure in the host graph to embed the tree, using the
information about the fine partition found in the previous step. The description of this step
requires Szemerédi’s Regularity Lemma. Before stating it, we recall the standard notions
involved in its statement.

Definition 6 (Regular pair and regular partitions). A pair (X, Y ) with X, Y ⊆ V (G) is
said to be ε-regular, if for any sets X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |
we have that |d(G[X ′, Y ′])− d(G[X, Y ])| < ε.

We say that a partition {V0, . . . , Vt} of V (G) is an ε-regular partition if |V0| ≤ ε|V (G)|,
and for every 1 ≤ i ≤ t, all but at most εt values of 1 ≤ j ≤ t are such that the pair
(Vi, Vj) is not ε-regular.1 We call the cluster V0 the garbage set. We call a regular partition
equitable if |Vi| = |Vj| for every 1 ≤ i < j ≤ t.

Szemerédi’s Regularity Lemma ensures that regular partitions exist for every graph.

Theorem 7 (Szemerédi’s Regularity Lemma, [15]). Let 1/n � 1/M0 � ε. Any n-vertex
graph has an ε-regular equitable partition {V0, V1, . . . , Vt} with 1/ε ≤ t ≤M0.

We capture the structure of a regular partition in a so-called reduced graph.

Definition 8 (Reduced graph). Given a graphG, d > 0, and a ε-regular equitable partition
P = {V0, . . . , Vt} of V (G), we define the d-reduced graph Γ as follows. The vertex set of Γ
is {1, . . . , t}, and there is an edge ij ∈ E(Γ) if and only if the pair (Vi, Vj) is ε-regular and
d(Vi, Vj) ≥ d.

As mentioned before, the Structural Lemma (Lemma 12) will yield a useful structure
in the host graph G; more precisely, this structure will be defined in a reduced graph of G.
In essence, the structure we want is an “allocation” of the tree in the clusters of the reduced

1We point out that ε-regular partitions are most commonly defined in a slightly different way, with
the property that at most εt2 pairs of the partition are not ε-regular. But the version we use is also
common, and in fact the existence of such partitions can be deduced from the well-known ‘degree form’ of
Szemerédi’s Regularity Lemma, see e.g. [12, Theorem 1.10].
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graph which respects the sizes of the various parts of T given by the fine partition. If T
is in T ρa1,a2,b1,b2 , the structure will incorporate the values a1, a2, b1, b2 to describe where the
parts of the tree will be allocated.

In order to describe this structure precisely, we need some definitions. The basic build-
ing block is what we call a skew fractional matching, whose definition is inspired by the
standard fractional matching.

Given a graph G, its associated digraph G↔ is the digraph with the same vertex set
as G and # »uv and # »vu are present for each undirected uv ∈ E(G).

Definition 9. Let G be a graph and γ ≥ 0.

(i) An γ-skew fractional matching is a function σ : E(G↔) → [0, 1] such that for any
vertex u ∈ V (G),

1

1 + γ

∑
v∈NG(u)

σ( # »uv) +
γ

1 + γ

∑
v∈NG(u)

σ( # »vu) ≤ 1.

The weight of σ is W (σ) :=
∑

uv∈E(G) σ( # »uv) + σ( # »vu).

(ii) Set σ1(u) := 1
1+γ

∑
v∈N(u) σ( # »uv) and σ2(u) := γ

1+γ

∑
v∈N(u) σ( # »uv). Abusing notation,

we shall use the symbol σ to describe the total charge of σ on u, defined as σ(u) :=
σ1(u) + σ2(u).

(iii) If σ, σ′ are γ-skew and γ′-skew matchings respectively, we say σ, σ′ are disjoint if, for
every u ∈ V (G), σ(u) + σ′(u) ≤ 1.

Intuitively, γ-skew fractional matchings can be understood as fractional matchings in
graphs where the weight of the edge is distributed in an unbalanced way, meaning that
one end of the edge gets γ times the weight of the other end. Here, the direction of this
imbalance is given by the direction of the edge in the digraph.

Definition 10. Let G be a graph, γ ≥ 0, and u ∈ V (G). We will say a γ-skew fractional
matching σ is anchored in N(u) if σ1(v) > 0 implies that v ∈ N(u).

Definition 11. Let G be a graph, γA, γB > 0. Given an edge cd ∈ E(G), a (γA, γB)-skew
matching pair anchored in

#»

cd is a pair (σA, σB) such that

(i) σA and σB are disjoint,

(ii) σB is a γB-skew fractional matching anchored in N(d), and

(iii) σA is a γA-skew fractional matching anchored in N(c).

Lemma 12 (Structural Lemma: Simplified version). Let k ∈ N and let H be a graph such
that δ(H) ≥ k/2 and ∆(H) ≥ k. Let a1, a2, b1, b2 > 0 such that a1 + a2 + b1 + b2 = k. Let
γA := a2

a1
and γB := b2

b1
. Then H↔ admits a (γA, γB)-skew matching pair (σA, σB) anchored

in some edge
#»

cd ∈ E(H↔) such that W (σA) = a1 + a2 and W (σB) = b1 + b2.
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2.3 Embedding the tree

Based on the structure given by the Structural Lemma, the next lemma ensures that the
embedding of the tree T is possible.

Lemma 13 (Tree Embedding Lemma: Simplified version). Let 1/n � ρ � 1/M, ε �
d� η, q. Suppose G is an n-vertex graph, that P = {V0, V1, . . . , Vt} is a ε-regular equitable
partition of G with t ≤ M , and that Γ is the d-reduced graph obtained from G and P.
Suppose k ≥ qn and that we have numbers a1, b1 ∈ N and γA, γB ≥ 0 such that k =
(1+γA)a1+(1+γB)b1. Suppose Γ↔ admits a (γA, γB)-skew matching pair (σA, σB), anchored
in

#»

cd ∈ E(Γ↔), with weights satisfying W (σA)n ≥ (1 + η)(1 + γA)a1t and W (σB)n ≥
(1 + η)(1 + γB)b1t. Then G contains any k-vertex tree T ∈ T ρa1,γAa1,b1,γBb1.

3 Proof of the main results

3.1 Proof of Theorem 3

Now we give the proof of Theorem 3, assuming the validity of the main lemmas (Lemma 12,
Lemma 13).

Setting up the parameters. Suppose we are given input parameters η > 0, q > 0 and
k ≥ qn. We may assume that q, η � 1, or we just replace them with smaller values. We
set the following parameters to satisfy

1/n� ρ� 1/M � ε� d� η, q � 1. (1)

From now on we fix an arbitrary k-vertex tree T , and the goal is to show that T ⊆ G.

Processing the tree. By [11, Lemma 3.5], T has an (ρ|V (T )|)-fine partition. Let a1, a2, b1, b2
such that T ∈ T ρa1,a2,b1,b2 . By assumption, G satisfies δ(G) ≥ (1 + η)k/2 = (1 + η)|V (T )|/2
and at least ηn vertices of G have degree at least (1 + η)k = (1 + η)|V (T )|.

Preparing the host graph. We apply Theorem 7 on G with parameters ε and 1/M , and
obtain an ε-regular equitable partition {V0, V1, . . . , Vt}, with t ≤ M . Given G and P ,
let Γ be the d-reduced graph Γ. Standard arguments show that the reduced graph inherits
degree properties of the original graph, up to a small loss. In particular, it can be shown
that δ(Γ) ≥ (1 + η

40
)kt/(2n) and ∆(Γ) ≥ (1 + η

40
)kt/n.

We apply Lemma 12 with Γ, (1 + η
40

)kt/n, (1 + η
40

)ait/n and (1 + η
40

)bit/n playing
the roles of H, k and ai, bi, for i ∈ [2]. This outputs an (a2

a1
, b2
b1

)-skew matching pair
(σA, σB) anchored in some edge

#»

cd ∈ E(Γ↔) with W (σA) = (1 + η
40

)(a1 + a2)t/n and
W (σB) = (1 + η

40
)(b1 + b2)t/n.

Embedding the tree. Finally, we can apply Lemma 13 with a2/a1, b2/b1, η/40 playing the
roles of γA, γB, η respectively. This shows that T ⊆ G, as required.
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3.2 Proof of the approximate version of the Erdős–Sós conjecture

Now we derive Corollary 4 from Theorem 3. Let k = rn with r ≥ q > 0, and let G be a
graph on n vertices with average degree at least (1 + η)k. It is well-known [6, Proposition
1.2.2] that G contains an induced subgraph H such that δ(H) ≥ d(H)/2 ≥ d(G)/2 ≥ (1 +
η)k/2. Let m be the number of vertices of H, we clearly have (1 +η)k/2 ≤ δ(H) < m ≤ n.

For any λ > 0, let Xλ be the set of vertices of H whose degree in H is at least (1 +λ)k.
Then we have

(1 + η)km ≤ md(H) =
∑

v∈V (H)

degH(v) ≤ |Xλ|m+ (m− |Xλ|)(1 + λ)k,

which, by rearranging, gives |Xλ| ≥ (η−λ)km
m−(1+λ)k ≥ (η−λ)k. From now on, fix λ := ηk/(m+k).

This choice satisfies η ≥ λ ≥ ηr/(1 + r), and from the previous calculations we deduce
that H satisfies δ(H) > (1 + λ)k/2, and has at least (η − λ)k = λm vertices of degree at
least (1 +λ)k. Thus the statement follows by applying Theorem 3 to H, with λ,m playing
the role of η and n, respectively.

4 Final remarks
We stated our main technical lemmas (Lemma 12 and Lemma 13) in simplified versions
which are enough to give a faithful version of the main ideas of our proof. In our actual
proof, the statements are a bit more complicated since we need to consider weighted reduced
graphs, where each edge ij ∈ Γ receives a weight dij ∈ [0, 1] corresponding to the bipartite
density d(Vi, Vj) of the pair (Vi, Vj). Further details, and full proofs of the main lemmas,
will be found in the full version of the paper [5].
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Abstract

We consider a synchronous process of particles moving on the vertices of a graphG,
introduced by Cooper, McDowell, Radzik, Rivera and Shiraga (2018). Initially, M
particles are placed on one vertex of G. At the beginning of each time step, for every
vertex inhabited by at least two particles, each of these particles moves independently
to a neighbour chosen uniformly at random. The process ends at the first step when
no vertex is inhabited by more than one particle.

Cooper et al. showed that when the underlying graph is the complete graph on n
vertices, then there is a phase transition when the number of particles M = n/2.
They showed that if M < (1 − ε)n/2 for some fixed ε > 0, then the process finishes
in a logarithmic number of steps, while if M > (1 + ε)n/2, an exponential number of
steps are required with high probability. In this paper we provide a thorough analysis
of the distribution of the dispersion time in the barely critical regime, where ε = o(1),
and describe the fine details of the transition between logarithmic and exponential
time. As a consequence of our results we establish, for example, that the dispersion
time is in probability and in expectation Θ(n1/2) when |ε| = O(n−1/2), and provide
qualitative bounds for its tail behavior.
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1 Introduction
We consider the synchronous dispersion process introduced by Cooper, McDowell, Radzik,
Rivera and Shiraga [1]. The process evolves in discrete time. It involves particles that
move between vertices of a given graph G. A particle is called happy, if there are no other
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particles on the same vertex, otherwise it is unhappy. Initially, M particles are placed on
some vertex of G. In every (discrete) time step, all unhappy particles move simultaneously
and independently to a neighbouring vertex selected uniformly at random. Happy particles
do not move. The process terminates at the first time at which all particles are happy.
This (random) time is denoted by TG,M and it is called the dispersion time; it constitutes
the main object of interest here.

In [1] the authors studied this process on several graphs, and established results con-
cerning TG,M and the dispersion distance, which is the maximum distance of any particle
from the origin at dispersion (that is, at step TG,M). One of the main focus in [1] is the be-
haviour when the underlying graph is the complete graph with loops, which we will denote
by Kn. The most general results come from considering a lazy variant of the dispersion
process, which was shown to disperse more particles in a smaller number of steps. More
precisely, in this lazy version any unhappy particle moves with probability q ∈ (0, 1] and
stays at its current location with probability 1− q.

The main result of [1] regarding TKn,M is that there are constants c, C > 0 such that if
M = (1− q/2− α)n for any α > 0 that may depend on n, then

TKn,M ≤ C(qα)−1 log(n) with probability at least 1−O(1/n), (1)

whereas when M = n(1− q/2 + α), then

TKn,M ≥ ecnq
2α3

with probability at least 1− e−cnq2α3

. (2)

The above statements leave several questions open. Indeed, corresponding bounds for the
lower and upper tails of TKn,M were not provided. It is not clear, moreover, what the actual
behavior is when M is close to n/2, that is, when M = (1 + ε)n/2 for some |ε| = o(1)
and how the transition from logarithmic to exponential time quantitatively looks like. For
example, (2) is not informative when q = 1 and α = o(n−1/3), as it essentially only states
that the number of steps is at least one.

Since we deal exclusively with the complete graph, in the following we will write Tn,M =
TKn,M . Our main contribution is a thorough and precise analysis of the dispersion process
when, as above, we assume that M = (1 + ε)n/2 and |ε| = o(1). Then we establish that
the process exhibits three qualitatively different behaviours based on the asymptotics of ε,
where, informally speaking, Tn,M smoothly changes from |ε|−1 log(ε2n) to n1/2 and then to
ε−1eΘ(ε2n); in particular, Tn,M = Θ(n1/2) for M = n/2. We begin with providing the upper
bounds on the distribution of Tn,M .

Theorem 1.1. There is a C > 0 such that the following is true for sufficiently large n and
all A ≥ 1. Let ε = o(1) and M = (1 + ε)n/2. If ε < −en−1/2, then

P
(
Tn,M > AC|ε|−1 log(ε2n)

)
≤ e−(A−1).

Moreover, if |ε| ≤ en−1/2, then

P
(
Tn,M > ACn1/2

)
≤ e−(A−1).
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Finally, if ε > en−1/2, then

P
(
Tn,M > Aε−1eCε

2n
)
≤ e−(A−1).

The next main result establishes lower bounds for these ranges as well. When ε ≤ en−1/2

these match, and in the last case we show that the exponential term is of the same order.

Theorem 1.2. There is a c > 0 such that the following is true for sufficiently large n and
all A ≥ 1. Let |ε| = o(1) and M = (1 + ε)n/2. If ε < −en−1/2, then

P
(
Tn,M ≤ c|ε|−1 log(ε2n)/A

)
≤ A−1.

Moreover, if |ε| ≤ en−1/2, then

P
(
Tn,M ≤ cn1/2/A

)
≤ A−1.

Finally, if ε > en−1/2, then

P
(
Tn,M ≤ max{ecε2n, cε−1/A}

)
≤ min{e−cε2n, A−1}.

Let us discuss briefly some consequences of our results. First of all, the two theorems
combined imply that in probability

Tn,M = Θ(|ε|−1 log(ε2n)) if ε < −en−1/2,

and
Tn,M = Θ(n1/2) if |ε| = O(n−1/2).

In particular, when M = n/2 we obtain that Tn,M = Θ(n1/2) in probability. For larger ε,
we obtain the slightly weaker uniform estimate that in probability

log(Tn,M) = Θ(ε2n+ log n) if ε = ω(n−1/2).

This estimate can be improved as soon as ecε2n ≥ ε−1, that is, when ε = Ω((log n/n)1/2);
after this point the maximum in Theorem 1.2 will be ecε2n and so, in fact, for such ε we
obtain that even log(Tn,M) = Θ(ε2n) in probability.

Apart from these estimates we can also use our main theorems to obtain information
about, for example, the expectation of Tn,M . In particular, Theorem 1.1 guarantees that
Tn,M has an exponential(-ly thin) upper tail and so Tn,M is integrable; we readily obtain
that

E[Tn,M ] = Θ(|ε|−1 log(ε2n)) if ε ≤ −en−1/2, E[Tn,M ] = Θ(n1/2) if |ε| = O(n−1/2),

and
logE[Tn,M ] = Θ(ε2n+ log n) if ε = ω(n−1/2).
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Further Related work The dispersion process was also studied by Frieze and Peg-
den [3], who sharpened the result on the dispersion distance on L∞, which denotes the
infinite line. In particular, it was shown in [1] that with high probability, the dispersion
distance on L∞ for n particles is O(n log n); in [3] the logarithmic factor was eliminated. A
similar setup was considered by Shang [8], where the author studied the dispersion distance
in a non-uniform dispersion process in which an unhappy particle moves at the next time
step to the right with probability pn and to the left with probability 1− pn, independently
of other particles.

Processes where particles move on the vertices of a graph have been widely studied
over the past decades; we refer the reader to [1] for references. Concerning processes whose
scope is to disperse particles on a discrete structure, arguably the best known such model
is the Internal Diffusion Limited Aggregation (IDLA, for short); see [2] and [4]. In this
model, particles sequentially start (one at a time) from a specific vertex designated as the
origin. Each particle moves randomly until it finds an unoccupied vertex; then it occupies
it forever (meaning that it does not move at subsequent process steps). When a particle
stops, the next particle starts moving. We emphasize that whenever a particle jumps to
an occupied vertex, it just keeps moving without activating the occupant particle. In the
dispersion process, on the other hand, when a (happy) particle standing alone on a node
is reached by another particle, it is reactivated and keeps moving until it becomes happy
again.

2 Proof Ideas
In the proof we begin with studying the expected change in the number of unhappy particles
in every step. Let us write Ht and Ut for the number of happy and unhappy particles at
the beginning of step t; in particular, U0 = M and H0 = 0 and Ut +Ht = M for all t ∈ N0.
Then it turns out that

E [Ut+1|Ut] = Ht

(
1−

(
1− 1

n

)Ut
)

+ Ut

(
1− n−Ht

n

(
1− 1

n

)Ut−1
)
, t ∈ N0. (3)

The two summands correspond to the number of particles counted in Ht that become
unhappy and to the number of particles counted in Ut that remain unhappy in step t+ 1.
Recall that we write M = (1 + ε)n/2 and assume that Ut is not too big, say Ut ≤ δn for
some small δ > 0. Then a quick calculation reveals that

E [Ut+1|Ut] = (1 + ε)Ut −Θ(U2
t /n). (4)

So, as long as Ut is (much) larger than |ε|n, then Ut+1 will be (much) smaller than Ut
in expectation. In other words, when there are ‘many’ unhappy particles, the expected
number of unhappy particles in the next step decreases significantly. However, this is no
longer the case when there are only a ‘few’ unhappy particles, that is, less than O(|ε|n).
In this case the number of unhappy particles is expected to either decrease only by a slight
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amount, which in particular is problematic when the expected decrease E[Ut+1 − Ut|Ut] is
smaller than one, or when ε > 0, where we can expect that the number of unhappy particles
even increases. We will use different methods to analyse the trajectory of Ut depending on
the range of ε and whether we are considering an upper or a lower bound. In particular,
when |ε| is not too large we will see that we can compare the situation to a very slightly
biased random walk, and so we will end up with an n1/2 term, while in the other cases our
walk will have a positive/negative drift and the exponential/logarithmic term will emerge.

2.1 Upper tail

Our approach for establishing Theorem 1.1 is to find a lower bound on the probability that
when starting with an arbitrary number of unhappy particles, the process will stop within
a certain number of steps. By splitting the time interval under consideration into a disjoint
union of smaller intervals and using the Markov property of the process, we can apply the
above bound repeatedly on these smaller sections to achieve an exponentially decreasing
upper bound on the probability that the process is still not finished.

When there are many unhappy particles we use drift analysis to analyse the process; we
refer the reader to [5] for an excellent introduction and description of the method. Roughly
speaking, drift analysis provides an estimate for the expected duration of a homogeneous
Markov-process over a discrete state space, when the expected value of the conditional
one step change is known for every element in the state space. With (4) at hand we can
apply the method to deduce bounds for the probability that dispersion leaves us with many
unhappy particles after a certain number of steps.

Once there are only a few unhappy particles left we change our approach. After this
point we bound from above the number of unhappy particle with another random pro-
cess, which we call the binomial process. More specifically, beginning with some initial
value B0, we define a random process by setting Bt+1 = 2Bin(Bt,M/n), t ∈ N0. The
quantity Bt provides an upper bound for the number of unhappy particles after t steps, as
the probability that an unhappy particle lands on the same vertex as any other particle is
at most M/n, and in that case we account for two unhappy particles. As the number of
unhappy particles is small, it is rare for two unhappy particles to land on the same vertex,
making this coupling relatively tight.

The binomial process is equivalent to B0 independent copies of a Galton-Watson branch-
ing process that have no offspring with probability 1−M/n and two offspring with prob-
ability M/n. A simple inductive argument implies that the size of the k-th generation of
these B0 branching processes has the same distribution as Bk.

In the next step we estimate the probability that a single copy of the branching process
survives for at least k generations; denote this probability by xk. Then x0 = 1 and moreover

xk+1 =
M

n

(
2xk − x2

k

)
,

as in order for the branching process to survive for k+ 1 generations, the root has to have
2 children, and at least one of these children has to survive for at least k generations.
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Recall the well-known property concerning the survival probability of a Galton-Watson
branching process, namely that it is 0 if the expected number of offspring is at most 1,
and it is bounded away from 0 when the expected offspring is larger than 1 (see e.g. [7]).
Clearly xk tends to the survival probability as k →∞, and moreover, limk→∞ xk = o(1) as
n→∞, as the expected number of children is ∼ 1.

So far we have referred to many and few unhappy particles, without mentioning the
level where the change occurs. The exact value is determined by carefully balancing several
properties. For the branching process argument, we would like that the number of steps
is such that xk is sufficiently close to its limit. In addition we would like the number of
steps that we study using the branching process to match the number of steps we analyse
using drift analysis, so as to reach an optimal bound. This leads to two different regimes,
namely

• roughly n1/2 steps, when |ε| ≤ en−1/2;

• roughly |ε|−1 steps, when |ε| > en−1/2,

which coincide with the three regimes in the main theorem.
The branching process behaves similarly in all regimes, as the survival probability is

o(1). However, the rate of convergence in n becomes slower as ε increases and thus the
probability that all independent copies of this branching process die out (in the required
number of steps) goes from almost certain, when ε < en−1/2 to a constant when |ε| ≤
en−1/2, to exponentially decreasing when ε > en−1/2. Recall that we use these probabilities
as the basis of a geometric distribution, which leads to the upper bounds in Theorem 1.1.

2.2 Lower tail

Now we consider the lower bound. In this case we first show that we can mostly ignore
what happens when the number of unhappy particles is large, the only exception is that we
have to ensure that it is unlikely that most of the unhappy particles become happy in any
single step. In order to achieve this, note that Ut+1 is a function of Ut and the vertices to
which the unhappy particles counted in Ut jump to. Then we consider the Doob martingale
induced by exposing the individual destinations (of the unhappy particles) one at a time
and show concentration around its expectation with Azuma-Hoeffding, which yields the
desired property that the number of unhappy particles does not decrease too quickly.

Having established this, we proceed similarly to the analysis for the upper tail. Let
B′0 ∈ N and consider the binomial process with different parameters defined by

B′t+1 = 2Bin(B′t, (M − 2K)/n), t ∈ N,

where K ∈ N is arbitrary but fixed. Then, as long as Ut ≤ K, we have that B′t is a
lower coupling for Ut, as there are at least M − 2K happy particles at the end of the
corresponding step. We can analyse the binomial process using branching processes as
for the upper bound, providing a lower bound with the right order of magnitude when
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ε ≤ en−1/2. However, when ε > en−1/2, due to the −2K term the associated branching
process becomes subcritical, and hence we are only able to show that the process still runs
after Ω(ε−1) steps, which provides the corresponding term in the max in Theorem 1.2.

In order to obtain the term involving the exponential in ε2n, we use an alternative
approach, adapting the argument of Theorem 2.6 in Lengler and Steger [6]. Note that
this term only appears when ε > en−1/2, thereby whenever Ut is small, (4) indicates that
in the following step Ut will increase in expectation. In such a case it is unlikely that Ut
decreases, and consequently many steps are required before the prcess stops.
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Abstract

The class of linear preferential attachment trees includes recursive trees, plane-
oriented recursive trees, binary search trees, and increasing d-ary trees. Bond per-
colation with parameter p is performed by considering every edge in a graph inde-
pendently, and either keeping the edge with probability p or removing it otherwise.
The resulting connected components are called clusters. In this extended abstract,
we demonstrate how to use methods from analytic combinatorics to compute limiting
distributions, after rescaling, for the size of the cluster containing the root. These
results are part of a larger work on broadcasting induced colorings of preferential
attachment trees.
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1 Introduction
For a real number α, a sequence of random (linear) preferential attachment trees (Tn)∞n=1

is constructed in the following manner. The tree T1 consists of a single vertex labelled 1.
For n ≥ 1, a vertex v is chosen from Tn with probability

α deg+(v) + 1∑
u∈V (Tn)(α deg+(u) + 1)

=
α deg+(v) + 1

α(n− 1) + n
, (1)
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where deg+(u) (called the outdegree of u) is the number of children of u. A vertex labelled
n + 1 is then added as a child of v to construct Tn+1. The equality above holds since∑

u∈V (Tn) deg+(u) = n−1, the number of edges in the tree Tn. The parameter α is restricted
to {. . . ,−1

4
,−1

3
,−1

2
}
⋃

[0,∞) to avoid the degenerate case α = −1 that produces a path,
and to avoid the cases where (1) might be negative.

We then perform bond percolation with parameter p on preferential attachment trees.
Each edge is considered independently and either kept (or remains open) with probability
p or removed (closed) with probability 1 − p. We then ask how many vertices remain
in the component (or cluster) Cn that contains the root. For α ≥ 0, Baur proved that
|Cn|/n(p+α)/(1+α) converges in distribution to a random variable C and provided the first
two moments [2]. In the special case α = 0, it is already known that C is a Mittag-Leffler
random variable [3,4]. We extend these results by showing that |Cn|/n(p+α)(1+α) converges
in distribution for p > −α and provide a recursion for the moments. This recursion uses
the partial Bell polynomials (see [5, Chapter 3.3])

Bk,j(x1, . . . , xk−j+1) =
∑

m1+···+(k−j+1)mk−j+1=k
m1+···+mk−j+1=j

k!

k−j+1∏
i=1

xmii
mi!i!mi

.

Theorem 1.1. Let α > 0. Then |Cn|/n(p+α)/(1+α) d−→ C, where C has integer moments

E[Ck] =
Ck(1 + α)Γ(1/(1 + α))

αΓ((kp+ α(k − 1))/(α + 1))
,

where Ck satisfies the recursion C1 = α/(p+ α) and

(k − 1)(p/α + 1)Ck =
k∑
j=2

pjΓ(1/α + j)

Γ(1/α)
Bk,j(C1, . . . , Ck−j+1). (2)

When α = 1 the above recursion is used to express the moments of C in a closed form

E[Ck] =
2pk−1Γ(kp+ k − 1)

√
π

(p+ 1)2k−1Γ(kp)Γ((kp+ k − 1)/2)
.

Theorem 1.2. Let α = −1/d, where d ≥ 2 is a positive integer, and let p > −α. Then
|Cn|/n(pd−1)/(d−1) d−→ C, where C has integer moments

E[Ck] =
DkΓ(1/(d− 1))

Γ((kpd− k + 1)/(d− 1))
,

where Dk satisfies the recursion D1 = 1/(pd− 1) and

(k − 1)(pd− 1)Dk =

min{k,d}∑
j=2

pjd!

(d− j)!
Bk,j(D1, . . . , Dk−j+1).
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In the special case α = −1/2 (so Tn is a random binary search tree) the recursion above
produces the closed form

E[Ck] =
k!p2(k−1)

(2p− 1)2k−1Γ(k(2p− 1) + 1)
.

When p ≤ −α, we are also able to prove that |Cn| is almost surely finite and converges
to a Galton-Watson tree with binomial Bin(d, p) offspring distribution.

The results presented in this extended abstract are part of a larger work on broadcasting-
induced colorings on preferential attachment trees [6]. A broadcasting process on a tree
is performed by assigning the root either the bit 1 or 0 with equal probability. Starting
with the children of the root, every other vertex takes the same bit as its parent with
probability p and the other bit with probability 1− p. The reconstruction problem is then
to reconstruct the bit value of the root ρ from the bit values of some subset of vertices in T
after broadcasting. Addario-Berry, Devroye, Lugosi, and Velona studied the reconstruction
problem in random recursive trees and preferential attachment trees [1].

We then colour a vertex red if its bit value is 0 and blue if its bit value is 1 to obtain a
broadcasting induced coloring. If we remove edges between vertices with different colours
we are left with a forest of trees corresponding to clusters after performing bond percolation
with parameter p. Along with results on the size of the root cluster, we also prove in [6]
limiting distributions after rescaling for the number of vertices, clusters, and leaves of each
colour, as well as the number of fringe subtrees with two-colorings.

2 Proof outline
Consider the function

φ(δ) =


1 α = 0,
Γ(δ+1/α)

Γ(1/α)
α > 0,

d!
(d−δ)! α = −1

d
, d ∈ Z+.

(3)

For a particular rooted labelled tree T on n vertices with increasing labels, define the
weight of T to be w(T ) =

∏
v∈V (T ) φ(deg+(v)). Then the probability that the recursive

process described above produces T is given by P(Tn = T ) = w(T )/
∑

T ′ w(T ′), where the
sum is taken over all rooted labelled trees T on n vertices with increasing labels. Letting
bn be the denominator

∑
T ′ w(T ′), the exponential generating function for bn is given by

B(x) =
∑

n≥1
bn
n!
xn = − ln(1 − x) when α = 0, B(x) = 1 − (1 − (1 + 1/α)x)

α
1+α when

α > 0, and B(x) = (1− (d− 1)x)−
1
d−1 − 1 when α = −1

d
, d = 2, 3, 4, . . . . See [7] for detailed

derivations of B(x).
For a particular tree T with bond percolation performed, let C(T ) be the cluster

that contains the root and let |C(T )| be the number of vertices in C(T ). Define rn,k =∑
T :|T |=nw(T )P(|C(T )| = k). Then

∑n
k=1 rn,k = bn, and P(|Cn| = k) = rn,k/bn.

We develop a recursion for rn,k. Take any tree T on n vertices with increasing labels
whose root cluster after percolation has size k. Let δ be the outdegree of the root and
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let T1, · · · , Tδ be the subtrees of T rooted at the children of the root such that the edges
from the root to T1, . . . , Ts are open and the edges from the root to Ts+1, . . . , Tδ are closed.
Then

w(T )P(|C(T )| = k) = φ(δ)
s∏
i=1

pw(Ti)P(|C(Ti)| = ki)
δ∏

j=s+1

(1− p)w(Tj),

where k1 + · · ·+ks = k−1. If the trees T1, . . . , Tδ are of size n1, . . . , nδ then n1 + · · ·+nδ =
n− 1. Summing over all such trees T on n vertices with root cluster of size k, we get the
recursion

rn,k =
n−1∑
δ

δ∑
s=0

(
δ

s

)
φ(δ)

δ!

∑
n1,...,nδ

(
n− 1

n1, . . . , nδ

) ∑
k1,...,ks

s∏
i=1

prni,ki

δ∏
j=s+1

(1− p)bnj .

Let R(x, u) be the bivariate (exponential) generating function for rn,k, so R(x, u) =∑
n,k≥1 =

rn,k
n!
xnuk. To use the moment of methods to prove that |Cn| converges in distri-

bution (after rescaling) to a random variable C, we first extract the factorial moments of
|Cn| from the generating function R(x, u). The next steps are to show that after proper
rescaling, the factorial moments and integer moments conincide asymptotically and con-
verge to the moments of a random variable C, and to prove that C is uniquely determined
by its moments.

Let Rk(x) := ∂k

∂uk
R(x, u)

∣∣∣
u=1

. Then from standard methods (see for example [8, Propo-
sition III.2]), the k’th factorial moment of |Cn| is given by [xn]Rk(x)/[xn]R(x, 1). To study
Rk(x), we first use our recursion to establish the differential equation

∂

∂x
R(x, u) = u

∞∑
δ=0

φ(δ)

δ!
(pR(x, u) + (1− p)B(x))δ . (4)

When α = 0 the above differential equation simplifies to

∂

∂x
R(x, u) = u exp (pR(x, u)− (1− p) ln(1− x)) ,

and with the initial condition R(0, u) = 0, this linear differential equation has the solution
R(x, u) = −1

p
ln (1− u+ u(1− x)p) . Then Rk(x) = 1

p
(k − 1)!((1 − x)−p − 1)k, and so the

factorial moments of |Cn| are given by (k − 1)!npk/(pΓ(pk). Once divided by npk, the
factorial moments and integer moments conincide asymptotically and

E
[
|Cn|k

npk

]
∼ (k − 1)!npk

npkpΓ(pk)
=

k!

Γ(pk + 1)
,

which are the moments of the Mittag-Leffler distribution with paramter p, a distribution
uniquely determined by its moments. Therefore, we have that |Cn|/np converges in distri-
bution to a random variable with Mittag-Leffler distribution.
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For other cases of α, we were unable to find a closed form for R(x, u). However, we
only need to estimate Rk(x) to extract approximations for the factorial moments of |Cn|.
When α > 0, the differential equation 4 becomes

∂

∂x
R(x, u) = u

(
1−

(
pR(x, u) + (1− p)

(
1− (1− (1 + 1/α)x)α/(1+α)

)))−1/α
.

By differentiating both sides k times with respect to u and evaluating at u = 1, we
achieve a differential equation for Rk(x). With the help of induction we prove the following:

Lemma 2.1. Let α > 0. Then Rk(x) is analytic on the cut plane C\ [1/(1 + 1/α),∞) and

Rk(x) = Ck(1− (1 + 1/α)x)
−kp−α(k−1)

1+α +O
(

(1− (1 + 1/α)x)
−kp−α(k−1)

1+α
+ε
)

for some ε > 0, where Ck satisfies the recursion given in (2).

Using a transfer theorem (see [8, Corollary VI.1]), we can approximate the coefficients
of Rk(x). Using [8, Proposition III.2] again, we extract the k’th factorial moments of |Cn|.
After rescaling by n(p+α)/(1+α), the factorial and integer moments coincide asymptotically
and

E
[

|Cn|k

n(p+α)/(1+α)

]
→ Ck(1 + α)Γ(1/(1 + α))

αΓ((kp+ α(k − 1))/(α + 1))
. (5)

All that is left is to prove that the limiting distribution is determined by its moments.
We can prove that the exponential generating function for the coefficients Ck above exists
for a positive radius around 0. The exponential generating function generated by the lim-
iting integer moments in (5) has a larger radius of convergence. Therefore the distribution
C with integer moments given by (5) has a moment generating function that exists for a
positive radius, and so C is uniquely determined by its moments. The moment of methods
can therefore be applied to prove Theorem 1.1. Theorem 1.2 is proved in a similar manner.
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Abstract

We give a characterization of when a signed graph G with a pair of distinguished
edges e1, e2 ∈ E(G) has the property that all cycles containing both e1 and e2 have
the same sign. This answers a question of Zaslavsky.
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1 Introduction
Throughout we assume (signed) graphs to be finite and loopless (loops add nothing to the
problem under consideration), but we permit parallel edges. A signed graph is a triple
G = (V,E, σ) where (V,E) is a graph and σ : E → {−1, 1} is a signature. We say that the
sign of a cycle C ⊆ G is positive (negative) if σ(C) =

∏
e∈E(C) σ(e) is equal to 1 (−1). If

all cycles of G are positive, then we call G balanced and otherwise we call G unbalanced.
In a 2-connected signed graph G, a single edge e appears in cycles of both signs if and

only if G − e is unbalanced. For the “only if” direction, let C1, C2 be cycles of opposite
sign containing e and note that the symmetric difference of E(C1) and E(C2) is a set of
edges with negative sign and even degree at every vertex (which can thus be expressed as
a disjoint union of edge sets of cycles). For the “if” direction, let e = uv, choose a negative
cycle C in G − e, and apply Menger to choose two vertex disjoint paths from {u, v} to
V (C); these two paths together with C and e contain the desired cycles.
∗Email: mdevos@sfu.ca. Supported by an NSERC Discovery Grant (Canada)
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Our objective in this article is to extend this simple property to a pair of edges. If G
is a signed graph and e1, e2 ∈ E(G), then we say that e1 and e2 are untied if there exist
cycles containing e1 and e2 of both positive and negative sign, and otherwise we say that
e1 and e2 are tied. Our main result is as follows.

Theorem 1.1. Let G be a 3-connected signed graph and let e1, e2 ∈ E(G) be distinct and
not in parallel with any other edges. Then e1 and e2 are tied in G if and only if one of the
following holds:

1. There exists a parallel class F containing edges of both signs so that F+ = F ∪{e1, e2}
is an edge-cut and G− F+ is balanced,

2. e1, e2 are incident with a common vertex v and G− v is balanced,

3. G− {e1, e2} is balanced.

In Section 2, we provide a reduction that allows us to determine the structure of arbi-
trary signed graphs that are tied, meaning this result implies a full characterization of when
all cycles through two given edges of a signed graph have the same sign. This problem was
explicitly asked by Zaslavsky in [13, E2], but let us remark that our motivation for this
work is a forthcoming application of these results in the setting of nowhere-zero flows on
signed graphs, towards Bouchet’s conjecture that every flow-admissible signed graph has
a nowhere-zero 6-flow [1]. We apply the results here while finding a decomposition of the
edges of a 3-connected signed graph similar to Seymour’s decomposition in the first proof
of his 6-Flow Theorem [9].

Theorem 1.1 may be viewed as a signed graph generalization of the following result
from Lovász’s problem book [8, 6.67]. By replacing the edge e3 of Theorem 1.2 with two
parallel edges, one of each sign, forming a signed graph with exactly one negative edge,
one observes that Theorem 1.1 does indeed imply Theorem 1.2.

Theorem 1.2. [Lovász] Let G be a simple 3-connected graph and e1, e2, e3 ∈ E(G) be
distinct. Then there is no cycle containing e1, e2, e3 if and only if one of the following
holds:

1. G− {e1, e2, e3} is disconnected,

2. e1, e3, e3 are incident with a common vertex.

Another generalization of Theorem 1.2 is the following conjecture by Lovász [7] and
Woodall [12] (independently): If G is a k-connected graph, and S ⊆ E(G) a set of k
independent edges so that either k is even or G − S is connected, then there is a cycle
C ⊆ G with S ⊆ E(C). Kawarabayashi [4] showed that S is always contained in either
one cycle or two vertex-disjoint cycles. And Thomassen and Häggkvist [3] showed that
the conjecture holds if one assumes G is (k + 1)-connected. The following well-known
conjecture of Lovász also concerns connectivity, paths and cycles.
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Conjecture 1.3. [Lovász] For any natural number k, there exists a least natural number
f(k) so that for any f(k)-connected graph G and any x, y ∈ V (G) there exists an induced
xy-path P so that G− V (P ) is k-connected.

The above conjecture also has a natural generalization to signed graphs that we state
below. To deduce 1.3 from 1.4, simply add a single negative edge xy to the graph (treat
all other edges as positive).

Conjecture 1.4. For any natural number k, there exists a least natural number f ′(k) so
that for any f ′(k)-connected, unbalanced, signed graph G there exists an induced negative
cycle C so that G− V (C) is k-connected.

Concerning the two conjectures above, Tutte [10] proved the simplest of these cases,
that f(1) = f ′(1) = 3. Using Tutte’s language, a cycle C in a graph G is peripheral if C
is induced and G − V (C) is connected. Tutte showed that every 3-connected graph has
a peripheral cycle through any given edge, so f(1) = 3. Moreover, he proves that the
peripheral cycles generate the cycle space. That is to say that the peripheral cycles are not
contained in any codimension 1 subspace of the cycle space. It follows that every signed
graph with a non-trivial signature has a negative peripheral cycle, and f ′(1) = 3. Kriesell
[6] and independently Chen Gould and Yu [2] show that f(2) = 5.

And so we have provided two examples of interesting statements about graphs which
have a natural and more general interpretation in the setting of signed graphs.

2 Outline of the Proof

2.1 Reduction to 3-connected

A k-separation of a graph G is a pair of subgraphs (G1, G2) so that E(G1) ∩ E(G2) = ∅,
E(G1) ∪ E(G2) = E(G), and |V (G1) ∩ V (G2)| = k. We say that the separation is proper
if V (G1) \ V (G2) 6= ∅ 6= V (G2) \ V (G1).

Observation 2.1. Let G be a 2-connected signed graph, let e1, e2 ∈ E(G), and let (G1, G2)
be a 2-separation of G with V (G1) ∩ V (G2) = {u, v}. For i = 1, 2 let G+

i be obtained from
Gi by adding a positive edge fi with ends u, v.

1. If ei ∈ E(Gi) for i = 1, 2 then e1 and e2 are tied in G if and only if ei and fi are tied
in G+

i for i = 1, 2.

2. If e1, e2 ∈ E(G1) and every edge in E(G2) is positive, then e1 and e2 are tied in G if
and only if they are tied in G+

1 .

3. If e1, e2 ∈ E(G1) and G2 is unbalanced, then e1 and e2 are tied in G if and only if
they are tied in the graph obtained from G+

1 by adding a negative edge f ′1 in parallel
with f1.
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The above observation allows us to reduce the problem of two edges being tied to one
on smaller graphs. Continuing in this manner, we may reduce the problem to the setting
of 3-connected signed graphs. Since the concept of edges e1, e2 being tied is vacuous if e1
and e2 are in separate blocks, Theorem 1.1 gives a complete answer. All of the steps in our
reduction are reversible, so we can turn this around and provide a generic construction of
signed graphs where two given edges are tied by taking the three types given in the above
theorem and combining them as in the observation. The possible structures of all such
graphs can readily be determined but we found no better way of describing them than by
way of the decompositions presented here.

2.2 Some forbidden minors in tied signed graphs

In the setting of signed graphs we are principally focused on the signs of cycles and not
those of edges. Accordingly, two signatures σ, σ′ of a signed graph G are equivalent if every
cycle C ⊆ G satisfies σ(C) = σ′(C). Two signatures are equivalent if and only if one can
be obtained from the other by a switch, which is changing the sign of every edge in some
edge-cut.

Let G = (V,E, σ) be a signed graph and let e ∈ E (v ∈ V ). To delete the edge e
(vertex v) we remove this edge (vertex and all incident edges) from the graph and adjust
the domain of σ accordingly. To contract the edge e, first modify σ by switching on an
edge-cut (if necessary) so that σ(e) = 1, and then modify the graph by contracting e and
removing e from the domain of σ. If H is a signed graph obtained from G by a (possibly
empty) sequence of edge and vertex deletions and edge contractions, we call H a minor of
G. Note that whenever C ⊆ H is a cycle, there is a corresponding cycle C∗ ⊆ G containing
all edges in C and having the same sign as C. In particular, this implies the following key
property.

Observation 2.2. Let H be a minor of the signed graph G. If e1, e2 are untied edges of
H, then they are also untied in G.

We introduce three families of signed graphs: hat, target, and hedgehog, each of which
has a distinguished cycle C that is negative together with distinguished edges e1, e2. The
edges e1 and e2 are untied in all. The heart of our argument is to show that if our graph is
not one of the named counterexamples to Theorem 1.1, then it contains a hat, target, or
hedgehog graph as a minor.

C

C

C

e1 e1
e1

e2

e2

e2

Hat Target Hedgehog
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2.3 The main lemma and proof of main result

Our arguments lean on working with a carefully chosen negative cycle C in the graph. For
this purpose we adopt Tutte’s notation. Let G be a graph and let H ⊆ G. A bridge of H
is a subgraph of G−E(H) of one of the two forms: a single edge uv (and its ends) where
u, v ∈ V (H) and uv 6∈ E(H), or a component F of G− V (H) together with all edges of G
with exactly one end in V (F ).

Lemma 2.3. Let G = (V,E, σ) be a simple, signed, 3-connected graph, and let e1, e2 ∈
E(G) be nonadjacent. If there exists a negative cycle in G − {e1, e2}, then e1 and e2 are
untied.

Proof sketch. Suppose for contradiction the lemma is false, and let G be a counterexample
so that |V | is minimum. Choose a negative cycle C ⊆ G−{e1, e2} subject to the following
constraints: Both e1 and e2 are in the same bridge of C if possible, subject to this the
bridge of C containing e1 is maximum, subject to this the bridge of C containing e2 is
maximum, and subject to this the lexicographic ordering of the sizes of the other bridges
is maximized. The proof proceeds by establishing the following four claims, whose proofs
are omitted. They involve either a rerouting which contradicts the choice of C, or finding
one of the minors in Section 2.2.

(1) Every bridge of C must contain e1 or e2.
(2) No bridge contains e1 and e2.
(3) e1 is not incident with a vertex of C.
(4) |V (C)| ≥ 4.

With this lemma in hand, we prove the main result.

Proof sketch of Theorem 1.1. The “if” direction is straightforward to verify. For the “only
if” direction, first suppose that e1 and e2 are incident with a common vertex u, say ei = uvi
for i = 1, 2. If G−u is not balanced, then it contains a negative cycle that can be extended
to a subgraph with a hat minor. Next, suppose that there exist two parallel edges f, f ′
of opposite sign. If f, f ′ are incident with an end of e1 or e2, then e1, e2 are not tied by
3-connectivity of G. Otherwise, the result follows from Theorem 1.2. This case also follows
from an earlier result of Watkins and Mesner [11].

So we may now assume that G does not contain a negative cycle of length 2, and we
may assume no parallel edges. If G−{e1, e2} is balanced, then we have the third structure
from the theorem statement. Otherwise, it follows from Lemma 2.3 that e1 and e2 are not
tied in G, and this completes the proof.
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1 Introduction
Given two graphs1 G and H, their strong product G � H is defined as the graph on
V (G) × V (H) where distinct vertices (u1, v1), (u2, v2) ∈ V (G) × V (H) are adjacent if
u1 = u2 and v1v2 ∈ E(H), or u1u2 ∈ E(G) and v1 = v2, or u1u2 ∈ E(G) and v1v2 ∈ E(H).

Graph product structure theory describes complicated graphs as subgraphs of the strong
products of graphs with a simple structure like graphs of bounded treewidth2, paths, or
small complete graphs. Arguably the most important result of this theory is the product
structure theorem for planar graphs by Dujmović, Joret, Micek, Morin, Ueckerdt, and
Wood [7], which has been the key to solving many long-standing problems [1, 2, 4–7, 9, 10].
This theorem states that every planar graph is contained in H � P �K3 for some graph
H with tw(H) 6 3 and some path P . Here a graph G is contained in a graph G′ if G is
isomorphic to a subgraph of G′.

Another product structure for planar graphs by Ueckerdt, Wood, and Yi [14] states
that every planar graph is contained in H � P for some graph H with tw(H) 6 6 and
some path P . Note that H �P is isomorphic to H �P �K1. These two product structure
theorems for planar graphs illustrate a trade-off between the treewidth of H and the size of
the complete graph involved in the product: If we want to find some fixed planar graph in
a graph of the form H � P �Kd where tw(H) 6 c for some constant c and P is a path,
then we can either have c = 3 and d = 3, or c = 6 and d = 1.

There are many other graph classes G for which there exist constants c and d such
that every G ∈ G is isomorphic to a subgraph of H � P � Kd for some graph H with
tw(H) 6 c and some path P [3, 7, 8, 11, 12]. The strong product H�P �Kd is isomorphic
to (H �Kd)� P �K1 and tw(H �Kd) 6 d(c+ 1)− 1, so it is always possible to drive d
down to 1, while minimising c is usually more difficult. Moreover, in many applications
of such product structure theorems, the main dependency is on c. Therefore, the primary
goal is to minimise c, whereas minimising d is a secondary goal. This paper proves new
product structure theorems for k-powers of planar graphs of bounded degree and k-planar
graphs. The distinguishing feature of our results is that the bound c on tw(H) is an absolute
constant which does not depend on k.

For an integer k > 1, the k-power of a graph G is the graph Gk on V (G) where two
distinct vertices u and v are adjacent if and only if the distance between u and v in G is at
most k. Dujmović et al. [8] proved that for every planar graph G of maximum degree ∆,
and for every integer k > 1, the k-power Gk is contained in J � P �K6k∆k(k3+3k) for some
graph J of treewidth at most

(
k+3

3

)
− 1 and some path P . Note that dependence on ∆ is

unavoidable since, for example, if G is the complete (∆− 1)-ary tree of height k, then G2k

is a complete graph on roughly (∆− 1)k vertices. Ossona de Mendez [13] asked whether
this bound on tw(H) could be made independent of k. We show that indeed this is the

1 We consider simple, finite, undirected graphs G with vertex-set V (G) and edge-set E(G).
2 The treewidth tw(H) of a graph H, is the least integer k such that H is a subgraph of a graph G on a

set {v1, . . . , vn} such that n > k + 1 and for each i ∈ {k + 1, . . . , n}, the neighbours of vi in {v1, . . . , vi−1}
form a clique of size k in G.
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case.

Theorem 1. There exist a constant c and a function f such that for every planar graph G
of maximum degree ∆ and every integer k > 1, the graph Gk is contained in H�P �Kf(∆,k)
for some graph H with tw(H) 6 c and some path P .

For an integer k > 1, a k-planar graph is a graph which has a drawing on the plane such
that no three edges cross at a single point and each edge is involved in at most k crossings.
Dujmović et al. [8] proved that every k-planar graph is contained in H � P �K18k2+48k+30,
for some graph H with tw(H) 6

(
k+4

3

)
− 1 and some path P . Dujmović et al. [8] asked

whether this bound on tw(H) could be made independent of k. We give an affirmative
answer to this question.

Theorem 2. There exist a constant c and a function f such that every k-planar graph G
is contained in H � P �Kf(k) some graph H with tw(H) 6 c and some path P .

Theorems 1 and 2 follow from Theorem 4, which we formulate in Section 2. In particular,
in our proof the value of c is the same in both theorems and equal to 15086399. This value
is not optimal, but instead of optimising the constant c we chose to simplify the proof.

The proof of Theorem 4 uses a new concept of “blocking partitions”. For an integer
` > 1, an `-blocking partition of a graph G is a partition R of V (G) such that every set in
R induces a connected subgraph of G and every path of length greater than ` in G contains
two vertices in one part of R. The width of R is the maximum size of a part of R.

The following lemma plays the key role in our proof.

Lemma 3. There exists a function f such that every planar graph of maximum degree at
most ∆ has a 222-blocking partition of width at most f(∆).

The construction of a 222-blocking partition is inspired by chordal partitions of triangu-
lations by van den Heuvel et al. [15]. In their construction, a triangulation G is partitioned
into paths P1, . . . , Pm where each path Pj is a shortest path between two distinguished
vertices in one component of G− ⋃i<j V (Pi). In our construction, we partition a planar
graph G into trees T1, . . . , Tm where each Tj is obtained as follows. First, we define T 0

j as a
smallest tree in G−⋃i<j V (Ti) which contains some distinguished set of vertices of bounded
size, and then, the tree Tj is obtained from T 0

j by attaching all adjacent vertices as leaves.
Finally, we split each tree Tj into subtrees of bounded size by removing an appropriate set
of edges. Then, the vertex-sets of these subtrees define the desired 222-blocking partition
of G.

Lemma 3 is the most technical part of our proof, and we do not include its proof here.
Instead, we sketch the proof of the main theorems assuming Lemma 3. The partition in
our proof of Lemma 3, is actually `-blocking for some value ` significantly smaller than 222,
but we decided to prove a worse bound on ` for simplicity’s sake.
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2 The main result
A congested model of a graph G′ in a graph G is a set (Bx : x ∈ V (G′)) of connected
subgraphs of G such that for every edge xy ∈ E(G′), the subgraphs Bx and By touch in
G, i.e. they share a vertex or there is an edge between V (Bx) and V (By) in G. A rooted
congested model of G′ in G is a set ((Bx, vx) : x ∈ V (G′)) such that (Bx : x ∈ V (G′)) is a
congested model of G′ in G and vx ∈ V (Bx) for each x ∈ V (G′). We call a rooted congested
model ((Bx, vx) : x ∈ V (G′)) in G an (r,∆, d)-model if
• in each Bx, all vertices are at distance at most r from vx,
• in each Bx, every vertex distinct from vx has degree at most ∆, and
• for every u ∈ V (G), there exist at most d vertices x ∈ V (G′) with u ∈ V (Bx).

We call a graph G′ an (r,∆, d)-minor of G if there exists an (r,∆, d)-model of G′ in G.
Note that G′ is a minor of G if and only if G′ is an (r,∆, 1)-minor of G for some r,∆ > 0.
A graph G′ is an r-shallow minor of G if G′ is an (r,∆, 1)-minor of G for some ∆ > 0.
Observe that if G′ is an (r,∆, d)-minor of a graph G, then G′ is an r-shallow minor of
G�Kd.

If G is a graph with maximum degree at most ∆, then Gk is an (r,∆, d)-minor of G
for r = bk/2c and d = ∑bk/2c

i=0 ∆i, as witnessed by the rooted congested model ((Bx, x) :
x ∈ V (Gk)) where each Bx is the subgraph of G induced by the vertices at distance at
most bk/2c from x. Furthermore, it is easy to see that every k-planar graph G′ is an
(r,∆, d)-minor of G for r = dk/2e and ∆ = d = 2, where G is the planar graph obtained
from G′ by adding a dummy vertex at each intersection point. Therefore, Theorems 1 and 2
follow from the following theorem.

Theorem 4. There exists a function f such that every (r,∆, d)-minor of a planar graph is
contained in J � P �Kf(r,∆,d) for some graph J with tw(J) 6 15086399 and some path P .

Theorem 4 implies a constant-treewidth product structure for other graph classes like
δ-string graphs or k-fan-bundle graphs (we refer the reader to [11] for the definitions of
these classes).

While it was easy to see that Theorem 4 implies Theorems 1 and 2, it is less obvious
why Lemma 3 implies Theorem 4. The main idea behind this implication is captured by
the following lemma.

Lemma 5. There exists a function g such that for any r, ∆, d with r > 224, ∆ > 0 and
d > 1, every (r,∆, d)-minor of a planar graph is an (r − 1,∆′, d′)-minor of some planar
graph for some d′,∆′ ∈ {1, . . . , g(∆, d)}.

Proof. Let f be the function from Lemma 3, and set g(∆, d) = max{d,∆} · f(d∆). Let G
be a planar graph, let G′ be an (r,∆, d)-minor of G, and let ((Bx, vx) : x ∈ V (G′)) be an
(r,∆, d)-model of G′ in G. Let G0 = ⋃

x∈V (G′) Bx − vx. Note that G0 is a subgraph of G of
maximum degree at most d∆. Let R be a 222-blocking partition of G0 of width at most
f(d∆), and let us define R′ = R∪ {{v} : v ∈ V (G) \ V (G0)}. Let H denote the quotient
G/R′, i.e., let H be a graph on R′ where two distinct parts are adjacent if G contains an
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edge with ends in these two parts. Since G is planar and each part of R′ is connected, H
is a minor of G, and thus a planar graph. Let d′ = df(d∆), and let ∆′ = ∆f(d∆). Since
the width of R is at most f(d∆), each part of R has degree at most ∆′ in H. Hence, G′
is an (r,∆′, d′)-minor of H with a corresponding (r,∆′, d′)-model ((B′x, v′x) : x ∈ V (G′)) in
H defined as follows. For each x ∈ V (H), let v′x be the part of R′ containing vx, and let
B′x be the “projection” of Bx on G′, so that the vertices of B′x are those parts of R′ which
contain at least one vertex of Bx, and two parts are adjacent in B′x if Bx contains an edge
with ends in those parts.

We claim that ((B′x, v′x) : x ∈ V (G′)) is actually an (r − 1,∆′, d′)-model. To show that,
we need to prove that for any x ∈ V (G′) and u′ ∈ V (B′x), the distance between v′x and u′
in B′x is at most r − 1. Let u be a vertex of Bx which belongs to the part u′ of R′. Let
u0 · · ·us be a shortest path in Bx with u0 = vx and us = u. Since ((Bx, vx) : x ∈ V (G′))
is an (r,∆, d)-model, we have s 6 r. For each i ∈ {0, . . . , s}, let u′i be the part of R′
containing ui. Hence, u′0 = v′x, u′s = u′, and for each i ∈ {0, . . . , s− 1}, either u′i = u′i+1 or
u′iu
′
i+1 ∈ E(H). Therefore, the distance between v′x and u′ is at most s, and thus at most

r. Suppose towards a contradiction that this distance is exactly r. Hence, s = r, and the
vertices u′0, . . . , u′r are pairwise distinct parts of R′. Therefore, u1, . . . , ur is a path in G0,
with no two vertices in one part of R. As r > 224, the length of this path is at least 223,
which contradicts R being 222-blocking. This proves that G′ is an (r − 1,∆′, d′)-minor of
H.

The proof of Theorem 4 uses Lemma 5 and the following result by Hickingbotham and
Wood [11].
Theorem 6 ([11]). If a graph G is an r-shallow minor of H � P �Kd where tw(H) 6 t,
then G is contained in J � P �Kd(2r+1)2 for some graph J with tw(J) 6

(
2r+1+t

t

)
− 1.

Proof of Theorem 4. Let g be the function from Lemma 5. We may assume that g(∆, d) 6
g(∆′, d′) whenever ∆ 6 ∆′ and d 6 d′. Define f(r,∆, d) recursively:

f(r,∆, d) =

3d(2r + 1)2 if r 6 223,
f(r − 1, g(∆, d), g(∆, d)) if r > 224.

We show that this function satisfies the theorem by induction on r. Let G be a planar
graph, and let G′ be an (r,∆, d)-minor of G. For the base case, suppose that r 6 223.
By the product structure theorem for planar graphs, G is contained in H � P �K3 for
some graph H with tw(H) 6 3 and some path P . Hence, G′ is an r-shallow minor of
H � P �K3d. By Theorem 6, G′ is contained in J � P �K3d(2r+1)2 for some graph J with
tw(J) 6

(
2r+1+3

3

)
− 1 6

(
450
3

)
− 1 = 15086399.

For the induction step, suppose that r > 224. By Lemma 5, there exist a planar
graph H and d′,∆′ ∈ {1, . . . , g(∆, d)} such that G′ is an (r − 1,∆′, d′)-minor of H. By
the induction hypothesis, there exists a graph J with tw(J) 6 15086399 such that G′
is contained in J � P � Kf(r−1,∆′,d′). Since d′ 6 g(∆, d) and ∆′ 6 g(∆, d), we have
f(r − 1,∆′, d′) 6 f(r,∆, d), and therefore G′ is contained in J � P � Kf(r,∆,d). This
completes the proof.
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Abstract

A graph is said to be Cayley graph if its automorphism group admits a regular
subgroup. Automorphisms of the Cartesian product of graphs are well understood,
and it is known that Cartesian product of Cayley graphs is a Cayley graph. It is nat-
ural to ask the reverse question, namely whether all the factors of Cartesian product
that is a Cayley graph have to be Cayley graphs. The main purpose of this paper is
to initiate the study of this question.
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1 Introduction
Throughout this paper graphs are assumed to be finite, simple, and connected, and groups
are finite. Given a graph Γ we let V (Γ), E(Γ), and Aut(Γ) be the set of vertices, the set
of edges, and the automorphism group of Γ, respectively.

Let G be a finite group and S ⊆ G \ {1} an inverse closed subset of G. Then the
Cayley graph Cay(G,S) on G with respect to S is a graph with vertex set G and edge set
{{g, gs} | g ∈ G, s ∈ S}. It is well-known that a graph Γ is a Cayley graph on a group G
if there exists a regular subgroup of Aut(Γ) isomorphic to G (see [5]).
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Recall that the Cartesian product Γ1� · · ·�Γk of graphs Γ1, . . ., Γk has vertex set
V (Γ1) × · · · × V (Γk) with two distinct vertices being adjacent if they are adjacent in one
of the coordinates and coincide in all other coordinates. Recall also that two graphs are
called relatively prime if there exists no non-trivial graph that is a factor – with respect
to the Cartesian product – of both of them. A graph is said to be prime with respect to
the Cartesian product if it cannot be factored as a Cartesian product of two non-trivial
graphs. For a graph Γ, the Cartesian product Γ� . . .�Γ︸ ︷︷ ︸

n times

is denoted with Γ�n.

It is well-known that the Cartesian product of Cayley graphs is a Cayley graph. A
natural question is to consider whether the converse is true, that is, if the Cartesian product
of graphs is a Cayley graph, does each of the factors have to be a Cayley graph? This
is the main motivation for the work presented in this article. We provide partial results
showing that Cartesian products involving certain vertex-transitive non-Cayley graphs are
not Cayley (for example, every graph having a Petersen graph as one of the factors is
non-Cayley). We are not aware of any example of a Cayley graph having a non-Cayley
factor.

2 Preliminaries
We start by recalling the structure of the automorphism group of the Cartesian products.

Theorem 2.1. [2, Theorem 6.8] Let Γ be a connected graph with prime factorization
Γ = Γ1�Γ2� . . .�Γk. Then for any automorphism ϕ of Γ, there is a permutation π of
{1, 2, . . . , k} and isomorphisms ϕi : Γπ(i) → Γi for which

ϕ(x1, x2, . . . , xk) = (ϕ1(xπ(1)), . . . , ϕk(xπ(k))).

Let Gi ≤ Sym(Vi) for i ∈ {1, . . . , n}. The group G1 × G2 × . . . × Gn acts canonically
on V1×V2× . . .×Vn in such a way that gi ∈ Gi is applied to the i-th coordinate. We have
the following simple observation.

Lemma 2.2. Let Gi ≤ Sym(Vi) for i ∈ {1, . . . , n} be transitive groups. If there exists a
regular subgroup of G1 ×G2 . . .×Gn acting canonically on V1 × V2 × . . .× Vn, then every
Gi admits a regular subgroup.

Proof. Let H be a regular subgroup of G1×G2 . . .×Gn. Since H is regular, it follows that
|H| = |V1| · . . . · |Vn|. Let j ∈ {1, . . . , n}, and let vi ∈ Vi be arbitrary for i 6= j. Let K =
{(g1, . . . , gn) ∈ H | gi(vi) = vi i ∈ {1, . . . , n} \ {j}} and K(j) = {gj | (g1, . . . , gj, . . . , gn) ∈
K}. It is easy to see that K(j) is a subgroup of Gj, and that the transitivity of H implies
that K(j) is transitive subgroup of Gj. Moreover, if K(j) is not semiregular, then H would
contain a non-identity element fixing a point of V1 × . . .× Vn, contrary to the assumption
that H is regular. We conclude that K(j) is a regular subgroup of Gj. Since j is arbitrary,
the result follows.
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The following result follows directly by applying Lemma 2.2 to the fact that the auto-
morphism group of Cartesian product of relatively prime graphs is the direct product of
the automorphism groups of the factors, see [2, Corollary 6.12] (see also [3, Theorem 3.1]).

Theorem 2.3. Let Γ1 and Γ2 be two connected relatively prime graphs with respect to the
Cartesian product and let Γ = Γ1�Γ2. Then Γ is a Cayley graph if and only if both Γ1 and
Γ2 are Cayley graphs.

In light of Theorem 2.3, the question of which Cartesian products are Cayley is reduced
to the question when is a Cartesian power of a graph isomorphic to a Cayley graph. In
the following result the automorphism group of a Cartesian power of a graph is given. Let
us first recall the definition of a wreath product of permutation groups. Let G ≤ Sym(V )
and H ≤ Sn. The wreath product of G by H denoted by G oH is the set of all permutations
((g1, . . . , gn), h) of V n (where g1, . . . , gn ∈ G and h ∈ H) such that ((g1, . . . , gn), h) :
(v1, . . . , vn) 7→ (gh(1)(vh(1), . . . , gh(n)(vh(n)).

Lemma 2.4. Let Γ be a graph that is prime with respect to the Cartesian product. Then
Aut(Γ�n) ∼= Aut(Γ) o Sn.

3 Main results
The following result giving a bound on the order of a Sylow p-subgroup of the symmetric
group Sn will be needed later.

Lemma 3.1. Let n ≥ 1 be an integer and p a prime divisor of n. A Sylow p-subgroup of
Sn has order less than pn.

Proof. Let n = a0 +a1p+ . . .+akp
k with 0 ≤ ai ≤ p−1. By [4, pg. 11] a Sylow p-subgroup

of Sn has order pM , where

M =
k∑
i=1

ai(1 + p+ p2 + . . .+ pi−1) =
k∑
i=1

ai
pi − 1

p− 1

=
k∑
i=1

[
aip

i

p− 1
− ai
p− 1

]
=

∑k
i=1 aip

i

p− 1
−

k∑
i=1

ai
p− 1

≤ n

p− 1
−

k∑
i=1

ai
p− 1

<
n

p− 1
≤ n.

An automorphism of a graph is said to be semiregular if all the cycles in its cyclic
decomposition have equal lengths.
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Theorem 3.2. Let Γ be a vertex-transitive graph such that Aut(Γ) has no semiregular
element of order p for some prime p dividing |V (Γ)|, and Γ is prime with respect to the
Cartesian product. Then Γ�n is not Cayley for every n ≥ 1.

Proof. We first observe that Γ is not Cayley, as if it were, it would contain a regular
subgroup R of order n. Then R has a subgroup of prime order p, which is necessarily
semiregular, contradicting out assumption.

Suppose that R is a regular subgroup of Aut(Γ�n). As Γ is prime with respect to the
Cartesian product, by Lemma 2.4, we have that Aut(Γ�n) = Aut(Γ) o Sn with the product
action. Let P be a Sylow p-subgroup of R. Observe that P has order at least pn. Define
ϕ : P → Sn with ϕ((g1, . . . , gn), σ) = σ (where gi ∈ Aut(Γ) and σ ∈ Sn). Observe that
ϕ is a homomorphism. If the kernel of ϕ is trivial, then P is isomorphic to a subgroup
of Sn. However, by Lemma 3.1, the order of a Sylow p-subgroup of Sn is less than pn. It
follows that the kernel of ϕ is not trivial. It follows that there exists a non-identity element
γ = ((g1, . . . , gn), id) ∈ P . Without loss of generality we may assume that the order of γ
is p (by taking the p-th powers of γ if necessary), implying that each gi is identity or of
order p. Since by the assumption, Aut(Γ) has no semiregular element of order p, it follows
that each gi of order p fixes a vertex of Γ. Hence γ fixes some point in V (Γ)n. But as R is
regular, and γ ∈ P ≤ R, this means γ = 1, a contradiction.

Corollary 3.3. No Cartesian power of the Petersen graph is isomorphic to a Cayley graph.

Proof. Let P denote the Petersen graph. By Theorem 3.2, we need only show that Aut(P )
has no semiregular element of order 2. The automorphism group of the Petersen graph
is isomorphic to the action of S5 on the 2-subsets of {1, 2, 3, 4, 5} by [1, Theorem 2.1.4].
The elements of order 2 in S5 are a product of two transposition as well as transpositions.
It is easy to see that the 2-subset of {1, 2, 3, 4, 5} which is permuted in a transposition, is
fixed by a transposition, and so no element of order 2 in the automorphism group of the
Petersen graph is semiregular.

Theorem 3.4. Let Γ be a vertex-transitive graph that is not isomorphic to a Cayley graph,
whose automorphism group has order relatively prime to n!. Then Γ�n is not isomorphic
to a Cayley graph.

Proof. Suppose that R is a regular subgroup of Aut(Γ�n). Then R has order relatively
prime to n!, in which case every element of R must fix every factor of V (Γ)n (i.e. no
element of R can permute factors of V (Γ)n). This means that R ≤ Aut(Γ)n, hence the
result follows by Lemma 2.2.

Corollary 3.5. Let Γ be a vertex-transitive graph of odd order that is not a Cayley graph.
Then Γ�Γ is not isomorphic to a Cayley graph.

In the following result we study the structure of a transitive permutation group G
admitting no regular subgroup, but such that A oS2 in the product action admits a regular
subgroup.
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Theorem 3.6. Let A ≤ Sym(V ) be transitive. If A o S2 admits a regular subgroup (in the
product action) then A admits a regular subgroup or A admits a semiregular subgroup with
two orbits.

Proof. Let H ≤ A o S2 be a regular subgroup. If H ≤ A × A, then by Lemma 2.2 it
follows that A admits a regular subgroup. Suppose that H is not contained in A×A. Let
H = H ∩ (A× A). Observe that H is an index two subgroup of H. Since H is regular, it
follows that H is semiregular with two orbits.

Let H(v) = {h1 ∈ A | ∃h2 ∈ Av such that (h1, h2) ∈ H}. Observe that H(v) is a
subgroup of A. Moreover, it is semiregular, since H is semiregular. If H(v) is transitive
or has two orbits then we are done. Hence, we may assume that |OrbH(v)(x)| ≤ |V |/3 for
every v ∈ V .

Let O be one of the two orbits of H on V × V . Let O(v) = {y ∈ V | (y, v) ∈ O}. Let
x ∈ O(v) be arbitrary. We claim that O(v) = OrbH(v)(x). Let y ∈ O(v). Then (x, v) and
(y, v) belong to the same orbit O of H, hence there exists (h1, h2) ∈ H such that h1(x) = y
and h2(v) = v. It follows that h1 is an element of H(v) mapping x to y. This shows that
O(v) is contained in OrbH(v)(x).

Let z be an element of OrbH(v)(x). There exists h1 ∈ H(v) such that h1(x) = z. By
the definition of H it follows that there exists h2 ∈ A fixing v such that (h1, h2) ∈ H.
This shows that (h1, h2) is an element of H mapping (x, v) to (z, v), hence (x, v) and (z, v)
belong to the orbit O, implying that z ∈ O(v). This shows that O(v) = OrbH(v)(x).

It is easy to see that O =
⋃
v∈V O(v) is a partition of O, and that |O| =

∑
v∈V |O(v)|.

Since |OrbH(v)(x)| ≤ |V |/3, it follows that |O| ≤ |V |2/3, contradicting the assumption
that |O| = |V |2/2. The obtained contradiction shows that H(v) ≤ A must be regular or
semiregular with two orbits for some v ∈ V .

Remark 3.7. There are examples of transitive groups without regular subgroups such that
their wreath product with S2 in the product action admits regular subgroups. For example,
TransitiveGroups(24)[675] (of order 288 and degree 24) is one such group. However, the
authors are not aware of any such group which is automorphism group of a graph.

Corollary 3.8. Let Γ be a graph that is prime with respect to the Cartesian product such
that Aut(Γ) admits no semiregular subgroup with two orbits. Then Γ�Γ is not isomorphic
to a Cayley graph.

Remark 3.9. There exist infinitely many vertex-transitive graphs of even order that do not
admit a semiregular subgroup with two orbits. One such graph is the Tutte-Coxeter graph,
which is a cubic symmetric graph of order 30. Moreover, there exist vertex-transitive graphs
of even order admitting a semiregular automorphism of order p, for every prime divisor of
the order of the graph, but not admitting a semiregular subgroup with 2 orbits. In particular,
any vertex-transitive graph of order 2n without a semiregular subgroup with 2 orbits is such
an example.
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Abstract

The bipartite independence number of a graph G, denoted as α̃(G), is the minimal
number k such that there exist positive integers a and b with a + b = k + 1 with
the property that for any two sets A,B ⊆ V (G) with |A| = a and |B| = b, there
is an edge between A and B. McDiarmid and Yolov showed that if δ(G) ≥ α̃(G)
then G is Hamiltonian, extending the famous theorem of Dirac which states that if
δ(G) ≥ |G|/2 then G is Hamiltonian. In 1973, Bondy showed that, unless G is a
complete bipartite graph, Dirac’s Hamiltonicity condition also implies pancyclicity,
i.e., existence of cycles of all the lengths from 3 up to n. In this paper we show that
δ(G) ≥ α̃(G) implies that G is pancyclic or that G = Kn

2
,n
2
, thus extending the result

of McDiarmid and Yolov, and generalizing the classic theorem of Bondy.
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1 Introduction
The notion of Hamiltonicity is one of most central and extensively studied topics in Combi-
natorics. Since the problem of determining whether a graph is Hamiltonian is NP-complete,
a central theme in Combinatorics is to derive sufficient conditions for this property. A clas-
sic example is Dirac’s theorem [14] which dates back to 1952 and states that every n-vertex
graph with minimum degree at least n/2 is Hamiltonian. Since then, a plethora of inter-
esting and important results about various aspects of Hamiltonicity have been obtained,
see e.g. [1, 11, 12, 13, 18, 24, 26, 27, 32], and the surveys [20, 29].
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Besides finding sufficient conditions for containing a Hamilton cycle, significant atten-
tion has been given to conditions which force a graph to have cycles of other lengths.
Indeed, the cycle spectrum of a graph, which is the set of lengths of cycles contained in
that graph, has been the focus of study of numerous papers and in particular gained a
lot of attention in recent years [2, 3, 8, 16, 19, 21, 23, 28, 31, 34]. Among other graph
parameters, the relation of the cycle spectrum to the minimum degree, number of edges,
independence number, chromatic number and expansion of the graph have been studied.

We say that an n-vertex graph is pancyclic if the cycle spectrum contains all integers
from 3 up to n. Bondy suggested that in the cycle spectrum of a graph, it is usually hardest
to guarantee the existence of the longest cycle, i.e. a Hamilton cycle. This intuition was
captured by his famous meta-conjecture [5] from 1973, which asserts that any non-trivial
condition which implies Hamiltonicity, also implies pancyclicity (up to a small class of
exceptional graphs). As a first example, he proved in [6] an extension of Dirac’s theorem,
showing that minimum degree at least n/2 implies that the graph is either pancyclic or
that it is the complete bipartite graph Kn

2
,n
2
. Further, Bauer and Schmeichel [4], relying

on previous results of Schmeichel and Hakimi [33], showed that the sufficient conditions
for Hamiltonicity given by Bondy [7], Chvátal [10] and Fan [17] all imply pancyclicity, up
to a certain small family of exceptional graphs.

Another classic Hamiltonicity result is the Chvátal-Erdős theorem, which states that
κ(G) ≥ α(G) implies that G is Hamiltonian, where κ(G) is the connectivity of G, and
α(G) its independence number. Motivated by Bondy’s meta-conjecture, Jackson and Or-
daz [22] thirty years ago suggested that κ(G) > α(G) already implies pancyclicity. The
first progress towards this problem was obtained by Keevash and Sudakov, who showed
pancyclicity when κ(G) ≥ 600α(G). Recently, in [15] we were able to resolve the Jackson-
Ordaz conjecture asymptotically, proving that κ(G) ≥ (1 + o(1))α(G) is already enough
for pancyclicity. It is worth mentioning that, in all the listed work, the proof that the
Hamiltonicity condition also implies pancyclicity is usually significantly harder than just
proving Hamiltonicity, and requires new ideas and techniques.

An interesting sufficient condition for Hamiltonicity was given by McDiarmid and Yolov
[30]. To state their result, we need the following natural graph parameter. For a graph
G, its bipartite independence number α̃(G) is the minimal number k, such that there exist
positive integers a and b with a+ b = k + 1, such that between any two sets A,B ⊆ V (G)
with |A| = a and |B| = b, there is an edge between A and B. Notice that we always have
that α(G) ≤ α̃(G). Indeed, if α̃(G) = k, then G does not contain independent sets I of
size at least k + 1, since evidently for every a + b = k + 1, there would exist disjoint sets
A,B ⊂ I, so that |A| = a and |B| = b and with no edge between A and B. Let us now
state the result of McDiarmid and Yolov.

Theorem 1 ([30]). If δ(G) ≥ α̃(G), then G is Hamiltonian.

This result implies Dirac’s theorem, because if δ(G) ≥ n/2, then dn/2e ≥ α̃(G), as for
every |A| = 1 and |B| = dn/2e there is an edge between A and B. Hence also δ(G) ≥
dn/2e ≥ α̃(G), so G is Hamiltonian.
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Naturally, the immediate question which arises is whether the McDiarmid-Yolov con-
dition implies that the graph satisfies the stronger property of pancyclicity. As a very
preliminary step in this direction, Chen [9] was able to show that for any given positive
constant c, for sufficiently large n it holds that if G is an n-vertex graph with α̃(G) = cn
and δ(G) ≥ 10

3
cn, then G is pancyclic. In this paper we completely resolve this prob-

lem, showing that δ(G) ≥ α̃(G) implies that G pancyclic or G = Kn
2
,n
2
. This generalizes

the classical theorem of Bondy [6], and gives additional evidence for his meta-conjecture,
mentioned above.

Theorem 2. If δ(G) ≥ α̃(G), then G is pancyclic, unless G is complete bipartite G =
Kn

2
,n
2
.

Our proof is completely self-contained and relies on a novel variant of Pósa’s celebrated
rotation-extension technique, which is used to extend paths and cycles in expanding graphs
(see, e.g., [32]). Define the graph C̃`, to be the cycle of length ` together with an additional
vertex which is adjacent to two consecutive vertices on the cycle (thus forming a triangle
with them). For each ` ∈ [3, n − 1], our goal is to either find a C̃` or a C̃`+1, which is
clearly enough to show pancyclicity. The proof is recursive in nature, as we will derive the
existence of a C̃` or a C̃`+1 from the existence of a C̃`−1. In our setting, we would like to
apply the rotation-extension technique to the C̃`−1 with the additional requirement that
the extended cycle preserves the attached triangle. However, this is not possible in general
and from the existence of a C̃`−1 we will in turn derive the existence of a gadget denoted as
a switch, which is a path with triangles attached to it, to which we can apply our rotation-
extension technique. One of the key ideas is to consider the switch which is optimal with
respect to how close the triangles are to the beginning of the path. The application of the
rotation-extension technique to such an optimal switch will then result in either a C̃`, a
C̃`+1, or a better switch, contradicting the optimality of the original switch.
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Abstract

An n-vertex graph is Hamiltonian if it contains a cycle that covers all of its vertices
and it is pancyclic if it contains cycles of all lengths from 3 up to n. A celebrated
meta-conjecture of Bondy states that every non-trivial condition implying Hamil-
tonicity also implies pancyclicity (up to possibly a few exceptional graphs). We show
that every graph G with κ(G) > (1+o(1))α(G) is pancyclic. This extends the famous
Chvátal-Erdős condition for Hamiltonicity and proves asymptotically a 30-year old
conjecture of Jackson and Ordaz.
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1 Introduction
The notion of Hamiltonicity is one of most central and extensively studied topics in Combi-
natorics. Since the problem of determining whether a graph is Hamiltonian is NP-complete,
a central theme in Combinatorics is to derive sufficient conditions for this property. A clas-
sic example is Dirac’s theorem [14] which dates back to 1952 and states that every n-vertex
graph with minimum degree at least n/2 is Hamiltonian. Since then, a plethora of inter-
esting and important results about various aspects of Hamiltonicity have been obtained,
see e.g. [1, 11, 12, 13, 19, 26, 27, 28, 32], and the surveys [21, 30].

Besides finding sufficient conditions for containing a Hamilton cycle, significant atten-
tion has been given to conditions which force a graph to have cycles of other lengths.
Indeed, the cycle spectrum of a graph, which is the set of lengths of cycles contained in
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that graph, has been the focus of study of numerous papers and in particular gained a lot
of attention in recent years [2, 3, 15, 20, 22, 25, 29, 31, 35]. Among other graph parameters,
the relation of the cycle spectrum to the minimum degree, number of edges, independence
number, chromatic number and expansion of the graph have been studied.

We say that an n-vertex graph is pancyclic if the cycle spectrum contains all integers
from 3 up to n. In the cycle spectrum of an n-vertex graph, it is usually hardest to
guarantee the existence of the longest cycle, i.e. a Hamilton cycle. This intuition was
captured in Bondy’s famous meta-conjecture [6] from 1973, which asserts that any non-
trivial condition which implies Hamiltonicity, also implies pancyclicity (up to a small class
of exceptional graphs). As a first example, he proved in [7] an extension of Dirac’s theorem,
showing that minimum degree at least n/2 implies that the graph is either pancyclic or
that it is the complete bipartite graph Kn

2
,n
2
. Further, Bauer and Schmeichel [5], relying

on previous results of Schmeichel and Hakimi [34], showed that the sufficient conditions
for Hamiltonicity given by Bondy [8], Chvátal [10] and Fan [18] all imply pancyclicity, up
to a certain small family of exceptional graphs.

Another classic condition which implies Hamiltonicity is given by the famous theorem
of Chvatál and Erdős [11]. It states that if the connectivity of a graph G is at least as
large as its independence number, that is, κ(G) ≥ α(G), then G is Hamiltonian. The
pancyclicity counterpart of this result has also been investigated - see, e.g., [4] and the
surveys [23, 33]. In fact, in 1990, Jackson and Ordaz [23] conjectured that G must be
pancyclic if κ(G) > α(G), which if true would confirm Bondy’s meta-conjecture for this
classical instance. One can use an old result of Erdős [16] to show pancyclicity if κ(G)
is large enough function of α(G). A first linear bound on κ(G) was given only in 2010
by Keevash and Sudakov [25], who showed that κ(G) ≥ 600α(G) is enough. In this
paper, we resolve the conjecture of Jackson and Ordaz asymptotically, by showing that
κ(G) > (1 + o(1))α(G) is already enough to guarantee pancyclicity.

Theorem 1. Let ε > 0 and let n be sufficiently large. Then, every n-vertex graph G for
which we have κ(G) ≥ (1 + ε)α(G) is pancylic.

Next we briefly discuss some of the key steps in the proof of this theorem. It will be
convenient for us to consider different ranges of cycle lengths whose existence we want
to show, and for each range we have a slightly different approach to deal with. But
in general, in order to find these different cycle lengths we will combine various tools
on shortening/augmenting paths and finding consecutive path lengths between two fixed
vertices.

For example, for finding consecutive path lengths we crucially use that since κ(G) >
α(G), it must be that G contains triangles - moreover, it contains a path with triangles
attached to many of its edges (see Definition 2), which trivially implies the existence of many
consecutive path lengths between the endpoints of such a path. For shortening/augmenting
paths, we also introduce new tools. One of them is used to shorten paths using only the
minimum degree of the graph (Lemma 6), while another one augments paths using both
the independence and connectivity number, and is given in the complete version of the
paper. Furthermore, we will also use a novel result proven in [15] using the Gallai-Milgram
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theorem, in order to shorten paths using the independence number of the graph. In our
paper, we present these tools, together with some other useful results of a similar flavour.
The general proof strategy is to find a cycle of appropriate length which consists of two
paths, one of which has many edges to which triangles are attached. Then we apply our
shortening/augmenting results to the other path. Combining the consecutive path lengths
from the first path with the path lengths obtained from the second path we get all possible
cycle lengths.

2 Cycles with triangles and path shortening
In this section we will give a taste of the methods we use. We will show two simple results
– first we show how to obtain a cycle with many triangles, and second, in Lemma 6 we
show how to shorten a path between two vertices only using the minimum degree of the
graph. We start with the definition of a cycle with many triangles.

Definition 2. Define the graph Cr
` to be the graph formed by a cycle v1v2 . . . vlv1 of length

` with the additional edges v1v3, v3v5, . . . , v2r−1v2r+1 (if r = 0, then it is just a cycle of
length l). We will refer to this as a cycle of length ` with r triangles. Similarly define P r

`

and refer to it as a path of length l with r triangles, where P 0
0 is just a vertex.

The following is an easy starting point for the existence of the graphs Cr
` with appropriate

parameters, as subgraphs in graphs G with κ(G) ≥ α(G).

Lemma 3. Every n-vertex graph G with κ(G) ≥ α(G) contains a Cr
l for all r such that

0 ≤ r ≤ κ(G)−α(G)
2

and some l with l − 2(r + 1) ≤ max
(

n
κ(G)−2r+1

, n
κ(G)−1

)
. In particular,

it contains a P r
2r for all such r.

Proof. We will first show that G must always contain a P r′

2r′ for r′ :=
⌊
κ(G)−α(G)

2

⌋
- we

construct such a path greedily. Suppose that we have the vertices v1v2v3 . . . v2i+1 which form
a P i

2i, so that the edges v1v3, . . . , v2i−1v2i+1 are also present. Provided that i < r′, we can
augment this path as follows. Consider the set S := N(v2i+1)\{v1, . . . , v2i} - by assumption,
this has size at least δ(G) − 2i > κ(G) − 2r′ ≥ α(G). Therefore, it must contain an edge
v2i+2v2i+3. Clearly, v2i+1v2i+2v2i+3 forms a triangle and thus, v1v2v3 . . . v2i+1v2i+2v2i+3 is a
P i+1
2i+2. Continuing with this procedure until i = r′, gives the desired P r′

2r′ .
Now, fix r with the given condition. If r = 0, then take an edge xy in G. By Menger’s

theorem, there exist at least κ(G) internally vertex-disjoint xy-paths in G and thus, at
least κ(G)− 1 of these are not the edge xy. Therefore, there is such a path with at most

n
κ(G)−1 +2 vertices, which together with the edge xy, then creates a cycle of length at most

n
κ(G)−1 +2. If r ≥ 1, by the previous paragraph, G contains a P r

2r - let x, y be its endpoints.
By Menger’s theorem, there exist at least κ(G) internally vertex-disjoint xy-paths in G.
Since at most 2r − 1 of these intersect P r

2r \ {x, y}, there exists one which is disjoint to
P r
2r \{x, y} and contains at most n

κ(G)−2r+1
internal vertices. This produces the desired Cr

l .
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We can also use this type of cycles to extend the celebrated Chvátal-Erdős theorem [11].

Theorem 4 (Chvátal-Erdős [11]). If for a graph G we have that κ(G) ≥ α(G), then G is
Hamiltonian.

Our resut states that if the Chvátal-Erdős condition is satisfied, then we can find a Hamil-
ton cycle with a certain number of triangles, depending on the discrepancy between the
connectivity and the independence number.

Theorem 5. Every n-vertex graph G such that κ(G) ≥ α(G) contains a Cr
n with r =⌊

κ(G)−α(G)
2

⌋
.

Proof. Suppose for contradiction that some ` < n is maximal such that there exists a
copy of Cr

` in G. Note that ` exists by Lemma 3. Order the cycle as v1v2 . . . v`v1 so
that the edges v1v3, v3v5, . . . , v2r−1v2r+1 are also present. Since ` < n, there is a vertex v
not in Cr

l . Moreover, as κ(G) ≥ α(G) + 2r, there exist α(G) paths contained in V (G) \
{v1, . . . , v2r}, all of which go from v to Cr

l and are vertex-disjoint apart from the initial
vertex v. Let us denote these paths as Pi1 , Pi2 , . . . so that vj = Pj ∩ Cr

l . Consider the
set S := {vi1+1, vi2+1, . . .} with indices taken modulo l, so that |S| ≥ α(G). Observe (as
illustrated in Figure 1) that then there must be an edge contained in S ∪{v} and that any
such edge can be used to augment Cr

l to a Cr
l′ with l′ > l, contradicting the maximality of

l.

.v1

.
v2r+1

..

..

..

..
.
.
.
. .v
.

.

.

.vik+1

vik

vil
vil+1

Figure 1: An illustration of how an edge between two elements vik+1, vil+1 of S can be used
to construct a new Cr

l′ .

Now we show a result which uses only the minimum degree of the graph to shorten a
path between two vertices. Among other shortening/augmenting tools in our paper, this
is an important building block for our proof.

Lemma 6. Let G be an n-vertex graph, δ := δ(G) and P a path in G with endpoints x, y
such that |P | > 20n/δ. Then there is an xy-path P ′ such that |P | − 20n/δ ≤ |P ′| < |P |.
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Proof. Suppose for sake of contradiction that no such path P ′ exists. Let P := v1v2 . . . vl−1vl
with v1 = x, vl = y and let <P denotes the given ordering of the path P as v1 <P v2 <P

. . . <P vl. Since |P | > 10n/δ, we can partition P into sub-paths Q1, Q2, . . . , Qk such that
|Qk| ≤ 10n/δ and |Qi| = 10n/δ for all i < k. Moreover, we have k =

⌈
|P |

10n/δ

⌉
. Now,

consider the vertices in Q1 and take a subset Q′1 ⊆ Q1 of size b|Q1|/3c ≥ 3n/δ such that no
two vertices in Q′1 are at distance at most 2 in P . Consider then the set of edges incident to
Q′1, that is, E[Q′1, V (G)]; by the minimum degree condition, there are at least |Q′1| · δ ≥ 3n
such edges.

Now, clearly there cannot exist an edge spanned by Q1 which does not belong to P since
this edge could be used to shorten P by at most |Q1| ≤ 10n/δ. Hence, e(Q′1, Q1) ≤ 2|Q′1|.
Similarly, the following must hold.

Claim. e(Q′1, V (G) \ P ) ≤ n− |P |.

Proof. Suppose otherwise. Then there is a vertex v ∈ V (G) \P with at least 2 neighbours
in Q′1 - denote these by u,w. Note that since by construction u,w are at distance at least
2 and at most |Q1| ≤ 10n/δ in P , this is a contradiction, since it produces the desired P ′
by substituting the sub-path of P between u and w by the path uvw.

To give an upper bound on the total number of edges incident to Q′1 which are contained
in V (P ), we also use the following claim.

Claim. For all i > 1, we have e(Q′1, Qi) < |Q′1|+ |Qi|.

Proof. Suppose otherwise. This implies that there is a cycle in G[Q′1, Qi] and hence, there
must exist two crossing edges in this bipartite graph, that is, edges a1b1 and a2b2, with
a1 <P a2 and both in Q′1, and b1 <P b2 both in Qi. These can clearly be used to shorten
P (see Figure 2) by at most |Q1| + |Qi| ≤ 20n/δ, which is a contradiction as it produces
the desired P ′.

The above claim implies that∑
i>1

e(Q′1, Qi) <
∑
i>1

(|Q′1|+ |Qi|) ≤ (k − 1)|Q′1|+ (|P | − |Q1|) < 2|P | − 2|Q′1|.

y..x
a1 a2 b2b1
. . ..

Figure 2: Shortening of the path P using the crossing edges a1b1 and a2b2. The resulting
path is P ′ and is drawn in red.
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To conclude, we now must have the following

e(Q′1, V (G)) = e(Q′1, Q1)+e(Q
′
1, V (G)\P )+

∑
i>1

e(Q′1, Qi) < 2|Q′1|+(n−|P |)+(2|P |−2|Q′1|) < 2n.

which contradicts the previous observation that e(Q′1, V (G)) ≥ 3n.
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1 Introduction
Let K(k)

n denote the complete k-uniform hypergraph on n vertices. We define rk(G; q)

for k, q ∈ N as the smallest integer n such that in every q-colouring of K(k)
n , there is

a monochromatic copy of the hypergraph G. For simplicity when G is K(k)
t , we write

rk(G; q) = rk(t; q). Observe that when q = 2, rk(G; 2) and rk(t; 2) coincide with the
classical Ramsey numbers rk(G) and rk(t), and we will denote them as such. One of the
∗Department of Mathematics, Rutgers University, Piscataway, NJ, 08854, USA. E-mail:

qcd2@math.rutgers.edu
†Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK. E-mail:

antonio.girao@maths.ox.ac.uk
‡Unaffiliated. E-mail: eoin.hurley@umail.ucc.ie
§Department of Mathematics, Rutgers University, Piscataway, NJ, 08854, USA. E-mail:

corrine.yap@rutgers.edu

380



Tower Gaps in Multicolour Ramsey Numbers 381

most central open problems in Ramsey theory is determining the growth rate of the 3-
uniform Ramsey number r3(t). A famous result of Erdős, Hajnal, and Rado [8] from the
60’s shows that there exist constants c and c′ such that

2ct2 ≤ r3(t) ≤ 22c
′t
.

Note that the upper bound is essentially exponential in the lower bound. Despite much
attention, this remains the state of the art. Perhaps surprisingly, if we allow four colours
instead of two, Erdős and Hajnal (see e.g. [10]) showed that the double-exponential upper
bound is essentially correct, i.e. there is a c > 0 such that r3(t; 4) ≥ 22ct . More recently
Conlon, Fox, and Sudakov [4] proved a super-exponential bound with three colours, that
is, that there exists c > 0 such that r3(t; 3) ≥ 2tc log t . Erdős conjectured that the double-
exponential bound should hold without using extra colours, offering $500 dollars for a
proof that r3(t) ≥ 22ct for some constant c > 0. Raising the stakes for this conjecture is the
ingenious stepping-up construction of Erdős and Hajnal (see e.g. [10]), which shows that
for all q and k ≥ 3,

rk+1(2t+ k − 4; q) > 2rk(t;q)−1. (1)

For the past 60 years, we have used (1) to stack our lower bounds for rk(t; q) upon that of
r3(t; q), yielding that rk(t) ≥ Tk−1(ct2), where Tk(x), the tower of height k in x, is defined
by T1(x) = x, Ti+1(x) = 2Ti(x). The corresponding upper bounds of rk(t) ≤ Tk(O(t))
(see [6, 7, 8]) are once again exponential in the lower bounds, and thus a positive resolution
of Erdős’s conjecture would be the decisive step in showing that rk(t) = Tk(Θ(t)) for all
k ≥ 3.

Due to the lack of progress on this central conjecture, it is natural to try to understand
just how significant a role the number of colours can play in hypergraph Ramsey num-
bers and whether or not there could really be such a large difference between r3(t) and
r3(t; 4). One argument in favour of the conjecture is that the reliance on extra colours to
prove a double-exponential lower bound may be a technical limitation of the stepping-up
construction. This is challenged by a stunning discovery of Conlon, Fox, and Rödl [3]
who exhibited an infinite family of 3-uniform hypergraphs called hedgehogs, whose Ramsey
numbers display strong dependence on the number of colours. Namely, they showed that
the 2-colour Ramsey number of hedgehogs is polynomial in their order, while the 4-colour
Ramsey number is at least exponential. To understand just how significant a role the
number of colours could play they asked the following:

Question 1.1. For any integer h ≥ 3, do there exist integers k and q and a family of
k-uniform hypergraphs for which the 2-colour Ramsey number grows as a polynomial in the
number of vertices, while the q-colour Ramsey number grows as a tower of height h?

Our main contribution is to answer this in the affirmative. Define the k-uniform bal-
anced hedgehog Ĥ(k)

t with body of order t to be the graph constructed as follows: take a
set S of t vertices, called the body, and for each subset X ⊂ S of order dk

2
e add a k-edge e

with e ∩ S = X such that for all e, f ∈ E(Ĥ
(k)
t ) we have e ∩ f ⊂ S. The hedgehog H(k)

t as



Tower Gaps in Multicolour Ramsey Numbers 382

defined by Conlon, Fox, and Rödl differs only in that they consider every X ⊂ S of order
k − 1 rather than dk

2
e. We observe that for k = 3 the two definitions coincide. When the

uniformity is clear from the context we shall drop the superscript.

Theorem 1.2. There exist c > 0 and q : N → N such that for all k ∈ N and sufficiently
large t, we have

(a) r2k+1(Ĥt) ≤ tk+3, and

(b) r2k+1(Ĥt; q(k)) ≥ Tbc log2 log2 kc(t) .

To prove this, we provide new stepping-up lemmas for a more general type of hypergraph
Ramsey numbers. Let rk(G; q, p) for q ≥ p be the smallest integer n such that in every
q-colouring of K(k)

n , there is a copy of the hypergraph G whose edges span fewer than p
colours. As before, we use rk(t; q, p) when G = K

(k)
t and suppress p when p = 2.

A standard application of the first moment method (see e.g. [1]) shows that for any
k, q ∈ N there exists c > 0 such that rk(t; q, q) ≥ 2ctk−1 for all t ∈ N. We note that in
the graph case (k = 2) the special case of q = p was already investigated by Erdős and
Szemerédi [9] in the 70’s; in fact, the more general case when p < q is also indirectly
discussed. They showed the following rather precise bounds: for all q � t, 2Ω(t/q) ≤
r2(t; q, q) ≤ qO(t/q) .

These generalized hypergraph Ramsey numbers were also considered in a special case
by Conlon, Fox, and Rödl [3] who asked if there exist an integer q and number c > 0 such
that r3(t; q, 3) ≥ 22ct . To date, the only nontrivial improvement on the first moment bound
has been made by Mubayi and Suk [11] who proved there exists c > 0 such that for q ≥ 9,
we have r3(t; q, 3) ≥ 2t2+cq for t ∈ N sufficiently large; for all other values of k, q, p ≥ 3, the
random construction is essentially the state of the art. Our knowledge (or lack thereof) is
thus summarised by the following bounds for k, q, p ≥ 3 and sufficiently large t ∈ N,

2tc ≤ rk(t; q, p) ≤ Tk(O(t)),

where c ≥ 1 is allowed to depend on k, q and p. Note that in this case our upper bounds
are a staggering tower of height k − 2 in the lower bounds.

A related notion called the set-colouring Ramsey number was introduced by Erdős,
Hajnal, and Rado in [8] and subsequently studied in [12] and much more recently in [5]
and [2]. Borrowing notation from [5], let Rk(t; q, s) denote the minimum number of vertices
such that every (q, s)-set colouring of K(k)

n , that is, a colouring in which each k-set is
assigned an element of

(
[q]
s

)
, contains a monochromatic K(k)

t . Here, monochromatic means
the intersection of the colour sets assigned to the edges is nonempty. Observe that certain
cases of Rk and rk coincide. For example, Rk(t; q, q − 1) = rk(t; q, q) and in general, we
have the bound

rk(t; q, p) ≤ Rk

(
t;

(
q

p− 1

)
,

(
q − 1

p− 2

))
.

We prove lower bounds on rk(t; q, p), thus giving lower bounds on certain set-colouring
Ramsey numbers. However, we are not able to definitively resolve any questions from [5],
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due to central gaps in our understanding of hypergraph Ramsey numbers. See Section 2
for more on this.

Our main tool in the proof of Theorem 1.2 is the development of two new stepping-up
constructions which yield the first tower-type results of their kind. We show the following
three stepping-up statements, listed in order of decreasing strength, with Ck = 1

k+1

(
2k
k

)
denoting the k-th Catalan number.

Theorem 1.3. Let k, q, p ≥ 3. There exist c ≥ 1 and t0 such that for all t > t0,

(a) if p ≤ Ck − 2, then rk+1(tc; q, p) > 2rk(t;q,p)−1,

(b) if p ≤ Ck, then rk+1(tc; 2q + p, p) > 2rk(t;q,p)−1, and

(c) if p ≤ k!, then r2k(tc; qp, p) > 2rk(t;q,p)−1.

Note that the growth rate in k which is implied by Part (c) (approximately a tower of
height log2 k) of Theorem 1.3 is much smaller than that of Parts (a) and (b) because we
can only step up at the cost of doubling the uniformity size. Unfortunately, this does not
allow us to answer the question of Conlon, Fox, and Rödl on r3(t; q, 3), since C2 = 2, but
already for k ≥ 4 we have the following two corollaries:

Corollary 1.4. For all k ≥ 4, there is q ∈ N and c > 0 such that rk(t; q, 5) ≥ Tk−1(tc).

Corollary 1.5. For all k ≥ 4, there is c > 0 such that rk(t; 3, 3) ≥ Tk−1(tc).

Observe that by the second corollary the growth rate of rk(t; 3, 3) matches the current
best lower bounds for rk(t) up to a polynomial in t. The reason we have an absolute
constant c in the exponent is due to the use of an Erdős-Hajnal type result on sequences.

The second main element of our proof connects the problem of avoiding monochromatic
balanced hedgehogs to that of avoiding cliques that span few colours. It is a straightforward
adaptation of ideas from Conlon, Fox, and Rödl [3].

Lemma 1.6. Given k, q, t ∈ N, let p =
(

2k+1
k+1

)
and q′ =

(
q
p

)
. Then

r2k+1(Ĥt; q
′, 2) > rk+1 (t; q, p+ 1)− 1.

Using this result along with Part (c) of Theorem 1.3 yields the lower bound in Theorem
1.2(b). It is natural to ask whether one can combine the growth rate in k given by Part (a)
of Theorem 1.3 with the ability to impose as many colours as in Part (c). Unfortunately,
the condition p ≤ Ck prevents us from using Part (a) as the right-hand side because
Ck = 1

k+1

(
2k
k

)
<

(
2k+1
k+1

)
. This is tantalisingly close, if not a little curious, as the dependence

on Ck comes from our exact solution to a subsequence avoidance problem. We show that
Ck presents a natural barrier in this endeavour. This barrier is made concrete by some
new and tight results on the Ramsey theory of sequences, including an Erdős-Hajnal-type
result.
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2 Moving Forward
Both of our new stepping-up constructions rely on a dichotomy: either we can find many
suitable substructures within the δ-sequences (which give rise to many colours) or we must
have a long monotonic sequence (which allows us to use induction). Since for every k-edge
there are at most k! distinct permutations, our methods fail to give good lower bounds for
rk(t; q, p) whenever k � p. Even in the simplest case r3(t; q, 3), we were not able to prove
a double exponential lower bound, leaving open the following question of Conlon, Fox, and
Rödl on r3(t; q, 3).

Problem 2.1. [3, Problem 1] Is there an integer q, a positive constant c, and a q-colouring
of the 3-uniform hypergraph on 22ct vertices such that every subset of order t receives at
least 3 colours?

We propose here a much weaker problem than Problem 2.1 which we were not able to
resolve. We note that a negative answer would uncover a radical new phenomenon in the
Ramsey numbers of hypergraphs.

Problem 2.2. Does there exist k ∈ N such that the following holds? For all p ∈ N there
exist q ∈ N and c > 0 such that rk(t; q, p) ≥ 22t

c

for all t sufficiently large.

A similar but much more ambitious problem was posed in [5].

Problem 2.3. [5, Problem 6.3] Determine the tower height of Rk(n; r, r − 1) = rk(n; r, r)
for all k ≥ 3 and r ≥ 2.

The authors of [5] note the apparent difficulty of Problem 2.3 and ask the following weaker
question. Is there a fixed integer c such that Rk(n; r, r − 1) ≥ Tk−c(n) for every k ≥ 3
and r ≥ 2? We cannot answer this question, but using Theorem 1.3(a), we can prove
Rk(n; r, r−1) is at least a tower of height roughly k−0.5 log2 r. Any improvement beyond
this bound would likely be very interesting.

We make the following conjecture regarding the Ramsey numbers of k-uniform hedge-
hogs. This would in particular demonstrate that the 2-colour and q-colour Ramsey numbers
of these hedgehogs, unlike those of balanced hedgehogs, do not differ by arbitrarily large
tower heights.

Conjecture 2.4. There is ` ∈ N such that for every positive integer k, for every sufficiently
large t,

rk(H
(k)
t ) ≥ Tk−`(t).
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Abstract

The inversion of a set X of vertices in a digraph D consists of reversing the direc-
tion of all arcs of D〈X〉. We study sinv′k(D) (resp. sinvk(D)) which is the minimum
number of inversions needed to transform D into a k-arc-strong (resp. k-strong) di-
graph and sinv′k(n) = max{sinv′k(D) | D is a 2k-edge-connected digraph of order n}.
We show : (i) 1

2 log(n − k + 1) ≤ sinv′k(n) ≤ log n + 4k − 3 for all n ∈ Z≥0; (ii)
for any fixed positive integers k and t, deciding whether a given oriented graph ~G
satisfies sinv′k(

~G) ≤ t (resp. sinvk(~G) ≤ t) is NP-complete ; (iii) if T is a tourna-
ment of order at least 2k + 1, then sinv′k(T ) ≤ sinvk(T ) ≤ 2k, and 1

2 log(2k + 1) ≤
sinv′k(T ) ≤ sinvk(T ) for some T ; (iv) if T is a tournament of order at least 28k − 5
(resp. 14k − 3), then sinvk(T ) ≤ 1 (resp. sinvk(T ) ≤ 6); (v) for every ε > 0, there
exists C such that sinvk(T ) ≤ C for every tournament T on at least 2k+1+εk vertices.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-054

1 Introduction
Notation not given below is consistent with [7]. In particular, a digraph may contain digons
but no loops or parallel arcs and an oriented graph is a digraph without digons. We denote
by [k] the set {1, 2, . . . , k}.
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A feedback arc set in a digraph is a set of arcs whose reversal results in an acyclic
digraph. Finding a minimum cardinality feedback arc set is one of the first problems shown
to be NP-hard listed by Karp in [18]. Furthermore, it is hard to approximate [17, 12]. For
tournaments, the problem remains NP-complete [2, 11], but there is a 3-approximation
algorithm [1] and a polynomial-time approximation scheme [19].

To make a digraph D acyclic, one can use a different operation from arc reversal,
called inversion. The inversion of a set X of vertices consists in reversing the direction
of all arcs of D〈X〉, the subdigraph induced by X. We say that we invert X in D. The
resulting digraph is denoted by Inv(D;X). If (Xi)i∈I is a family of subsets of V (D), then
Inv(D; (Xi)i∈I) is the digraph obtained after inverting the Xi one after another. Observe
that this is independent of the order in which we invert the Xi : Inv(D; (Xi)i∈I) is obtained
fromD by reversing the arcs such that an odd number of theXi contain its two end-vertices.
The inversion number of an oriented graph D, denoted by inv(D), is the minimum
number of inversions needed to transform D into an acyclic oriented graph. It was first
introduced by Belkhechine et al. in [10] and then studied in several papers [6, 23, 4, 3].

The main purpose of this article is to study the possibilities of applying the inversion
operation to obtain a different objective than the obtained digraph being acyclic. Instead
of making a digraph acyclic, we are interested in making it satisfy a prescribed connectivity
property. A digraph D is strongly connected or simply strong (resp. k-arc-strong) for
some positive integer k, if for any partition (V1, V2) of V (D) with V1, V2 6= ∅ there is an arc
(resp. at least k arcs) with tail in V1 and head in V2. For a given digraph D, we denote by
UG(D) the undirected (multi)graph that we obtain by suppressing the orientations of the
arcs. A digraph is k-connected (resp. k-edge-connected) if its underlying (multi)graph
is. Clearly, a digraph D can be made k-arc-strong by reversing some arcs if and only if the
edges of UG(D) can be oriented such that the resulting digraph is k-arc-strong. Robbins’
Theorem [22] asserts that a graph admits a strong orientation if and only if it is 2-edge-
connected, and more generally, Nash–Williams’ orientation theorem [21], asserts that a
graph admits a k-arc-strong orientation if and only if it is 2k-edge-connected. It is well
known that, by reducing to a minimum-cost submodular flow problem, one can determine,
in polynomial time, a minimum set of arcs in D whose reversal gives a k-arc-strong digraph
or detect that such a set does not exist, see Section 8.8.4 of [7] for details. The digraphs
that contain a linear number of vertices with no outgoing arc show that the number of
necessary arc reversals to make a 2k-edge-connected digraph D k-arc-strong cannot be
bounded by a function depending only on k. However this is the case for tournaments,
which are the orientations of complete graphs: Bang-Jensen and Yeo [5] proved that every
tournament on at least 2k + 1 vertices can be made k-arc-strong by reversing at most
1
2
k(k − 1) arcs. This result is tight for transitive tournaments.
We are interested in the problem of using inversions to make a digraph k-arc-strong.

The k-arc-strong inversion number of a digraph D, denoted by sinv′k(D), is the mini-
mum number of inversions needed to transform D into a k-arc-strong digraph. We study
sinv′k(n) = max{sinv′k(D) | D 2k-edge-connected digraph of order n}. For all n ∈ Z≥0, we
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show
1

2
log(n− k + 1) ≤ sinv′k(n) ≤ log n+ 4k − 3.

To establish the upper bound, it is enough to consider minimally k-edge-connected
digraphs which are k-edge-connected digraphs D such that D \ uv is not k-edge connected
for any arc uv of D. We show that such a digraph D is d-degenerate for d = 2k − 1, that
is, every subdigraph of D has a vertex of degree at most d. Now a result of a forthcoming
paper [16] by a group containing the authors asserts that any orientation ~G1 of an n-vertex
d-degenerate graph G can transformed into any other orientation of ~G2 of G by inverting at
most log n+2d− 1 sets. Together with a slight strengthening of Nash-Williams’ Theorem,
we deduce that sinv′k(D) ≤ log n+ 2(2k − 1)− 1.

Then, we prove that, for any fixed positive integers k and t, deciding whether a given
oriented graph ~G satisfies sinv′k(~G) ≤ t is NP-complete. The case t = 1 is proved using a
reduction from Monotone Equitable k-SAT. An instance of this problem consists of a
set of variables X and a set of clauses C each of which contains exactly 2k+1 nonnegated
variables and the question is whether there is a truth assignment φ : X → {true, false}
such that every clause in C contains at least k true and k false variables with respect to
φ. The case t ≥ 2 is proved using a reduction from k-Cut-Covering. Given a graph G,
this problem consists in deciding whether there is a collection F1, . . . , Ft of cuts such that
∪ti=1Fi = E(G). We also show that, unless P=NP, sinv′k cannot be approximated within a
factor better than 2.

One may also want to make a digraph k-strong. A digraph D is k-strong if |V (D)| ≥
k + 1 and for any set S ⊆ V (D) with less than k vertices D − S is strong. A digraph
which can be made k-strong by reversing arcs is k-strengthenable. The 1-strengthenable
digraphs are the 2-edge-connected ones, because being 1-strong is equivalent to being
strong or 1-arc-strong. Thomassen [24] proved that the 2-strengthenable digraphs are
the 4-edge-connected digraphs D such that D − v is 2-edge-connected for every vertex
v ∈ V (D), but it is NP-hard to compute the minimum number of arc reversals needed to
make a given digraph 2-strong [8]. Furthermore, in contrast to the analogous problem for
k-arc-strengthenable digraphs, for k ≥ 3, it is NP-complete to decide whether a digraph is
k-strengthenable. Indeed, for any k ≥ 3, it is NP-complete to decide whether an undirected
graph has a k-strong orientation [13].

It is also natural to use inversions to make a digraph k-strong. A k-strengthening
family of a digraphD is a family of subsets (Xi)i∈I of subsets of V (D) such that Inv(D; (Xi)i∈I)
is k-strong. The k-strong inversion number of a k-strengthenable digraph D, denoted
by sinvk(D), is the minimum number of inversions needed to transform D into a k-strong
digraph. We show that for any positive integers k and t, it is NP-complete to decide
whether sinvk(D) ≤ t for a given k-strengthenable oriented graph. We also show that,
unless P=NP, sinvk cannot be approximated within a factor better than 2. The proofs are
similar to the ones for sinv′k.

It is not hard to show that every tournament of order at least 2k+1 is k-strengthenable
and that it can be made k-strong by reversing the orientation of at most 1

4
(4k − 2)(4k −
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3) arcs, see e.g. [7, p. 379]. In 1994, Bang-Jensen conjectured that every tournament
on at least 2k + 1 vertices can be made k-strong by reversing at most 1

2
k(k + 1) arcs.

Bang-Jensen, Johansen, and Yeo [9] proved this conjecture for tournaments of order at
least 3k − 1. It is then natural to ask whether or not we can make a tournament k-
strong or k-arc-strong in a lot less than 1

2
k(k + 1) inversions. This leads to consider

Mk = max{sinvk(T ) | T tournament of order at least 2k + 1} and M ′
k = max{sinv′k(T ) |

T tournament of order at least 2k + 1}. We show that (for sufficiently large k), we have

1

2
log(2k + 1) ≤M ′

k ≤Mk ≤ 2k.

The lower bound is obtained for a tournament of order 2k+1 by using McKay’s result [20]
on the number of Eulerian tournaments of order 2k + 1, the fact that every k-arc-strong
tournament of order 2k + 1 is Eulerian and counting arguments. Let us now prove the
upper bound.

Let D be a digraph and u, v two distinct vertices in D. The strong-connectivity
from u to v in D, denoted by κD(u, v), is the maximal number α such that D−X contains
a (u, v)-path for every X ⊆ V (D) \ {u, v} with |X| ≤ α − 1. For some S ⊆ V (D) and
positive integer k, we say that S is k-strong in D if κD(u, v) ≥ k for all u, v ∈ S. The
following statement is well-known.

Lemma 1.1. Let D be a digraph, S a k-strong set in D and v ∈ V (D) \ S. If v has k
in-neighbours in S and k out-neighbours in S, then S ∪ {v} is k-strong in D.

Theorem 1.2. Mk ≤ 2k.

Proof. Let D be a tournament with V (D) = {v1, . . . , vn} with n ≥ 2k + 1. Further, let
T be a k-strong tournament on {v1, . . . , v2k+1}. We now define sets X1, . . . , X2k. Suppose
that the sets X1, . . . , Xi−1 have already been created and let Di−1 be the graph obtained
from D by inverting X1, . . . , Xi−1. Now let Xi = {vi} ∪ Ai ∪ Bi, where Ai is the set of
vertices vj with j ∈ {i+1, . . . , 2k+1} for which the edge vivj has a different orientation in
T and Di−1, and Bi is, when i ≤ k (resp. i ≥ k + 1), the set of vertices vj with j ≥ 2k + 2
for which Di−1 contains the arc vivj (resp. vjvi).

Observe that D2k〈{v1, . . . , v2k+1}〉 = T which is k-strong by assumption. Moreover, for
any j ≥ 2k+2, D2k contains the arcs vjvi for i ∈ [k] and the arcs vivj for i = k+1, . . . , 2k.
Hence, by Lemma 1.1, D2k is k-strong.

We also prove that M1 =M ′
1 = 1 and M2 =M ′

2 = 2 showing that the bound Mk ≤ 2k
is not tight for k = 1, 2. We believe that it is also not tight for larger values of k.

It is not too difficult to prove that every sufficiently large tournament can be made
k-strong in one inversion. Hence it is natural to investigate the minimum integer Nk(i)
(resp. N ′k(i)) such that sinvk(T ) ≤ i (resp. sinv′k(T ) ≤ i) for every tournament T of order
at least Nk(i). We prove

5k − 2 ≤ Nk(1) ≤ 28k − 5 and Nk(6) ≤ 14k − 3.
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The lower bound Nk(1) ≥ 5k−2 is obtained by considering a tournament T of order 5k−3
whose vertex set has a partition (A,B,C) such that T 〈A〉 and T 〈C〉 are (k − 1)-diregular
tournaments of order 2k − 1, and A⇒ B ∪ C and B ⇒ C, and proving sinv′k(T ) > 1.

The upper bounds Nk(1) ≤ 28k − 5 and Nk(6) ≤ 14k − 3 are obtained using median
orders. A median order of D is an ordering (v1, v2, . . . , vn) of the vertices of D with
the maximum number of forward arcs, that arcs vivj with j > i. Our proofs use the two
well-known properties (M1) and (M2) in the next lamma (the feedback property in [15]),
which allow to prove the third one (M3). We denote by R+

D(v) (resp. R−D(v)) the set of
vertices which are reachable from vertex v (resp. from which v can be reached) in digraph
D, that are the vertices w such that there is a directed (v, w)-path (resp. (w, v)-path) in
D.

Lemma 1.3. Let T be a tournament and (v1, v2, . . . , vn) a median order of T . Then, for
any two indices i, j with 1 ≤ i < j ≤ n:

(M1) (vi, vi+1, . . . , vj) is a median order of the induced subtournament T 〈{vi, vi+1, . . . , vj}〉.

(M2) vi dominates at least half of the vertices vi+1, vi+2, . . . , vj, and vj is dominated by at
least half of the vertices vi, vi+1, . . . , vj−1. In particular, each vertex vi, 1 ≤ i < n,
dominates its successor vi+1.

(M3) For any X ⊆ V (T ) \ {vi}, |R+
T−F (vi)| ≥ n+ 1− i− 2|F |, and R−T−F (vi) ≥ i− 2|F |.

Let T be a tournament of order n ≥ 28k − 5 and let (v1, . . . , vn) be a median order of
V (T ). Let A = {vn−6k+1, . . . , vn} and B = {v1, . . . , v6k}. Using Lemma 1.3, we show that
there is a set X ⊆ A ∪ B such that in the tournament T0 = Inv(T 〈A ∪ B〉, X), for any
Y ⊆ V (T0) with |Y | ≤ k − 1, there is a directed path from a to B \ Y in T0 − Y for every
a ∈ A \ Y , and there is a directed path from A \ Y to b in T0 − Y for every b ∈ B \ Y . We
then show that Inv(T,X) is k-strong. This proves Nk(1) ≤ 28k − 5.

The fact that there exists a constant α > 0 such that every tournament on at least
αk vertices can be made k-strong by a single inversion raises the following question: for
which α > 2, every tournament on at least αk vertices can be made k-strong by a constant
number of inversion? We show that every α > 2 will do : there is a function f such that
for every ε > 0 and k ∈ N, sinvk(T ) ≤ f(ε) for every tournament T on at least 2k+ 1+ εk
vertices.

The proof is based on a probabilistic argument: we show that f(ε) inversions drawn
uniformly at random, under the constraint that they cover all the vertices, make such a
tournament k-strong with high probability.

Finally, the fact that mk(n) = 1 for n sufficiently large (in comparison to k) implies
that the set Fk of tournaments T such that sinvk(T ) > 1 is finite. This implies that for
fixed k computing sinvk and sinv′k can be done in polynomial time for tournaments.

The proofs of the results announced in this extended abstract can be found in the full
version of the paper [14].



On the minimum number of inversions to make a digraph k-(arc-)strong. 391

References
[1] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent informa-

tion: Ranking and clustering. Journal of the ACM, 55(5), 2008.

[2] Noga Alon. Ranking tournaments. SIAM Journal on Discrete Mathematics, 20:137–
142, 2006.

[3] Noga Alon, Emil Powierski, Michael Savery, Alex Scott, and Elizabeth Wilmer. In-
vertibility of digraphs and tournaments, 2022.

[4] Guillaume Aubian, Frédéric Havet, Florian Hörsch, Felix Klingelhoefer, Nicolas Nisse,
Clément Rambaud, and Quentin Vermande. Problems, proofs, and disproofs on the
inversion number, 2022.

[5] Jœrgen Bang-Jensen and Anders Yeo. Making a tournament k-arc-strong by reversing
or deorienting arcs. Discrete Applied Mathematics, 136(2):161–171, 2004. The 1st
Cologne-Twente Workshop on Graphs and Combinatorial Optimization.

[6] Jørgen Bang-Jensen, Jonas Costa Ferreira da Silva, and Frédéric Havet. On the
inversion number of oriented graphs. Discrete Mathematics & Theoretical Computer
Science, 23(2):# 8, 2022.

[7] Jørgen Bang-Jensen and Gregory Z. Gutin. Digraphs: theory, algorithms and appli-
cations. Springer-Verlag, London, 2009.

[8] Jørgen Bang-Jensen, Florian Hörsch, and Matthias Kriesell. Complexity of (arc)-
connectivity problems involving arc-reversals or deorientations, 2023.

[9] Jørgen Bang-Jensen, Kasper S. Johansen, and Anders Yeo. Making a tournament
k-strong. Journal of Graph Theory, 103(1):5–11, 2023.

[10] Houmem Belkhechine, Moncef Bouaziz, Imed Boudabbous, and Maurice Pouzet. In-
version dans les tournois. Comptes Rendus Mathematique, 348(13-14):703–707, 2010.

[11] Pierre Charbit, Stéphan Thomassé, and Anders Yeo. The minimum feedback arc
set problem is NP-hard for tournaments. Combinatorics, Probability and Computing,
16:1–4, 2007.

[12] Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex
cover. Annals of Mathematics, Second Series, 162(1):439–485, 2005.

[13] Olivier Durand de Gevigney. On Frank’s conjecture on k-connected orientations.
Journal of Combinatorial Theory, Series B, 141:105–114, 2020.

[14] Julien Duron, Frédéric Havet, Florian Hörsch, and Clément Rambaud. On the mini-
mum number of inversions to make a digraph k-(arc-)-strong, 2023.



On the minimum number of inversions to make a digraph k-(arc-)strong. 392

[15] Frédéric Havet and Stéphan Thomassé. Median orders of tournaments: A tool for
the second neighborhood problem and sumner’s conjecture. Journal of Graph Theory,
35(4):244–256, 2000.

[16] ANR Digraph Inversion Working Group. On the diameter of the inversion graph.
unpublished.

[17] Vido Kann. On the Approximability of NP-complete Optimization Problems. PhD
thesis, Department of Numerical Analysis and Computing Science, Royal Institute of
Technology, Stockholm, 1992.

[18] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972.

[19] Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In Proceed-
ings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC
’07, page 95–103, 2007.

[20] Brendan D. McKay. The asymptotic numbers of regular tournaments, eulerian di-
graphs and eulerian oriented graphs. Combinatorica, 10(4):367–377, 1990.

[21] Crispin St J.A. Nash-Williams. On orientations, connectivity and odd-vertex-pairings
in finite graphs. Canadian Journal of Mathematics, 12:555–567, 1960.

[22] Herbert E. Robbins. A theorem on graphs, with an application to a problem on traffic
control. American Mathematical Monthly, 46(5):281–283, 1939.

[23] Bhalchandra Thatte, Hamza Si Kaddour, and Maurice Pouzet. On the boolean di-
mension of a graph and other related parameters. Discrete Mathematics & Theoretical
Computer Science, 23, 2022.

[24] Carsten Thomassen. Strongly 2-connected orientations of graphs. Journal of Combi-
natorial Theory, Series B, 110:67–78, 2015.



Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications
EUROCOMB’23

Prague, August 28 - September 1, 2023

Precoloring extension in planar
near-Eulerian-triangulations∗

(Extended abstract)

Zdeněk Dvořák Benjamin Moore Michaela Seifrtová

Robert Šámal†

Abstract

We consider the 4-precoloring extension problem in planar near-Eulerian- triangu-
lations, i.e., plane graphs where all faces except possibly for the outer one have length
three, all vertices not incident with the outer face have even degree, and exactly the
vertices incident with the outer face are precolored. We give a necessary topological
condition for the precoloring to extend, and give a complete characterization when
the outer face has length at most five and when all vertices of the outer face have odd
degree and are colored using only three colors.
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1 Introduction
Recall that a k-coloring of a graph G is a mapping using k colors such that adjacent vertices
receive different colors and that a graph is Eulerian if all of its vertices have even degree.
We study the precoloring extension problem for planar (near) Eulerian triangulations, in
particular from an algorithmic perspective.

Famously, the Four Color Theorem states that all planar graphs are 4-colorable [1] and
thus from an algorithmic point of view, the problem of determining if a planar graph is
4-colorable is trivial. In contrast, deciding if a planar graph is 3-colorable is a well known
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NP-complete problem [20]. If we move to graphs on surfaces, the situation becomes less
clear. Recall that a graph G is (k+ 1)-critical if all proper subgraphs of G are k-colorable,
butG itself is not. Thus, (k+1)-critical graphs are exactly the minimal forbidden subgraphs
for k-colorability. A deep result of Thomassen [22] says that for any fixed surface Σ, there
are only finitely many (k + 1)-critical graphs for k ≥ 5, and combined with a result of
Eppstein [7], this implies that there is a polynomial time algorithm for k-coloring graphs
on any fixed surface for any k ≥ 5. Unfortunately, we cannot extend this to 4-colorablity—
it is known that there are infinitely many 5-critical graphs on any surface other than the
plane [22]. This is a consequence of the folowing result of Fisk [9]: If G is a triangulation
of an orientable surface and G has exactly two vertices u and v of odd degree, then u
and v must have the same color in any 4-coloring of G, and thus the graph G + uv is not
4-colorable. Even though there are infinitely many 5-critical graphs, it is an important
open question if for any fixed surface Σ, there is a polynomial time algorithm to decide if
a graph drawn on Σ is 4-colorable.

Let us remark that we have a positive answer to a similar question in the case of
3-coloring triangle-free graphs on surfaces. It is known that there are infinitely many
4-critical triangle-free graphs on all surfaces other than the plane, yet there is a linear
time algorithm to decide if a triangle-free graph on any fixed surface is 3-colorable [6].
The algorithm consists of two parts: In the first part, the problem is reduced to (near)
quadrangulations [5], and the second part gives a topological criterion for 3-colorability of
near quadrangulations [2].

Our hope is that (near) Eulerian triangulations could play the same intermediate role
in the case of 4-colorability of graphs on surfaces. Indeed, there is a number of arguments
and analogies supporting this idea:

(A) The only constructions of “generic” (e.g., avoiding non-trivial small separations) non-
4-colorable graphs drawn on a fixed surface that we are aware of are based on near
Eulerian triangulations, such as Fisk’s construction [9] or adding vertices to faces of
non-3-colorable quadrangulations of the projective plane [13].

(B) As noted above, quadrangulations play key role in the problem of 3-colorability of
triangle-free graphs on surfaces, which is a bit surprising at a glance since planar
quadrangulations are actually 2-colorable. Analogously, planar Eulerian triangula-
tions are 3-colorable (and in fact, a planar graph is 3-colorable if and only if its a
subgraph of a planar Eulerian triangulation).

(C) Many results for quadrangulations of surfaces correspond to results for Eulerian tri-
angulations. As an example, Youngs [25] famously proved that a graph drawn in
the projective plane so that all faces have even length is 3-colorable if and only if
it does not contain a non-bipartite quadrangulation as a subgraph. For an Eulerian
triangulation T of the projective plane, Fisk [8] showed that T has an independent
set U such that all faces of T − U have even length, and Mohar [13] proved that T
is 4-colorable if and only if T − U is 3-colorable.
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As another example, Hutchinson [11] proved that every graph drawn on a fixed ori-
entable surface with only even-length faces and with sufficiently large edgewidth (the
length of the shortest non-contractible cycle) is 3-colorable, and Nakamoto et al. [16]
and Mohar and Seymour [14] have shown that such graphs on non-orientable surfaces
are 3-colorable unless they contain a quadrangulation with an odd-length orienting
cycle. Analogously, for any orientable surface, any Eulerian triangulation with suffi-
ciently large edgewidth is 4-colorable [12], and for non-orientable surfaces, the only
non-4-colorable Eulerian triangulations of large edgewidth are those that have an
independent set whose removal results in an even-faced non-3-colorable graph [15].

In this paper, we make the first step towards towards the design of a polynomial-time
algorithm to decide whether an Eulerian triangulation of a fixed surface is 4-colorable.
In particular, we give the following algorithm. A planar near-Eulerian-triangulation is a
plane graph where all the faces except possibly for the outer one have length three and all
the vertices not incident with the outer face have even degree.

Theorem 1. There is a linear-time algorithm that given

• a planar near-Eulerian-triangulation G with the outer face bounded by a cycle C such
that all vertices of C have odd degree in G, and

• a precoloring ϕ of the vertices incident with the outer face of G using only three
colors,

decides whether ϕ extends to a 4-coloring of G.

The motivation for considering the special case of planar near-Eulerian-triangulations
with precolored outer face comes from the general approach towards solving problems for
graphs on surfaces, which can be seen e.g. in [2, 3, 4, 18, 19, 21, 23], as well as many other
works and is explored systematically in the hyperbolic theory of Postle and Thomas [17].
The general outline of this approach is as follows:

• Generalize the problem to surfaces with boundary, with the boundary vertices pre-
colored (or otherwise constrained).

• Use this generalization to reduce the problem to “generic” instances (e.g., those
without short non-contractible cycles, since if an instance contains a short non-
contractible cycle, we can cut the surface along the cycle and try to extend all the
possible precolorings of the cycle in the resulting graph drawn in a simpler surface).

• The problem is solved in the basic case of graphs drawn in a disk and on a cylinder
(plane graphs with one or two precolored faces).

• Finally, the general case is solved with the help of the two basic cases (reducing it to
the basic cases by further cutting the surface and carefully selecting the constraints
on the boundary vertices [2, 19], using quantitative bounds from the basic cases to
show that truly generic cases do not actually arise [17]).
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Thus, Theorem 1 is a step towards solving the basic case of graphs drawn in a disk. It
unfortunately does not solve this case fully because of the extra assumption that ϕ only
uses three colors (and the assumption that vertices of C have odd degree). Without this
assumption, we were able to solve the problem when the precolored outer face has length
at most five.

Theorem 2. There is a linear-time algorithm that given

• a planar near-Eulerian-triangulation G with the outer face bounded by a cycle C of
length at most five and

• a precoloring ϕ of C

decides whether ϕ extends to a 4-coloring of G.

In general, we were only able to find a necessary topological condition for such an
extension to exist (which we do not discuss in this extended abstract). We conjecture that
using this topological condition in combination with further ideas, it will be possible to
resolve the disk case in full.

Conjecture 3. For every positive integer `, there is a polynomial-time algorithm that given

• a planar near-Eulerian-triangulation G with the outer face of length at most ` and

• a precoloring ϕ of the vertices incident with the outer face

decides whether ϕ extends to a 4-coloring of G.

For the remaining part of the paper, we sketch some of the ideas needed to prove
Theorem 1 and Theorem 2.

2 Proving Theorems 1 and 2
Our goal in this section is to show the precoloring extension problem is equivalent to special
homomorphisms to the infinite triangular grid equipped with colorings, and then show that
in the special cases of Theorems 1 and 2 we can decide if such a homomorphism exists.
We need some definitions.

A hued graph is a graph G together with a proper 3-coloring ψG : V (G)→ Z3. We will
also need to fix a 4-coloring of G, and for notational convenience we use elements of Z2

2

as colors. With this, a dappled graph is a hued graph G together with a proper 4-coloring
ϕG : V (G) → Z2

2. For a vertex v ∈ V (G), we say that ψG(v) is the hue and ϕG(v) is the
color of v. Homomorphisms of dappled graphs are required to preserve edges and both
hue and color, i.e., f : V (G) → V (H) is a homomorphism if f(u)f(v) ∈ E(H) for every
uv ∈ E(G) and ψH(f(v)) = ψG(v) and ϕH(f(v)) = ϕG(v) for every v ∈ V (G).

The dappled triangular grid is the infinite dappled graph T with vertex set {(i, j) :
i, j ∈ Z}, where vertices (i1, j1) and (i2, j2) are adjacent if and only if (i2 − i1, j2 − j1) ∈
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{±(1, 0),±(0, 1),±(1, 1)}, with vertex hue ψT(i, j) = (i + j) mod 3 for each vertex (i, j),
and with vertex color ϕT(i, j) = (i mod 2, j mod 2) for each vertex (i, j).

The following claim follows by an inspection of the definition.

Observation 4. Let T be the dappled triangular grid. For any vertex v ∈ V (T), if u1 and
u2 are distinct neighbors of v, then (ψT(u1), ϕT(u1)) 6= (ψT(u2), ϕT(u2)). Consequently,
for any connected dappled graph G and any vertex x ∈ V (G), if f1, f2 : V (G)→ V (T) are
homomorphisms and f1(x) = f2(x), then f1 = f2.

Let us now give the key property of dappled patches; the proof easily follows from the
coloring-flow duality of Tutte [24].

Theorem 5. Every dappled patch G has a homomorphism to the dappled triangular grid
T.

A 4-coloring ϕ of a connected hued graphH is viable if and only if the dappled graphHϕ

where ϕ is the associated 4-coloring has a homomorphism to the dappled triangular grid.
Let us note that by Observation 4, this condition is easy to verify, as such a homomorphism
is unique up to the arbitrary choice of the image of a single vertex of C.

Corollary 6. Let G be a hued patch and ϕ a 4-coloring of the boundary of the outer face
of G. If ϕ extends to a 4-coloring of G, then ϕ is viable.

With this, we now sketch how to prove Theorem 1 and 2. The key observation is that
in both cases, the homomorphism to the dappled triangular grid T associated with the
precoloring ϕ maps C to the closed neighborhood of a single vertex of T.

A hexagon is a dappled subgraph of T induced by a vertex and its neighbors. A 4-
coloring ϕ of a connected hued graph C is a single-hexagon coloring if it is viable and
the corresponding homomorphism f maps Cϕ to a subgraph of a hexagon H of T. The
central hue c and the central color k of a single-hexagon coloring is the hue and the color
of the central vertex of H. There are two important examples of single-hexagon colorings,
corresponding to the assumptions of Theorems 1 and 2, respectively.

• Let us call a patch odd if its outer face is bounded by a cycle C and all vertices
incident with the outer face have odd degree. Every coloring of C that uses at most
three colors is single-hexagon, with the central hue 2 and central color not appearing
on C.

• Every viable 4-coloring of a hued (≤5)-cycle is single-hexagon.

A retract of a hued graph G is an induced subgraph H of G such that there exists a
retraction f from G to H, i.e., a homomorphism such that f(v) = v for each v ∈ V (H).
The following key observation follows from the fact that each shortest cycle in a bipartite
graph is a retract [10]. For a dappled graph H, we let H− refer to the underlying hued
graph.



Precoloring extension in planar near-Eulerian-triangulations 398

Lemma 7. For every hexagon H of the triangular grid T, the hued hexagon H− is a retract
of T−

This implies that the precoloring extension problem with four colors in hued patches
for single-hexagon precolorings can be reduced to the problem of 3-precoloring extension
in bipartite graphs.

Corollary 8. Let G be a hued patch and let ϕ : V (C)→ Z2
2 be a single-hexagon 4-coloring

of the boundary C of the outer face of G, with central hue c and central color k. Let
K = Z2

2 \ {k}. Let H be the bipartite subgraph of G induced by the vertices of hue different
from c, and let ϕ′ : V (H)→ K be the restriction of ϕ to H. Then ϕ extends to a 4-coloring
of G if and only if ϕ′ extends to a 3-coloring of H (using the colors in K).

Dvořák, Král’ and Thomas [6] gave for every b a linear-time algorithm to decide whether
a precoloring of at most b vertices of a planar triangle-free graph extends to a 3-coloring.
Hence, we have the following consequence, a common strengthening of Theorems 1 and 2.

Corollary 9. For every `, there exists an algorithm than, given a hued patch G with the
outer face of length at most ` and a single-hexagon precoloring ϕ of the boundary of the
outer face, decides in linear time whether ϕ extends to a 4-coloring of G.
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Abstract

Suppose we have an eulerian (di)graph with a (directed) circuit decomposition.
We show that if the (di)graph is sufficiently dense, then it has an orientable embed-
ding in which the given circuits are facial walks and there are exactly one or two other
faces. This embedding has maximum genus subject to the given circuits being facial
walks. When there is only one other face, it is necessarily bounded by an euler circuit.
Thus, if the numbers of vertices and edges have the same parity, a sufficiently dense
(di)graph D with a given (directed) euler circuit C has an orientable embedding with
exactly two faces, each bounded by an euler circuit, one of which is C. The main
theorem encompasses several special cases in the literature, for example, when the
digraph is a tournament.
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1 Introduction and main results
When can a graph or digraph be cellularly embedding in a orientable surface so that it
has exactly two faces, each bounded by an euler circuit, such as shown in Figure 1? Is
it possible to specify one of the euler circuits in advance? When is it possible to specify
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an arbitrary circuit decomposition of the edges and complete it to an embedding with
just one more face, noting that the face is then necessarily bounded by an euler circuit?
Finding such a face achieves a maximum genus embedding having the circuits in a given
decomposition as facial walks.

 

Figure 1: An eulerian digraph (top), and a bi-eulerian orientable embedding of it, showing
the two faces bounded by euler circuits, one red and one blue (bottom). The diagram
depicts the embedding as a ribbon graph, while sewing a disc into each facial walk gives
the surface.

This leads more generally to the question of determining the maximum genus of an
embedding relative to a circuit decomposition. Beyond topological graph theory, these
questions arise in surprisingly diverse settings, including DNA self-assembly, Steiner triple
systems, and latin squares.

Our main result, given in Theorem 1.1, is that if an eulerian (di)graph is sufficiently
dense, then it is indeed always possible to achieve these special embeddings of maximum
orientable genus.

We allow graphs and digraphs to have loops and multiple edges. A circuit in a graph is
a closed trail. A graph is eulerian if it has a circuit (an euler circuit) that uses every edge
and every vertex (so the graph is necessarily connected). An embedding of a digraph D
is directed if every face is bounded by a closed directed walk of D. A direction-indifferent
embedding of a digraph need not have consistently directed facial walks. In a directed
embedding of a digraph, profaces are faces whose directed facial walks agree with the
clockwise orientation of the surface, while the directed facial walks of the antifaces oppose
it. We say that an embedding of a (di)graph G is bi-eulerian if it has exactly two faces,
each bounded by an euler circuit.
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Theorem 1.1. Let D be an n-vertex eulerian digraph where the minimum degree of the
underlying simple undirected graph of D is at least (4n + 2)/5. Let C be a directed circuit
decomposition of D. Then there is an orientable directed embedding of D with the elements
of C as the profaces and with exactly one or two antifaces, depending on whether |V (D)|+
|A(D)|+ |C| is odd or even, respectively.

This embedding has maximum genus among all orientable directed embeddings of D in
which all elements of C are profaces. This embedding also has maximum genus among all
orientable direction-indifferent embeddings of D in which all elements of C are faces.

A number of related results for both graphs and digraphs follow immediately from this
theorem, including Corollary 1.2.

Corollary 1.2. Let G be an n-vertex eulerian graph where the minimum degree of the
underlying simple graph of G is greater than or equal to (4n + 2)/5. Let T be any euler
circuit in G. Then there is a 2-face-colorable orientable embedding of G with T as the
unique face of one color and with exactly one or two faces of the other color, depending on
whether |V (G)|+ |E(G)| is even or odd, respectively.

This embedding has maximum genus among all 2-face-colorable orientable embeddings
of G. When |V (G)|+|E(G)| is even this is an orientable bi-eulerian embedding of G with T
as a specified face, and the embedding has maximum genus among all orientable embeddings
of G.

When G additionally has |V (G)| + |E(G)| even, Corollary 1.2 says there is a maxi-
mum orientable genus embedding of G that is bi-eulerian. However, in general not every
maximum genus embedding of such a G is bi-eulerian.

We do not know if the bound of (4n + 2)/5 in Theorem 1.1 is tight. The original
motivation for this problem came from an applied problem in DNA self-assembly posed
by Jonoska, Seeman and Wu [8], which required a special closed walk in a graph for a
DNA strand to follow. A formalization of the walk requirements in [3] led to edge-outer
embeddings of a graph, that is, orientable embeddings of a graph in which there is a special
face whose boundary uses every edge at least once. While [8] proves the existence of
such circuits, and [3] gives short algorithmic proof of existence, and proves the hardness of
finding an optimal (shortest outer facial walk) solution, there is no control over the number
or sizes of the remaining faces in the embedding.

The startlingly simple (to state!) and intriguing questions in the first paragraph
emerged from this application. Although determining the size of optimal edge-outer faces
is hard in general, for eulerian graphs any optimal edge-outer face is necessarily bounded
by an euler circuit. Thus, we seek to control the remaining faces in an optimal edge-outer
embedding of an eulerian graph by specifying them in advance with a circuit decomposi-
tion. Of particular interest are bi-eulerian orientable embeddings, particularly when one
of the circuits is specified in advance.

While our original motivation was DNA self-assembly, these and some closely related
questions have also received considerable attention in various other special settings.
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In [2], Edmonds proved that every eulerian graph has an bi-eulerian embedding in some
surface, but noted that his main theorem was not sufficient to determine the orientability
of the embedding. Restricting to the orientable case makes the existence problem quite
challenging. From a different perspective, Andersen, Bouchet, and Jackson in [1] focus
specifically on compatible euler circuits (A-trails) in 4-regular graphs and digraphs in low
genus surfaces.

Furthermore, a series of papers, [4, 5, 6, 7] authored by Griggs and Širáň and sometimes
also Erskine, Grannell, McCourt, or Psomas, discusses upper embeddings relative to a
triangular decomposition of a graph or digraph, and more specifically completing such
a decomposition to an embedding by adding an euler circuit. They are interested in
triangular decompositions which arise from structures in design theory such as Steiner
triple systems, configurations, and latin squares. One representative theorem can be stated
as follows:

Theorem 1.3 (Griggs, McCourt, and Širáň [6, Theorem 1.1]). Let C be an oriented Steiner
triple system, i.e., a decomposition of a regular tournament D into directed triangles. Then
there is an orientable directed embedding of D with the elements of C as the profaces and
with exactly one directed euler circuit antiface.

The results in these papers are generally specific to triangular decompositions of very
special classes of (di)graphs, such as complete or complete tripartite graphs. Our results
for arbitrary dense graphs encompass their results that involve complete graphs or tour-
naments, such as Theorem 1.3.

2 Manipulating facial circuits and proof outline
We first note that we can always form some orientable embedding of a digraph with a given
circuit decomposition as the profaces. The new faces are necessarily antifaces. We then
develop a number of structural results for manipulating the facial circuits in embedded
graphs. The following lemmas for example allow us to combine antifaces without altering
the given profaces.

A central tool is the following version for directed embeddings of a well-known operation
on embeddings of undirected graphs. It allows us to combine three antifaces incident with
the same vertex into a single face.

Lemma 2.1. Let Φ be an orientable directed embedding of an eulerian digraph D, and
v ∈ V (D). If A, B, and C are distinct antifaces that each contain v, then there is an
orientable directed embedding Φ′ of D that has the same profaces and antifaces as Φ except
that A, B and C are merged into a single antiface.

Interlaced vertices on a circuit, that is, a pair of vertices u and v that appear as
. . . u . . . v . . . u . . . v in the circuit, play a pivotal role here. When we have appropriately
interlaced vertices, we can merge faces, as in Lemma 2.2.
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Lemma 2.2. Let Φ be an orientable directed embedding of an eulerian digraph D, and
x, y ∈ V (D). Suppose that there are three distinct antifaces A,B,C where x and y are
interlaced on A, x occurs on B, and y occurs on C. Then there is an orientable directed
embedding Φ′ of D that has the same profaces and antifaces as Φ except that A, B and C
are replaced by a single antiface.

The density of the given (di)graph plays an important role in assuring the necessary
interlacements. Given a digraph D, let k be such that for each v ∈ V (D) there are at most
k vertices different from v that are not adjacent to v in D. A locally irreducible embedding
has at most two antifaces meeting at any vertex (which can be guaranteed by repeated
use of Lemma 2.1), and a vertex has type AB if it lies on both of the faces A and B. We
write |AB| for the number of vertices of type AB. The following is a representative lemma
assuring interlacement.

Lemma 2.3. Suppose that we have a locally irreducible embedding with distinct antifaces
A and B. Suppose that |AB| ≥ min(3k + 4, 4k + 3) and there exist vertices of type AP
and vertices of type BQ with P,Q /∈ {A,B} (possibly P = Q). Then there is a vertex of
type AB that is either interlaced on A with a vertex of type AP or interlaced on B with a
vertex of type BQ.

To prove Theorem 1.1, we use results such as those given above to successively re-
duce the number of antifaces in the orientable directed embedding of the digraph without
changing the given profaces.

The proof begins by applying results such as Lemma 2.2 so that no more than two
antifaces are incident with any one vertex. We can then create a touch graph, K. The
vertices of K are the antifaces. Each vertex v of D gives an edge of K: if v is incident with
only one antiface the edge is a loop at that vertex of K, and if v is incident with exactly
two antifaces the edge joins the corresponding vertices of K.

We use the structure of the touch graph K, in particular the existence and location
of its loops, to organize the necessary case work for the proof of Theorem 1.1. In each
situation density information allows us to apply results such as Lemma 2.3 to reduce the
number of antifaces. By repeated reductions we obtain an orientable embedding with one
or two antifaces and the prescribed set of profaces. If there is only one antiface it must be
bounded by a directed euler circuit.

Although our focus here has been on dense graphs, there are certainly also sparse
graphs that have bi-eulerian orientable embeddings, as for example in Figure 1. Theorem
2.4 below has an constructive proof with an algorithm that, given an eulerian digraph
with a directed euler circuit, produces a second eulerian circuit for the desired bi-eulerian
embedding. On the other hand, we have examples of 4-edge-connected, 4-regular graphs
with no bi-eulerian embeddings.

Theorem 2.4. Let D be an eulerian digraph with all vertices of degree congruent to 2
mod 4, and let T be any directed euler circuit of D. Then D has a bi-eulerian orientable
embedding with one of the faces bounded by T .
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Abstract

We introduce the random graph P(n, q) which results from taking the union of
two paths of length n > 1, where the vertices of one of the paths have been relabelled
according to a Mallows permutation with real parameter 0 < q(n) 6 1. This random
graph model, the tangled path, goes through an evolution: if q is close to 0 the graph
bears resemblance to a path, and as q tends to 1 it becomes an expander. In an effort
to understand the evolution of P(n, q) we determine the treewidth and cutwidth of
P(n, q) up to log factors for all q. We also show that the property of having a separa-
tor of size one has a sharp threshold. In addition, we prove bounds on the diameter,
and vertex isoperimetric number for specific values of q.
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Introduction
Given two graphs G,H on a common vertex set [n] = {1, . . . , n}, and a permutation σ on
[n], it is natural to consider the following graph

layer(G, σ(H)) = ([n], E(G) ∪ {σ(x)σ(y) : xy ∈ E(H)}) ,
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1 2 3 4 5 6

layer (P6, r6(P6))

n vn rn
1 1 1
2 2 12
3 1 312
4 3 3142
5 2 35142
6 5 351462

Figure 1: The table on the left gives the sequences of permutations (rn) generated by the
sequence (vn) for i = 1, . . . , 6. On the right we have a tangled path generated by r6, where
the edges of r6(P6) are dotted.

which is the union of two graphs where the second graph has been relabelled by a permuta-
tion σ. This general and powerful construction has featured previously in the literature in
the contexts of constructions and decompositions of graphs [1, 4, 22]. Let Pn be the path on
[n] and Sn be the set of all permutations on [n]. Consider the following scenario: one must
choose a permutation σ ∈ Sn with the goal of making layer(Pn, σ(Pn)) as different from a
path as possible. There are several parameters one may use to measure the difference be-
tween a connected graph G and a path; for example one may look at the diameter diam(G)
or the vertex isoperimetric number i(G), as the path is extremal for these parameters. The
treewidth tw(G) which, broadly speaking, measures how far (globally) the graph is from
being a tree [14], is another natural candidate. It is fairly easy to see that given two or
more paths one can build a grid-like graph (see [7, Lemma 8] for more details), and such a
graph would have treewidth and diameter Θ(

√
n). If we choose a permutation uniformly

at random, then as a consequence of a result of Kim & Wormald [12, Theorem 1], with
high probability the resulting graph is a bounded degree expander. Thus, in this case, the
graph layer(Pn, σ(Pn)) has treewidth Θ(n) and diameter Θ(log n), so by these parameters
it is essentially as far from a path as a sparse graph can be.

The example above shows that even restricting the input graphs to paths can produce
rich classes of graphs. Having seen what happens for a uniformly random permutation,
one may ask about the structure of layer(Pn, σ(Pn)) when σ is drawn from a distribution
on Sn that is not uniform. One of the most well known non-uniform distributions on Sn
is the Mallows distribution, introduced by Mallows [17] in the late 1950’s in the context
of statistical ranking theory. Recently it has been the subject of renewed interest for
other settings [6, 3, 11], and as an interesting and natural model to study in its own right
[2, 10, 20]. The distribution has a parameter q which, roughly speaking, controls the
amount of disorder in the permutation.

Mallows Permutations. For real q > 0 and integer n > 1, the (n, q)-Mallows measure
µn,q on Sn is given by

µn,q(σ) =
qInv(σ)

Zn,q
for any σ ∈ Sn,
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where Inv(σ) = |{(i, j) : i < j and σ(i) > σ(j)}| is the number of inversions in the per-
mutation σ and Zn,q is given explicitly by the following formula [2, Equation (2)]:

Zn,q =
n∏
i=1

(
1 + q + · · ·+ qi−1

)
=

n∏
i=1

1− qi

1− q
.

When q → 0, the distribution µn,q converges weakly to the degenerate distribution on
the identity permutation. We extend µn,q to q = 0 by setting µn,0 to be the probability
measure assigning 1 to the identity permutation. On the other hand if q = 1 then µn,1
is the uniform measure on Sn. One can see that σ ∼ µn,q has distribution µn,1/q when
reversed.

A key feature of Mallows permutations is that they can be constructed by a simple
procedure from a sequence of independent random variables. For any q > 0, the Mallows
Process gives a sequence (rn) such that rn ∼ µn,1/q, for each n > 1. Furthermore each rn is
constructed from rn−1 by inserting n at a position in rn−1 sampled via a simple distribution
that is independent from r1, . . . , rn−1. Several desirable properties of Mallows permutations
can be deduced from this construction, see [10, Sec. 2] for more details.

The Tangled Paths Model. We study the random graph distribution induced by
layer(Pn, σ(Pn)), where σ ∼ µn,q and 0 6 q := q(n) 6 1. From now on we call this
graph distribution the tangled path model and denote it by P(n, q). Thus a random graph
P(n, q) has vertex set [n] and (random) edge set E(Pn) ∪ {σ(i)σ(i + 1) : i ∈ [n − 1]},
where σ ∼ µn,q. We restrict to q ∈ [0, 1] as reversing the permutation does not affect our
construction (up to a relabelling). We also identify any multi-edges created as one edge,
however this detail is not important for any of our results. This paper will focus on P(n, q);
as we have seen already combining paths can give rise to interesting and varied graphs, and
the Mallows permutation gives our model a parameter q which, roughly speaking, increases
the ‘tangled-ness’ of the graph.

We see, from above, that P(n, 0) is a path and P(n, 1) is an expander with high
probability by [12, Theorem 1]. Our ultimate aim is to understand the structure of P(n, q)
for intermediate values of q, and this paper takes the first steps in this direction. Informally,
one aspect of this is knowing when P(n, q) stops looking ‘path-like’; we show that if q < 1
is fixed the diameter is linear (Theorem 3), and there is a sharp threshold for having a
single vertex cut at qc = 1− π2

6 logn
(Theorem 2). For q → 1 sufficiently fast, it makes more

sense to measure the complexity of the internal structure of P(n, q) by how much it differs
from a tree. In this direction we show that, up to logarithmic factors, the treewidth [14] of
P(n, q) grows at rate (1−q)−1 (Theorem 4) until the graph becomes an expander at around
q = 1− 1

n logn
(Theorem 1), indicating that, in the sense of treewidth, the complexity of the

structure grows smoothly with q. This behaviour contrasts with the binomial/Erdős-Rényi
random graph [8] where the treewidth increases rapidly from being bounded by a constant,
to Θ(n) as the average degree rises from below one to above one [15].

Aside from this model being natural, motivation for this line of study comes from
practical algorithmic applications. Many real-world systems – including social, biological
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q

0 11− ε 1− (log logn)2

logn
1− π2

6 logn
1− 1

100n logn

tw, cw = Θ
(

logn
log(1/q)

)
tw, cw = Θ̃

(
1

1−q

)
tw, cw = Θ(n)

Contains an (1, α)-separator
for any 1/2 < α < 1

Has no (1, α)-separator
for any 1/2 < α < 1

diam = Θ(n) Expander

Figure 2: The diagram above gives a pictorial representation of our results. All re-
sults above hold with high probability, and we say that f(n) = Θ̃(g(n)) if f(n) =
O(g(n) log g(n)) and f(n) = Ω(g(n)/ log g(n)).

and transport networks – involve qualitatively different types of edges, where each type
of edge generates a “layer” with specific structural properties [13, 19]. For example, when
modelling the spread of disease in livestock, one layer of interest arises from physical
adjacency of farms, and so is determined entirely by geography. A second epidemiologically-
relevant layer could describe the pairs of farms which share equipment: this is no longer
fully determined by geography, but will nevertheless be influenced by the location of farms,
as those that are geographically close are more likely to cooperate in this way. It is known
that algorithmically useful structure in individual layers of a graph is typically lost when
the layers are combined adversarially [7]. The present work can be seen as an attempt
to understand the structure of graphs generated from two simple layers which are both
influenced to some extent by a shared underlying “geography”. In this setting the treewidth
tw is a natural parameter as many NP-hard problems become tractable when parametrised
by tw [5, Ch. 7].

Our Results
In what follows, the integer n > 1 denotes the number of vertices in the graph (or elements
in a permutation) and q := q(n), the parameter of the Mallows permutation (or related
tangled path), is a real valued function of n taking values in [0, 1]. We say a sequence of
events En occurs with high probability (w.h.p.) if P( En ) → 1 as n → ∞. Throughout log
is base e. See Figure 2 for a summary of our results.

A graph G is a vertex-expander if there exists a fixed real c > 0 such that any set S ⊆ V
with |S| 6 dn/2e is adjacent to at least c|S| vertices in V \S. As mentioned above, when
q = 1 the permutation is uniform, and so the fact that P(n, 1) is an expander follows from
[12, Theorem 1]. Our first result shows that for q sufficiently close to 1, this still holds.

Theorem 1. If q > 1− 1
100n logn

, then w.h.p. P(n, q) is a bounded degree vertex-expander.
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For an integer s > 1 and real 1/2 6 α < 1 we say G has an (s, α)-separator if there is a
vertex subset S with |S| 6 s such that G\S can be partitioned into two disjoint sets of at
most α|V | vertices with no crossing edges. Balanced separators (e.g. α = 2/3) are useful
for designing divide and conquer algorithms, in particular for problems on planar graphs
[16]. Balanced separators have intimate connections to notions of sparsity for graphs [18].

Observe that, for any fixed 1/2 < α < 1, if G is a vertex expander then there exists
a c > 0 such that G has no (cn, α)-separator. At the other extreme, the path has an
(1, α)-separator. We show that for P(n, q) this ‘path-like’ property disappears around
qc = 1− π2

6 logn
.

Theorem 2. For any fixed real 1/2 < α < 1 we have

lim
n→∞

P(P(n, q) has a (1, α)-separator ) =

{
0 if π2

6(1−q) − log n+ log logn
2
→∞

1 if π2

6(1−q) − log n+ 5 log logn
2

→ −∞
.

We say that q0 is sharp threshold for a graph property P if for any ε > 0 w.h.p.
P(n, p) /∈ P for any p 6 q0(1 − ε), and P(n, r) ∈ P for any r > q0(1 + ε), see [9].
Theorem 2 is quite precise as it determines the second order term in the threshold up to a
constant, showing that the property of having a cut vertex has a sharp threshold of width
O
(

log logn
(logn)2

)
. Theorem 2 is established by finding first and second moment thresholds for

the property. Positive correlation between cuts suggests this result cannot be significantly
improved using standard methods alone.

The diameter diam(G) of a graph G is the greatest distance between any pair of vertices.
Theorem 1 implies that diam(P(n, q)) = O(log n) when q is close to 1. On the other hand
diam(P(n, 0)) = n − 1 as it is a path; by applying bounds on the number of cut vertices,
we show this holds (up to a constant) for any fixed q < 1.

Theorem 3. Let 0 6 q < 1 be any function of n bounded away from 1. Then there exists
a constant c > 0 such that w.h.p., diam(P(n, q)) > cn.

The treewidth tw(G) of a graph G is the minimum size (minus one) of the largest vertex
subset (i.e. bag) in a tree decomposition of G, minimised over all such decompositions
[14]. The cutwidth cw(G) is the greatest number of edges crossing any real point under
an injective function ϕ : V → Z, minimised over all ϕ. It is known that for any graph G
we have tw(G) 6 cw(G), however there may a multiplicative discrepancy of order up to n.
We show there is at most only a constant factor discrepancy for P(n, q) for certain ranges
of q and give bounds for all q which are tight up to log factors.

Theorem 4. If there exists a real constant κ > 0 such that 0 6 q 6 1− κ · (log logn)
2

logn
, then

there exist constants 0 < c1, C2 <∞ such that w.h.p.

c1 ·

(√
log n

log(1/q)
+ 1

)
6 tw(P(n, q)) 6 C2 ·

(√
log n

log(1/q)
+ 1

)
. (1)
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Furthermore, there exists some c3 > 0 such that if 1 − (log logn)2

logn
6 q 6 1 − 1

100n logn
, then

w.h.p.

c3
1− q

· log

(
1

1− q

)−1
6 tw(P(n, q)) 6 min

{
5

1− q
· log

(
1

1− q

)
, 2n

}
. (2)

In addition, if q > 1− 1
100n logn

then w.h.p.

n

50
6 tw(P(n, q)) 6 2n. (3)

The same upper and lower bounds in (1), (2), and (3) also hold for the cutwidth cw(P(n, q)).

Observe that if q → 1 then log(1/q) ≈ 1− q and so when q = 1−Θ ((log log n)2/ log n)
we have

√
log(n)/ log(1/q) ≈ − log(1− q)/(1− q). Therefore, the first two upper bounds

for cutwidth are equal up to constants for this value of q. Thus, for this q, the upper
bound for the cutwidth given in (2) is tight and the lower bound for treewidth is off by a
multiplicative factor of order (log log n)2.

Proof Sketch of Theorem 4. The rough strategy for the lower bounds in (1) and (2)
is as follows:

(i) relate containing a k-vertex expander as a minor in P(n, q), and thus Ω(k)-treewidth,
to a property of the underlying Mallows permutation or the random sequence gener-
ating it,

(ii) show this property holds, for a suitable k, with high probability by utilising the
(asymptotic) independence of elements in a Mallows permutation or the sequence
generating it.

However, the properties sought and method for controlling the probabilities in (1) and (2)
differ slightly.

For Step (i), of the lower bound in (1), we show that if rk and rn are generated by
sequences x = x1, . . . , xk and y = y1, . . . , yn respectively via the Mallows process, and x is
contained in y as a consecutive sub-sequence, then Pn ∪ rn(Pn) contains Pk ∪ rk(Pk) as a
minor. To prove (2) we instead show that if a permutation π ∈ Sn contains a permutation
σ ∈ Sk as a consecutive pattern then Pn ∪ π(Pn) contains Pk ∪ σ(Pk) as a minor. In
particular, both relations hold in the case where Pk ∪σ(Pk) and Pk ∪ rk(Pk) are expanders.

For Step (ii), the lower bound in (1) is shown using the second moment method to a
given consecutive sub-sequence of k inputs occur w.h.p., whereas for (2) we use indepen-
dence of permutations induced by disjoint intervals of elements in a Mallows permutation
to show a given consecutive pattern occurs.

We now give a proof sketch for the upper bounds on cw (P(n, q)) in (1) and (2). To
begin, we fix the ordering ϕ : [n]→ [n] in the definition of cutwidth to be the identity map.
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That is, we order the vertices of P(n, q) along the line with respect to the ordering of the
vertices given by the un-permuted path Pn. We then bound the number of edges crossing
any vertex i by showing that not too many elements with values j > i are inserted next
to elements with values less than i by the Mallows process. To do this we show that, for
b = Θ( logn

1−q ) and some suitable L > `, within any consecutive sequence of L steps of the
Mallows process (with generating inputs vi) the following events hold with high probability:

(i) no insert position vi has value greater than b,

(ii) after L steps the leftmost b places will each contain an element added added at most
L steps ago,

(iii) there are at most ` values of vi greater than `.

The events (i) and (iii) ensure that not too many long edges are created from new
entries being added far away from the left-hand end of the process. The event (ii) is a little
bit more subtle but key to the success of our approach as it ensures that the left-hand end
of the permutation grown by the Mallows process cannot retain entries that were inserted
long ago, again preventing long edges caused by new elements lying next to old ones. If
these three events hold then we can show that the number of edges crossing any vertex
under the identity map is O(`). Optimising the choice of L and ` then gives the upper
bounds in (1) and (2).

Open Problems
One could study the effect of q in P(n, q) on almost any graph property of interest for sparse
graphs. One fundamental problem is to determine the number of edges in P(n, q) (recall
that we disregard multi-edges). This deceptively non-trivial problem is related to clustering
of consecutive numbers in Mallows permutations [21]. It would also be interesting to close
the gap for treewidth by obtaining tight bounds for all q.

Theorem 2 proves that q = 1 − π2/(6 log n) is a sharp threshold for containing a
single vertex whose removal separates the graph into two macroscopic components. A
key open problem is to determine if there is a notion of monotone property in the setting
of tangled paths which guarantees the existence of a threshold (or even a sharp threshold).
One candidate feature (for a property to be monotone with respect to) is the number of
inversions in the permutation generating P(n, q). However, one issue with parameterizing
by the number of inversions is the fact that the tangled paths generated by σ = (σ1, . . . , σn)
and its reverse σR = (σn, . . . , σ1) are isomorphic, but the number of inversions may differ
greatly as Inv(σR) =

(
n
2

)
− Inv(σ).
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Abstract

The game of Cops and Robber is usually played on a graph, in which a group
of cops attempt to catch a robber moving along the edges of the graph. The cop
number of a graph is the minimum number of cops required to win the game. An
important conjecture in this area, due to Meyniel, states that the cop number of an
n-vertex connected graph is O(

√
n). In 2016, Prałat and Wormald [Meyniel’s con-

jecture holds for random graphs, Random Structures Algorithms. 48 (2016), no. 2,
396–421. MR3449604] showed that this conjecture holds with high probability for
random graphs above the connectedness threshold. Moreoever, Łuczak and Prałat
[Chasing robbers on random graphs: Zigzag theorem, Random Structures Algorithms.
37 (2010), no. 4, 516–524. MR2760362] showed that on a log-scale the cop number
demonstrates a surprising zigzag behaviour in dense regimes of the binomial random
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graph G(n, p). In this paper, we consider the game of Cops and Robber on a hy-
pergraph, where the players move along hyperedges instead of edges. We show that
with high probability the cop number of the k-uniform binomial random hypergraph
Gk(n, p) is O

(√
n
k log n

)
for a broad range of parameters p and k. As opposed to

the case of G(n, p), on a log-scale our upper bound on the cop number arises as the
minimum of two complementary zigzag curves. Furthermore, we conjecture that the
cop number of a connected k-uniform hypergraph on n vertices is O

(√
n
k

)
.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-058

1 Introduction and results

1.1 Motivation

The game of Cops and Robber was introduced by Quilliot [18] in 1978 and independently
by Nowakowski and Winkler [16] in 1983. It is a two-player game played on a simple
connected graph G = (V,E), with one player controlling a set of m cops and the other
player controlling a single robber. For convenience, we will sometimes refer to the cops
and the robber as pieces. At the start of the game, the first player chooses a starting
vertex for each of the cops, then the second player chooses a starting vertex for the robber.
Subsequently, the players take alternating turns and in each turn a player can move each
of their pieces to an adjacent vertex (i.e., the pieces move along the edges of G). Note that
more than one cop can simultaneously occupy a single vertex and that not every piece must
be moved in every turn. The position of all the pieces is known to both players throughout
the game. The cops win if at some point in the game a cop occupies the same vertex as
the robber, otherwise the robber wins. As this is a game with full information, for each
graph G and each number of initial cops m, one of the two players has a winning strategy.
The cop number c (G) of a graph G is defined as the minimum number m ∈ N, such that
m cops have a winning strategy on G. The cop number has been extensively studied since
the introduction of this game.

Whilst there is a structural characterisation of the graphs with cop number one [16], in
general the problem of determining the cop number of a graph is EXPTIME-complete [12],
and so research in this area has been focused on bounding the cop number of particular
graph classes. For example, a classic result of Aigner and Fromme [2] shows that the cop
number of a connected planar graph is at most three. More generally, it is known that the
cop number is bounded for any proper minor-closed class of graphs [3], and there has been
much research into determining the largest cop number of a graph that can be embedded
in a fixed surface [7, 9, 13, 19, 20].

Perhaps the most well-known conjecture in this area is Meyniel’s conjecture (commu-
nicated by Frankl [10]).

Conjecture 1.1. Let G be a connected graph on n vertices. Then c (G) = O (
√
n).
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Figure 1: Zigzag shape of the function f

Despite much interest in this conjecture, there has been relatively little improvement
to the trivial bound of O(n). Frankl [10] gave the first non-trivial upper bound on the cop
number of O

(
n log logn

logn

)
, and this bound was improved to O

(
n

logn

)
by Chiniforooshan [8].

As of today, the best known general upper bound on the cop number is n2−(1+o(1))
√
logn,

given independently by Lu and Peng [14] and by Scott and Sudakov [21]. We note that this
bound is still Ω

(
n1−o(1)

)
, and it remains an open question as to whether the cop number

can be bounded by O (n1−ϵ) for any fixed ϵ > 0 [4].
A natural step towards understanding Conjecture 1.1 is to consider the cop number

of the random graph G(n, p). For p constant, it was shown by Bonato, Hahn and Wang
[6] that with high probability (whp for short), meaning with probability tending to one as
n tends to infinity, the cop number of G(n, p) is logarithmic in n, and hence Conjecture
1.1 holds for almost all graphs. However, if we let p vary as a function of n, then more
interesting behaviour can be seen to develop. Indeed, Łuczak and Prałat [15] showed that
whp the function f : (0, 1) → R, defined as

f(x) =
log (c̄(G (n, nx−1))

log n
, (1.1)

where c̄ denotes the median of the cop number, has a characteristic zigzag shape (see Figure
1).

Taking the worst case bounds of this function, their result already implies that
c (G(n, p)) = Õ (

√
n) for a broad range of parameters, and that conversely there are choices

of p where whp c(G(n, p)) = Θ̃(
√
n), where we use Θ̃(·) to indicate a bound which holds

up to logarithmic factors.

Theorem 1.2 ([15], ∼ Theorem 1.1). Let ϵ > 0, and let p = Ω(nϵ−1). Then whp

c (G(n, p)) = Õ
(√

n
)
.
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In particular, Theorem 1.2 indicates that Conjecture 1.1 holds up to log-factors for this
range of p. Bollobás, Kun and Leader [5] gave a similar bound which holds also for sparser
regimes of p.

Meyniel’s conjecture was finally resolved for all random graphs above the connectedness
threshold by Prałat and Wormald [17]. In fact, their result holds for all random graphs
with density above 1

2
log n.

Theorem 1.3 ([17], Theorem 1.2). Let ϵ > 0, and let p(n− 1) ≥
(
1
2
+ ϵ

)
log n. Then whp

c (G(n, p)) = O(
√
n).

In this paper we consider a generalisation of the Cops and Robber game to hypergraphs,
and in particular k-uniform hypergraphs, which are called k-graphs. The game is defined
analogously to the 2-graph case, with the only difference being that the pieces move along
hyperedges instead of edges. For the sake of brevity, when it is clear from the context that
we are talking about a hypergraph, we will refer to hyperedges as simply edges. Similarly
as for 2-graphs, we define for a hypergraph H

c (H) := min {m ∈ N : m cops have a winning strategy to catch a robber on H} .

This game was first considered by Gottlob, Leone and Scarcello [11] and by Adler [1]. For
more recent results on the hypergraph game we refer the reader to [22], where some classic
results on the cop number of 2-graphs are generalised to this setting.

Note that by replacing every edge in the hypergraph by a clique, we arrive at an
equivalent 2-graph game. Thus, the game of Cops and Robber on hypergraphs is equiv-
alent to the 2 -graph game played on a restricted class of graphs. On the other hand,
we can transform a graph G into a 2k-uniform hypergraph H with c (G) = c (H) via a
simple blow-up construction: We replace each vertex v in G by k vertices {v1, v2, . . . vk}
and form a hypergraph H(G) on {vi : v ∈ V (G), i ∈ [k]} by taking an edge of the form
{u1, u2, . . . , uk, v1, v2, . . . , vk} for each edge e = {u, v} of G (see Figure 2). It is then easy
to check that c (G) = c (H(G)), and moreover |V (H)| = k|V (G)|.

From these two observations, it is easy to see that the following holds

max

{
c (G) : G a graph , |V (G)| = 2n

k

}
≤ max {c (H) : H a k-graph , |V (H)| = n}

≤ max {c (G) : G a graph , |V (G)| = n} .

In particular, as there are graphs with c (G) = Ω (
√
n), there are also k-graphs with

c (H) = Ω
(√

n
k

)
. It would seem surprising that such a simple construction, which is

essentially graphical in nature, could capture the worst case behaviour for the cop number
in hypergraphs of higher uniformity, but we conjecture that this bound is in fact tight.

Conjecture 1.4. Let H be a connected k-graph on n vertices. Then c (H) = O
(√

n
k

)
.

As with Meyniel’s Conjecture, a first step towards Conjecture 1.4 would be to consider
the behaviour of the cop number of random k-graphs.
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Figure 2: An example of the blow-up construction to generate a 2k-graph H from a 2-graph
that has the same cop number. In this case, k = 5, |V (H)| = 20 and c (H) = 2.

1.2 Main results

The k-uniform binomial random hypergraph, which we denote by Gk(n, p), is a random
k-graph with vertex set [n] in which each edge, that is, each subset of [n] of size k, appears
independently with probability p. Although the main focus of this paper is Gk(n, p), the
strategies we develop for the cops will in fact work in a more general class of k-graphs,
those satisfying certain expansion properties.

Very roughly, if we denote by N r
V (v) the vertices that are at most at a fixed distance r

from v, then in Gk(n, p) we expect this set to be growing exponentially quickly in r, with its
size tightly concentrated around its expectation. Furthermore, for different vertices v and
w we do not expect the neighbourhoods N r

V (v) and N r
V (w) to have a large intersection, and

so, for small subsets A ⊆ [n] we expect the number of vertices at most at a fixed distance
r from A to be around |A| times the size of N r

V (v). Similarly, we expect the set of edges
N r

E(v) at most at a fixed distance r− 1 from v to be growing at some uniform exponential
rate, and for ranges of p where the random hypergraph is sparse enough, and so few pairs
of edges have a large intersection, this rate of growth should be roughly 1

k
times that of

the vertex-neighbourhoods.
Informally, given ξ > 0 we will say that a graph is ξ-expanding if the sizes of its vertex

and edge-neighbourhoods have this uniform exponential growth, up to some multiplicative
error in terms of ξ.

Our first result supports Conjecture 1.4 up to a log-factor for k-graphs that are ξ-
expanding for a fixed expansion constant ξ.

Theorem 1.5. Let k ≥ 2, let ξ > 0 and let G be a ξ-expanding k-graph on n vertices.
Then

c (G) ≤ 20ξ−2

√
n

k
log n.

Next, we show that whp Gk(n, p) satisfies the desired expansion properties for a broad
range of parameters.
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Theorem 1.6. There exists a universal constant ξ such that if k(n), p(n) > 0 are such
that k = ω(log n) and n

k
≥ p

(
n−1
k−1

)
= ω(log3 n), then whp Gk(n, p) is ξ-expanding .

More specifically, after taking a sensible parameterisation, our upper bound on
c(Gk(n, p)) shows somewhat interesting behaviour, similar to Figure 1. Let us define d̂ =
pk

(
n−1
k−1

)
, which can be thought of as the expected size of the neighbourhood of a vertex in

Gk(n, p) and let d̂ = nα and k = nβ for some 0 < β ≤ α ≤ 1. Let us consider the function
fβ : (β, 1) → R defined as

fβ(α) =
log

(
c̄
(
Gk(n, p)

))
log n

,

with c̄ being the upper bound of the cop number as obtained by our strategies (see Sec-
tion 1.3). Then, fβ again has a characteristic zigzag shape, see Figure 3. In contrast to
the case of G(n, p) [15] (see Figure 1), the zigzag shape in the hypergraph case arises as
the intersection of two complementary zigzags, coming from two different strategies, and
so has twice as many peaks and troughs. We note that under the reasonable assumption
that Gk(n, p) is connected, it follows that d ≥ k, which is the reason as to why the graph
in Figure 3 is cut off at x = β.

We note that, perhaps surprisingly, if we fix k and n and vary d, in certain regimes
increasing the average degree, and hence the number of edges, can help the cops, and in
other regimes increasing the number of edges can hinder the cops.

Moreover, note that Figure 3 is ignoring log-factors, and in particular, that the worst
case bounds, attained when both zigzag lines meet, are of order O

(√
n
k
log n

)
. It would

be interesting to see, if the log-factor could be removed using similar strategies, and thus
show that whp Conjecture 1.4 holds for Gk(n, p).

1.3 Techniques

To give a lower bound for the cop number we need to exhibit a strategy for the cops.
As in the work of Łuczak and Prałat [15] we show the existence of a strategy for the
cops to surround the robber using a probabilistic argument. Whilst in [15] the strategies
focused solely on surrounding a small vertex -neighbourhood of the robber, we also consider
a second type of strategy which aims to surround a small edge-neighbourhood, and utilise
both these strategies in our result.

Assuming the robber starts on a vertex v, after his first r moves the robber has to be
in the r-th vertex-neighbourhood N r

V (v), and specifically in some edge of the r-th edge-
neighbourhood N r

E (v). The cops aim to occupy each edge in N r
E (v) before the robber has

had time to leave this set. Since the cops move first and a cop can catch the robber in a
single move once they occupy the same edge, the cops need to occupy each edge in N r

E (v)
within their first r moves. The strategy of surrounding via vertices, which was used in the
2-graph case by Łuczak and Prałat [15], works quite similarly with the only difference being
that the cops surround the r-th vertex-neighbourhood and have r + 1 moves before the
robber can escape. The pay-off in choosing to surround via vertices or edges can be seen as
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Figure 3: The blue (dashed) line is the upper bound coming from the edge strategy, the
red (dotted) line is the upper bound coming from the vertex strategy. As can be seen, the
two strategies give rise to two alternating zigzag shapes, that together make up the single
zigzag with increased frequency. We note the worst bounds occur at the intersection points
of the two lines, which all lie on the green (solid) line at 1−β

2
, where β here is equal to 2

19
.

follows – in the former we can use cops at a larger distance, and so in general we will have
more cops to work with, whereas in the latter, since each edge contains many vertices, we
will not have to occupy as many edges as we would have vertices, and so perhaps we can
make do with fewer cops.

For a fixed vertex v and a fixed distance r, the existence of such a strategy can then
be reduced to a matching problem – for instance in the case of the edge strategy, for each
edge e at distance at most r from v we need to assign a unique cop at distance at most r
from e, whose strategy will be to occupy e within the first r turns of the game. We aim to
show that such an assignment of cops can be found with positive probability if we choose
a random set of cops, assigning a cop to each vertex in the graph independently with some
probability q = q(r).

Assuming that our k-graph G is ξ-expanding for some constant ξ > 0, we have quite
good control over the sizes of N r

V (v) and N r
E (v), and also over the number of vertices at

a fixed distance from each vertex and edge contained in these sets. Using some standard
probabilistic and combinatorial tools, we can show that for an appropriate choice of q(r)
with positive probability we can find an appropriate assignment of cops for each possible
starting vertex v, and bound the number of cops m(r) we use in such a strategy,which in
general will depend not only on r, but also on the uniformity k and average degree d of G.

This leads to a family of bounds on the cop number, one for each r ∈ N, for both the
vertex and edge surrounding strategy. For a fixed choice of parameters k and d, we then
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have to solve an integer optimisation problem to find which choice of r (and of a vertex
or edge surrounding strategy) leads to the best bound on the cop number, from which we
can derive the bounds leading to Figure 3.
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Abstract

An infinite graph is quasi-transitive if its vertex set has finitely many orbits under
the action of its automorphism group. In this paper we obtain a structure theorem
for locally finite quasi-transitive graphs avoiding a minor, which is reminiscent of the
Robertson-Seymour Graph Minor Structure Theorem. We prove that every locally
finite quasi-transitive graph G avoiding a minor has a tree-decomposition whose torsos
are finite or planar; moreover the tree-decomposition is canonical, i.e. invariant under
the action of the automorphism group of G. As applications of this result, we prove
the following.

• Every locally finite quasi-transitive graph attains its Hadwiger number, that
is, if such a graph contains arbitrarily large clique minors, then it contains an
infinite clique minor. This extends a result of Thomassen (1992) who proved it
in the 4-connected case and suggested that this assumption could be omitted.
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• Locally finite quasi-transitive graphs avoiding a minor are accessible (in the
sense of Thomassen and Woess), which extends known results on planar graphs
to any proper minor-closed family.

• Minor-excluded finitely generated groups are accessible (in the group-theoretic
sense) and finitely presented, which extends classical results on planar groups.

• The domino problem is decidable in a minor-excluded finitely generated group
if and only if the group is virtually free, which proves the minor-excluded case
of a conjecture of Ballier and Stein (2018).

.
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1 Introduction

1.1 A structure theorem

A central result in modern graph theory is the Graph Minor Structure Theorem of Robert-
son and Seymour [16], later extended to infinite graphs by Diestel and Thomas [8]. This
theorem states that any graph G avoiding a fixed minor has a tree-decomposition, such that
each piece of the decomposition, called a torso, is close to being embeddable on a surface
of bounded genus. A natural question is the following: if the graph G has non trivial
symmetries, can we make these symmetries apparent in the tree-decomposition? In other
worlds, do graph avoiding a fixed minor have a tree-decomposition as above, but with the
additional constraint that the decomposition is canonical, i.e., invariant under the auto-
morphism group of G? In this paper we answer this question positively for infinite, locally
finite graphs G that are quasi-transitive, i.e., the vertex set of G has finitely orbits under
the action of the automorphism group of G. This additional restriction has the advantage
of making the structure theorem much cleaner: instead of being almost embeddable on
a surface of bounded genus, each piece of the tree-decomposition is now simply finite or
planar.

Theorem 1.1. Every locally finite quasi-transitive graph avoiding the countable clique as
a minor has a canonical tree-decomposition whose torsos are finite or planar.

We also give the following more precise version of this result, which might be useful for
applications.

Theorem 1.2. Every locally finite quasi-transitive graph G avoiding the countable clique
as a minor has a canonical tree-decomposition with adhesion at most 3 in which each torso
is a minor of G, and is planar or has bounded treewidth.

Interestingly, the proof does not use the original structure theorem of Robertson and
Seymour [16] and its extension to infinite graphs by Diestel and Thomas [8]. Instead, we
rely mainly on a series of results and tools introduced by Grohe [13] to study decompositions
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of finite 3-connected graphs into quasi-4-connected components, together with a result of
Thomassen [18] on locally finite quasi-4-connected graphs. The main technical contribution
of our work consists in extending the results of Grohe to infinite, locally finite graphs and in
addition, making sure that the decompositions we obtain are canonical (in a certain weak
sense). Our proof crucially relies on a recent result of Carmesin, Hamann, and Miraftab [7],
which shows that there exists a canonical tree-decomposition that distinguishes all tangles
of a given order (in our case, of order 4).

We now discuss some applications of Theorem 1.1.

1.2 Hadwiger number

As a consequence of Theorem 1.1, we obtain a result on the Hadwiger number of locally
finite quasi-transitive graphs. The Hadwiger number of a graph G is the supremum of the
sizes of all complete minors in G. We say that a graph attains its Hadwiger number if the
supremum above is attained, that is if it is either finite, or G contains an infinite clique
minor. Thomassen [18] proved that every locally finite quasi-transitive 4-connected graph
attains its Hadwiger number, and suggested that the 4-connectedness assumption might
be unnecessary. We prove that this is indeed the case.

Theorem 1.3. Every locally finite quasi-transitive graph attains its Hadwiger number.

1.3 Accessibility in graphs

We now introduce the notion of accessibility in graphs considered by Thomassen and Woess
[19]. To distinguish it from the related notion in groups (see below), we will call it vertex-
accessibility in the remainder of the paper. A ray in an infinite graph G is an infinite
one-way path in G. Two rays of G are equivalent if there are infinitely many disjoint paths
between them in G (note that this is indeed an equivalence relation). An end of G is
an equivalence class of rays in G. When there is a set X of vertices of G, two distinct
components C1, C2 of G−X, and two distinct ends ω1, ω2 of G such that for each i = 1, 2,
all rays of ωi have infinitely many vertices in Ci, we say that X separates ω1 and ω2. A
graph G is vertex-accessible if there is an integer k such that for any two ends ω1, ω2 in G,
there is a set of at most k vertices that separates ω1 and ω2.

It was proved by Dunwoody [12] (see also [14, 15] for a more combinatorial approach)
that locally finite quasi-transitive planar graphs are vertex-accessible. Here we extend the
result to graphs excluding a countable clique K∞ as a minor, and in particular to any
proper minor-closed family.

Theorem 1.4. Every locally finite quasi-transitiveK∞-minor-free graph is vertex-accessible.

1.4 Accessibility in groups

The notion of vertex-accessibility introduced above is related to the notion of accessibility
in groups. Given a finitely generated group Γ, and a finite set of generators S, the Cayley
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graph of Γ with respect to the set of generators S is the edge-labelled graph Cay(Γ, S)
whose vertex set is the set of elements of Γ and where for every two g, h ∈ Γ we put an
edge (g, h) labelled with a ∈ S when h = a · g. It is known that the number of ends of a
Cayley graph of a finitely generated group does not depend of the choice of generators, so
we can talk about the number of ends of a finitely generated group. A classical theorem
of Stallings [17] states that if a finitely generated group Γ has more than one end, it can
be split as a non-trivial free product with finite amalgamation, or as an HNN-extension
over a finite subgroup. If any group produced by the splitting still has more than one
end we can keep splitting it using Stallings theorem. If the process eventually finishes
(with Γ being obtained from finitely many 0-ended or 1-ended groups using free products
with amalgamation and HNN-extensions), then Γ is said to be accessible. Thomassen
and Woess [19] proved that a finitely generated group is accessible if and only if at least
one of its Cayley graphs is vertex-accessible, if and only if all of its Cayley graphs are
vertex-accessible.

A finitely generated group is minor-excluded if at least one of its Cayley graphs avoids
a finite minor. Similarly a finitely generated group is K∞-minor-free if one of its Cayley
graphs avoids the countable clique as a minor, and planar if one of its Cayley graphs is
planar. Note that planar groups are minor-excluded and Theorem 1.3 immediately implies
that a finitely generated group is minor-excluded if and only if it is K∞-minor-free.

Droms [9] proved that finitely generated planar groups are finitely presented, while Dun-
woody [11] proved that finitely presented groups are accessible, which implies that finitely
generated planar groups are accessible. Theorem 1.4 immediately implies the following,
which extends this result to all minor-excluded finitely generated groups, and equivalently
to all finitely generated K∞-minor-free groups.

Corollary 1.5. Every finitely generated K∞-minor-free group is accessible.

In fact, combining Theorem 1.1 with techniques introduced by Hamann [14, 15] in the
planar case, we prove the following stronger result which also implies Corollary 1.5 using
the result of Dunwoody [11] that all finitely presented groups are accessible.

Theorem 1.6. Every finitely generated K∞-minor-free group is finitely presented.

1.5 The domino problem

We refer to [2] for a detailed introduction to the domino problem. A coloring of a graph
G with colors from a set Σ is simply a map V (G)→ Σ. The domino problem for a finitely
generated group Γ together with a finite generating set S is defined as follows. The input
is a finite alphabet Σ and a finite set F = {F1, . . . , Fp} of forbidden patterns, which are
colorings with colors from Σ of the closed neighborhood of the neutral element 1Γ in the
Cayley graph Cay(Γ, S), viewed as an edge-labelled subgraph of Cay(Γ, S). The problem
then asks if there is a coloring of Cay(Γ, S) with colors from Σ, such that for each v ∈ Γ, the
coloring of the closed neighborhood of v in Cay(Γ, S) (viewed as an edge-labelled subgraph
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of Cay(Γ, S)), is not isomorphic to any of the colorings F1, . . . , Fp, where we consider
isomorphisms preserving the edge-labels.

It turns out that the decidability of the domino problem for (Γ, S) is independent of the
choice of the finite generating set S, hence we can talk of the decidability of the domino
problem for a finitely generated group Γ. If we consider Γ = (Z2,+), then the domino
problem corresponds exactly to the well-known Wang tiling problem, which was shown to
be undecidable by Berger in [6]. On the other hand, there is a simple greedy procedure
to solve the domino problem in free groups, which admit trees as Cayley graphs. More
generally, the domino problem is decidable in virtually free groups, which can equivalently
be defined as finitely generated groups having a Cayley graph of bounded treewidth [2, 1].
A remarkable conjecture of Ballier and Stein [5] asserts that these groups are the only one
having decidable domino problem.

Conjecture 1.7 (Domino problem conjecture [5]). A finitely generated group has decidable
domino problem if and only if it is virtually free.

Recall that virtually free groups are precisely the groups having a Cayley graph of
bounded treewidth, which is a property that is closed under taking minor. It is therefore
natural to ask whether Conjecture 1.7 holds for minor-excluded groups (or equivalently,
using Theorem 1.3 to K∞-minor-free groups). Using Theorem 1.5, together with classical
results on planar groups and recent results on fundamental groups of surfaces [3], we prove
that this is indeed the case.

Theorem 1.8. A finitely generated K∞-minor-free group has decidable domino problem if
and only if it is virtually free.

2 Proof overview

2.1 Sketch of the proof of Theorems 1.1 and 1.2

Consider a locally finite quasi-transitive graph G. First note that if G is quasi-4-connected,
the following result of Thomassen immediately implies that the trivial tree-decomposition
has the desired properties, hence Theorem 1.2 can be seen as a generalization of it.

Theorem 2.1 ([18]). Let G be a quasi-transitive, quasi-4-connected, locally finite graph
which excludes the countable clique as a minor. Then G is planar or has finite treewidth.

To deal with the more general case, the first step is to obtain a canonical tree-decomposition
of G of adhesion at most 2 in which all torsos are minors of G that are 3-connected graphs,
cycles, or complete graphs on at most 2 vertices. The existence of such a decomposition in
the finite case is a well-known result of Tutte [20] and was proved in the locally finite case in
[10]. For our proof we need to go one step further. A graph is said to be quasi-4-connected
if it is 3-connected and for every set S ⊆ V (G) of size 3 such that G− S is not connected,
G− S has exactly two connected components and one of them consists of a single vertex.
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A crucial step for us would be to prove a version of the following result of Grohe in which
the tree-decomposition would be canonical, and which would hold for locally finite graphs.

Theorem 2.2 ([13]). Every finite graph G has a tree-decomposition of adhesion at most
3 whose torsos are minors of G and are complete graphs on at most 4 vertices or quasi-4-
connected graphs.

However, as observed by Grohe, even in the finite case the decomposition he obtains
is not canonical in general. Our main technical contribution is to extend Theorem 2.2 to
locally finite graphs, while making sure that most of the construction (except the very end)
is canonical. For this, we proceed in two steps. First, we use a result of [7] to find a canonical
tree-decomposition of any 3-connected graph G that distinguishes all its tangles of order 4.
Using this result, we show that we can assume that the graph under consideration admits
a unique tangle T of order 4. We then follow the main arguments from [13] and show
that G has a canonical tree-decomposition of adhesion 3 which is a star and whose torsos
are all minors of G and finite, except for the torso H associated to the center of the star,
which has the following property: there exists a matching M ⊆ E(H) which is invariant
under the automorphism group of G and such that the graph H ′ := H/M obtained after
the contraction of the edges of M is quasi-transitive, locally finite, and quasi-4-connected.
In particular, Theorem 2.1 implies that H ′ is planar or has bounded treewidth. We then
prove that even if H itself is not necessarily quasi-4-connected, it is still planar or has
bounded treewidth, which is enough to conclude the proof of Theorem 1.2. The final step
to prove Theorem 1.1 consists in refining the tree-decomposition to make sure that torsos
of bounded treewidth are replaced by torsos of finite size (moreover, this refinement has to
be done in a canonical way). �

2.2 Sketch of the proof of Theorem 1.8

Let Γ be a finitely generated K∞-minor-free group. Let S be a finite set of generators
such that G := Cay(Γ, S) excludes the countable clique as a minor. If Γ has 0 or 2 ends,
then the domino problem is known to be decidable in Γ. Assume now that Γ (and thus
G) is one-ended. As G is vertex-transitive, a result of Thomassen [18] implies that G is
planar. It is known that one-ended planar groups contain fundamental groups of surfaces as
subgroups of finite index. For such groups the domino problem is known to be undecidable
[3], and this directly implies that the domino problem is undecidable in Γ. Finally, assume
that Γ has an infinite number of ends. Theorem 1.5 implies that Γ can be described as the
fundamental group of a finite graph of group H, whose vertex-groups Γv (v ∈ V (H)) all
have at most one end and are subgroups of Γ. If all the vertex-groups Γv have 0 ends (or
equivalently, are finite), then Γ is virtually free and the domino problem is known to be
decidable in Γ. Otherwise at least one vertex-group Γv is one-ended. A result of Babai [4]
implies that since Γv is a subgroup of Γ, Γv is also K∞-minor-free. The proof above then
shows that in this case the domino problem in undecidable in Γv, and thus also in Γ. �
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are n points sampled uniformly at random and independently from [0, 1]2, and two vertices
are connected by an edge if their Euclidean distance is at most r. Since their introduction
by Gilbert [7] as a model for telecommunication networks, random geometric graphs have
received a lot of attention from both applied and theoretical points of view [1, 6, 11, 13, 14].

1.1 Thresholds in random geometric graphs

Random geometric graphs are known to exhibit threshold behavior for many graph properties,
meaning that there are some special values of the parameters of the model around which a
drastic change in the behavior of the graph with respect to these properties takes place.
Formally, a function r∗ = r∗(n) is a threshold for some monotone increasing property P in
G(n, r) if

lim
n→∞

P[G(n, r) ∈ P ] =

{
0 if r = o(r∗),

1 if r = ω(r∗).

Moreover, we say that a function r∗ = r∗(n) is a sharp threshold for P if, for every ε ∈ (0, 1),

lim
n→∞

P[G(n, r) ∈ P ] =

{
0 if r ≤ (1− ε)r∗,
1 if r ≥ (1 + ε)r∗.

Goel, Rai and Krishnamachari [8] gave a general upper bound for the threshold width
in G(n, r), and Bradonjić and Perkins [2] characterized vertex-monotone properties which
exhibit a sharp threshold. While the results in [2, 8] serve to prove the existence of (sharp)
thresholds, they give no indication of where these thresholds actually are. Determining the
(sharp) thresholds for different properties of interest is one of the main problems in the
area, and it has received much attention. In this extended abstract, our aim is to determine
the (sharp) threshold for the appearance of different spanning trees.

There are some results about thresholds which are closely related to our problem. The
sharp threshold for connectivity was determined independently by Gupta and Kumar [9]
and Penrose [12], who proved that it is

√
log n/πn. Díaz, Mitsche and Pérez-Giménez [4]

obtained the sharp threshold for G(n, r) to contain a Hamilton cycle, which coincides with
the sharp threshold for connectivity. In particular, this gives the sharp threshold for the
containment of a spanning path.

The question of trying to find the (sharp) threshold for the appearance of different
families of spanning trees pops up naturally. The results about the sharp threshold for
Hamiltonicity can be used to deduce thresholds for path-like trees. Indeed, using the
triangle inequality, for any fixed k ≥ 2, one may show that the threshold for Hamiltonicity
is also a threshold for the property that G(n, r) contains the k-th power of a Hamilton
cycle. It immediately follows that every spanning tree which can be embedded into the
k-th power of a Hamilton cycle has this same threshold. This is the case, for instance, of
spanning caterpillars with constant maximum degree.

One may naturally wonder whether all spanning trees with bounded maximum degree
have the same threshold. Incidentally, in the model of binomial random graphs G(n, p) where
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each of the
(
n
2

)
possible edges appears independently with probability p, Montgomery [10]

proved that this is the case: the threshold for all bounded degree spanning trees is log n/n.
However, this turns out to be very far from the truth in random geometric graphs. Indeed,
there are bounded degree trees T whose diameter is logarithmic in the number of vertices,
and this diameter directly imposes a much higher lower bound on the threshold r∗ for
the property of containing a copy of T : since a spanning subgraph of G(n, r) cannot have
smaller diameter than G(n, r) itself, the threshold for trees with diameter O(log n) must
satisfy r∗ = Ω(1/ log n), which is far larger than the connectivity threshold mentioned above.
The results of Goel, Rai and Krishnamachari [8] imply that, for any such tree, there is a
sharp threshold. Our goal is to determine the value of this threshold.

Out of all trees with logarithmic diameter, binary trees are especially interesting due to
their many applications as data structures (see, e.g., [3]). Identifying the sharp threshold
for embedding these trees into G(n, r) is thus an important particular case of our study.

1.2 Main results

An s-ary tree is a rooted tree where every node has at most s children. We say that an
s-ary tree is balanced if there is an integer h such that all vertices at (graph) distance at
most h− 1 from the root have exactly s children, and all vertices at distance h from the
root are leaves. Our first result determines the sharp threshold for G(n, r) to contain a
spanning copy of the balanced s-ary tree for any fixed integer s ≥ 2.

Theorem 1. Fix an integer s ≥ 2. Let h be a positive integer, and set n :=
∑h

i=0 s
i. Let

Th be the balanced s-ary tree of height h (and on n vertices). Then, r∗ := 1/
√

2h is the
sharp threshold for G(n, r) to contain a copy of Th.

In fact, Theorem 1 is a particular case of a similar result for a larger class of trees. We
may think of the vertices of the rooted tree T as being partitioned into layers V0, V1, . . .,
where Vi contains all vertices at (graph) distance i from the root. For any vertex v ∈ V (T ),
if v ∈ Vi, we refer to its neighbors in Vi+1 as its children, and to all vertices which can be
reached by a path from v without going through Vi−1 as its descendants. The height of
the rooted tree is the maximum (graph) distance between the root and another vertex of
T . Given positive integers h and (si)

h
i=1, we say that a tree T is the balanced tree over the

sequence (si)
h
i=1 if it has height h and, for each i ∈ {1, . . . , h}, every vertex of T in Vi−1

has exactly si children. In particular, such a tree T contains exactly
∑h

i=0

∏i
j=1 sj vertices

(where, by convention, the empty product equals 1). If 2 ≤ si ≤ M for all i ∈ {1, . . . , h}
and for some positive integer M , we say that T is a balanced M-tree.

For a graph G, we denote by |G| the size of the vertex set of G. As typical in random
graphs literature, we focus on asymptotic statements. Our asymptotic notations will be
taken with respect to the height of the trees, which then also yields asymptotic results with
respect to n. Our next result extends Theorem 1 to all balanced M -trees as long as M is
not too large compared to h.
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Theorem 2. Let 2 ≤M = M(h) = o(h/ log h). Let (Th)h≥1 be a sequence of trees where
Th is a balanced M -tree of height h. Then, r∗ := 1/

√
2h is the sharp threshold for G(|Th|, r)

to contain a copy of Th.

We first provide here the (much easier) proof of the lower bound of 1/
√

2h in Theorem 2.
Note that a.a.s. (that is, with probability tending to 1 as h → ∞) there are vertices
u, v ∈ V (G(|Th|, r)) at Euclidean distance (1− o(1))

√
2 from each other. Indeed, a.a.s. the

squares c0, c1 ⊆ [0, 1]2 of side length 1/h containing the corners (0, 0) and (1, 1), respectively,
each contain at least a vertex. Conditioning on this event, assume that G admits Th as
a spanning tree. Since Th has diameter 2h, u and v must be at distance at most 2h in G.
Thus, by the triangle inequality, the Euclidean distance between them must be at most
2hr, so we must have 2hr ≥ dist(c0, c1) = (1− o(1))

√
2.

The proof of the upper bound is much more involved. In order to simplify our exposition,
in the next section we provide a sketch of the proof only for the case of balanced binary
trees. This particular case already contains most ideas of the more general theorem. For all
the details of the proof, we refer the reader to the full version of our paper [5].

2 Embedding algorithm for the upper bound
Fix ε ∈ (0, 1). Let T be a balanced binary tree of height h, and set n := 2h+1 − 1. Let
G = G(n, r). Suppose that r ≥ (1 + ε)r∗. We embed the layers V0, V1, . . . , Vh of T into G
one at a time, starting from the root. Throughout, we refer to the embedding of one of the
layers of T as a step of the algorithm (for simplicity, we assume that V0 is embedded at the
0-th step). For each i ∈ {0, . . . , h}, at the end of the i-th step, we call a vertex of G into
which a vertex on layer Vi has been embedded active. Moreover, we refer to the vertices of
G into which no vertex of T has been embedded as unseen. For simplicity of notation, once
a vertex of T has been embedded into G, we often interchangeably use the same notation
to refer to either of the two vertices.

Let k be the smallest integer which satisfies that

21/2−k <
εr∗

8
. (1)

Let S be the tessellation of [0, 1]2 into 22k congruent closed axis-parallel squares. We first
focus on embedding the layers V0, . . . , Vm+2 into G, where m will be defined below, in such
a way that the vertices in Vm+2 are distributed “sufficiently uniformly” in [0, 1]2. To be more
precise, we ensure that each square of S contains 2m+2−2k vertices from Vm+2. We then
finish the embedding of the remaining layers with a suitable application of Hall’s theorem.

For each ` ∈ {0, . . . , k}, let S` be the tessellation of [0, 1]2 into 22` congruent closed
axis-parallel squares obtained by combining the squares of S into groups of size 22(k−`). In
particular, S0 = {[0, 1]2} and Sk = S. For a square q ⊆ [0, 1]2, we denote its center by c(q).
Moreover, for every i, j ∈ {0, . . . , k} with i < j and any square q ∈ Si, let σj(q) denote
the set of four subsquares of q in Sj that form the axis-parallel square of side length 21−j
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and center c(q). In particular, σi+1(q) is a tessellation of q into four subsquares in Si+1,
and for each j ∈ {i+ 2, . . . , k}, the set σj(q) is obtained from σj−1(q) by homothety with
center c(q) and ratio 1/2. Note that we sometimes abuse notation and identify σj(q) with
its geometric realization; in particular, we identify

⋃
p∈σj(q) p with σj(q) itself.

To begin with, we embed the layers V0 and V1 of T into an arbitrary square q0 ∈ σk([0, 1]2),
and then the four vertices in V2 are evenly distributed among the four squares in σk([0, 1]2).
Our algorithm for embedding V3, . . . , Vh has two main parts, which we call subroutines.
The first subroutine is used to embed layers V3, . . . , Vm+2, while the second subroutine deals
with the remaining layers.

2.1 The first subroutine

The m steps of this subroutine are grouped into k − 1 different blocks. For each ` ∈
{1, . . . , k − 1}, we proceed iteratively as follows. Suppose that at the beginning of the `-th
block we have a configuration in which every square q ∈ S`−1 contains the same number of
active vertices, and that these are equally distributed among all subsquares in σk(q) (note
that this is verified in the case ` = 1). Then, for each q ∈ S`−1, we proceed as follows.

Iteration: We proceed to distributing the descendants of the currently active vertices
in a way that we embed them at increasing distances from σk(q) as follows.

Define φ` : σk(q)→ σ`(q) as the bijection obtained by homothety with center c(q) and
ratio 2k−`. To each square p ∈ σk(q) we associate a sequence of squares (p1, . . . , pt) in Sk,
for some appropriately chosen t which does not depend on p, which satisfies that p1 = p,
pt ∈ σk(φ`(p)), and for all i ∈ {1, . . . , t− 1} we have ‖c(pi+1)− c(pi)‖ ≤ (1 + 7ε/8) r∗. Note
that the last condition together with the triangle inequality and (1) ensures that, for every
i ∈ {1, . . . , t− 1} and every choice of points x ∈ pi and y ∈ pi+1, we have

‖x−y‖ ≤ ‖x−c(pi)‖+‖c(pi)−c(pi+1)‖+‖c(pi+1)−y‖ ≤
ε

16
r∗+

(
1 +

7ε

8

)
r∗+

ε

16
r∗ = r. (2)

Hence, if there is an active vertex v in pi, it is possible to embed all children of v in pi+1.
Let us prove that such sequences of squares can indeed be constructed. Fix p ∈ σk(q) as

above. We begin by setting p1 := p. For each i ≥ 1, while ‖c(pi)− c(φ`(p))‖ > (1 + 7ε/8)r∗,
we choose a square pi+1 ∈ Sk such that

‖c(pi+1)−c(φ`(p))‖ ≤ ‖c(pi)−c(φ`(p))‖−
(

1 +
5ε

8

)
r∗ and ‖c(pi+1)−c(pi)‖ ≤

(
1 +

7ε

8

)
r∗.

(3)
Finally, when we reach a point where ‖c(pi)− c(φ`(p))‖ ≤ (1 + 7ε/8)r∗, we set t := i+ 1
and choose pt as a square in σk(φ`(p)) at smallest distance to c(pi). Note that (2) holds for
i = t− 1 and this choice of pt. It remains to prove that a choice as prescribed by (3) can
indeed be made.

Assume we have already defined pi so that it satisfies ‖c(pi)− c(φ`(p))‖ > (1 + 7ε/8)r∗.
Then, choose pi+1 ∈ Sk to be a square containing the point w on the segment c(pi)c(φ`(p))
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at distance exactly (1 + 3ε/4)r∗ from c(pi) (if more than one such square exists, we choose
one arbitrarily). Then, the triangle inequality and (1) imply that

‖c(pi+1)− c(φ`(p))‖ ≤ ‖w − c(φ`(p))‖+ ‖c(pi+1)− w‖
= ‖c(pi)− c(φ`(p))‖ − ‖c(pi)− w‖+ ‖c(pi+1)− w‖

≤ ‖c(pi)− c(φ`(p))‖ −
(

1 +
5ε

8

)
r∗

and

‖c(pi)− c(pi+1)‖ ≤ ‖c(pi)− w‖+ ‖w − c(pi+1)‖ ≤
(

1 +
3ε

4

)
r∗ +

ε

16
r∗ ≤

(
1 +

7ε

8

)
r∗,

so (3) is verified.
Now, once the sequence (p1, . . . , pt) is constructed, we can describe the distribution of

the vertices of the tree in each step of the `-th block of the algorithm. Recall that, at the
beginning of the `-th block of the algorithm, p1 contains some active vertices. Then, for
the next t− 1 steps, we simply embed the children of all currently active vertices in pi into
pi+1 arbitrarily (which is possible thanks to (2)). Lastly, in one more step of the algorithm,
we distribute the children of all currently active vertices in pt equally among the four
subsquares of σk(φ`(p)). Finally, if ` = k − 1 we terminate the subroutine, and otherwise
we increment the value of ` by 1 and proceed to the next block of the first subroutine.

2.2 The second subroutine

We say that two squares of S are adjacent if they share at least one corner vertex. Our
next goal is to embed the vertices in the remaining layers. In particular, if v ∈ Vm+2 lies
in q ∈ S, then we embed all descendants of v into q or a square adjacent to q. Note that,
for every such v, this is possible by our choice of k since the vertices in any square of side
length 21−k form a clique. To show that this can be done simultaneously for all v ∈ Vm+2,
we use Hall’s theorem. The application of Hall’s theorem is standard, hence we omit it, but
it can be found in the full version of our paper [5].

3 Proof sketch for the feasibility of the embedding al-
gorithm

We show that our embedding algorithm succeeds a.a.s. We make use of the following
distribution property of the vertices of G, which follows directly from Chernoff bounds.

Claim 1. A.a.s., for every square q ∈ S, the number of vertices of G in q is in [2−2kn−
n2/3, 2−2kn+ n2/3].

Following the description of the first subroutine, we must prove that it reaches a desired
configuration in a suitable number of steps. A bound on the number of steps is given by
the following claim.
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Claim 2. The first subroutine runs for at most (1− ε/4)h steps.

Proof. For every ` ∈ {1, . . . , k − 1}, we have that

‖c(p)− c(φ`(p))‖ ≤ ‖c(q)− c(φ`(p))‖ =
(21−` − 2−`)√

2
,

where the inequality holds since c(p) belongs to the segment c(q)c(φ`(p)) (recall that φ`(p)
is obtained from p by homothety with center c(q) and ratio 2k−` > 1). Hence, by (3), the
total number of steps performed by the first subroutine is at most

k−1∑
`=1

(
(21−` − 2−`)/

√
2

(1 + 5ε/8)r∗
+ 1

)
≤ k +

1/
√

2

(1 + 5ε/8)r∗
≤
(

1− ε

4

)
h. J

It follows that the total number of vertices embedded during the first subroutine is

m+2∑
i=0

2i ≤ 2−(h−m−2)n ≤ 2−εh/5n = o(2−2kn). (4)

Therefore, by Claim 1, there are sufficiently many vertices in each q ∈ Sk to guarantee that
the choices we made in the first subroutine can indeed be carried out.

Claims 1 and 2 guarantee that a.a.s. the algorithm succeeds. That is, a.a.s. we have an
embedding of the layers V0, . . . , Vm+2 of T into G and, moreover, each q ∈ Sk contains the
same number of vertices of Vm+2.
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Abstract

Extending the notion of sunflowers, we call a family of at least two sets an odd-
sunflower if every element of the underlying set is contained in an odd number of
sets or in none of them. It follows from the Erdős–Szemerédi conjecture, recently
proved by Naslund and Sawin, that there is a constant µ < 2 such that every family
of subsets of an n-element set that contains no odd-sunflower consists of at most µn

sets. We construct such families of size at least 1.5021n.
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1 Introduction
A family of at least 3 sets is a sunflower (or a ∆-system) if every element is contained
either in all of the sets, or in at most one. If a family of sets contains no sets that form a
sunflower, it is called sunflower-free. This notion was introduced by Erdős and Rado [10]
in 1960, and it has become one of the standard tools in extremal combinatorics [14]. Erdős
and Rado conjectured that the maximum size of any sunflower-free family of k-element
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sets is at most ck, for a suitable constant c > 0. This conjecture is still open; for recent
progress, see [4].

Erdős and Szemerédi [11] studied the maximum possible size of a sunflower-free family
of subsets of {1, . . . , n}. Denote this quantity by f(n) and let µ = lim f(n)1/n. Erdős and
Szemerédi conjectured that µ < 2, and this was proved by Naslund and Sawin [18], using
the methods of Croot, Lev, P. Pach [6], Ellenberg and Gijswijt [8], and Tao [19]. They
showed that µ < 1.89, while the best currently known lower bound, µ > 1.551, follows
from a construction of Deuber et al. [7].

Several variants of the above notion have also been considered. Erdős, Milner and
Rado [9] called a family of at least 3 sets a weak sunflower if the intersection of any pair
of them has the same size. For a survey, see Kostochka [16]. In the literature, we can also
find pseudo-sunflowers [13] and near-sunflowers [3]. By restricting the parities of the sets,
other interesting questions can be asked, some of which can be answered by the so-called
linear algebra method (even-town, odd-town theorems; see [5]).

We introduce the following new variants of sunflowers.

Definition 1. A nonempty family of nonempty sets forms an even-degree sunflower or,
simply, an even-sunflower, if every element of the underlying set is contained in an even
number of sets (or in none). Analogously, a family of at least two nonempty sets forms an
odd-degree sunflower or, simply, an odd-sunflower, if every element of the underlying set
is contained in an odd number of sets, or in none.

Note that any family of pairwise disjoint sets is an odd-sunflower but not an even-
sunflower. A (classical) sunflower is an odd-sunflower if and only if it consists of an odd
number of sets. In particular, an odd-sunflower-free family is also sunflower-free, as any sun-
flower contains a sunflower that consists of 3 sets. on the other hand, there exist many odd-
sunflowers that contain no sunflower of size 3. For example, {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
is a minimal odd-sunflower. This example can be generalized as follows.

Let Cn denote the (n − 1)-uniform family consisting of all (n − 1)-element subsets of
{1, . . . , n}. Let C+n denote the same family completed with the set {1, . . . , n}. Obviously,
Cn is an odd-sunflower if and only if n is even, and it is an even-sunflower if and only if n is
odd. The family C+n is an odd-sunflower if and only if n is odd, and it is an even-sunflower
if and only if n is even. Notice that in any subfamily of these families the nonzero degrees
of the vertices differ by at most one. Therefore, in every subfamily of Cn and C+n which is
odd- or even-suflower, all nonzero degrees need to be the same, showing that Cn and C+n
are minimal odd- or even-sunflowers. There are many other examples; e.g., all graphs in
which every degree is odd/even are 2-uniform odd/even-sunflowers. In fact, we can show
that it is NP-complete to decide whether an input family is odd-sunflower-free or not, so
there is no hope of a characterization. This is in contrast with (classic) sunflowers, where
the problem is trivially in P.

The main goal of this paper is to raise the following questions: What is the maximum
size of a family F of subsets of {1, . . . , n} that contains no even-sunflower or no odd-
sunflower? We denote these maximums by feven(n) and by fodd(n), respectively. As in the
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case of the even-town and odd-town theorems, the answers to these questions are quite
different.

Theorem 2. feven(n) = n, i.e., for any even-sunflower-free family F ⊂ 2{1,...,n} we have
|F| ≤ n.

Theorem 3. fodd(n) > 1.502148n if n > n0, i.e., there are odd-sunflower-free families
F ⊂ 2{1,...,n}, for any large enough n with |F| > 1.502148n.

Let µodd = lim fodd(n)1/n. (The existence of the limit easily follows from our Lemma
5 and Fekete’s lemma, just like for classical sunflowers; see [1].) Using the fact that any
odd-sunflower-free family F is also sunflower-free, the result of Naslund and Savin [18]
mentioned above implies that fodd(n) ≤ 1.89n. Thus, we have

1.502148 < µodd ≤ µ < 1.89.

It would be interesting to decide whether µodd is strictly smaller than µ, and to find a
direct proof for µodd < 2. Is the new slice rank method required?

Some of the ideas used in the proof of Theorem 3 originate, in a slightly different form,
in [2]; see Lemmas 5 and 6, and also the discussion on the MathOverflow website [17].
Here, we use a similar approach to recursively construct large odd-sunflower-free families
of subsets of {1, . . . , n}.

In Section 3, we will also establish a (negative) structural result: If n is large enough,
the largest odd-sunflower-free families on the underlying set {1, . . . , n} cannot be obtained
by repeatedly adding a small construction to itself, in a simple way (to be described in
Lemma 5). We will refer to this method as the “brick construction.”

We end this section with a definition. A family F is called an antichain, or Sperner, if
it is containment-free, i.e., F,G ∈ F and F ⊂ G imply that F = G. Let foa(n) denote the
maximum size of an antichain F on the underlying set {1, . . . , n} that contains no odd-
sunflower. Note that any slice of F , i.e., any subfamily of F whose sets are of the same
size, form an antichain. Obviously, we have fodd(n)/n ≤ foa(n) ≤ fodd(n) and, therefore,

lim foa(n)1/n = µodd.

2 Proof of Theorem 2
The lower bound feven(n) ≥ n follows from taking n singleton sets. For the upper bound
feven(n) ≤ n, we sketch the argument in two different forms: using linear algebra (as in
the usual proof of the odd-town theorem) and by a parity argument (which does not work
there).

First proof. Represent each set by its characteristic vector over Fn
2 . If |F| > n, these

vectors have a nontrivial linear combination that gives zero. The sets whose coefficients
are one in this combination yield an even-sunflower. 2
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Second proof. There are 2|F|− 1 nonempty subfamilies of F . If |F| > n, by the pigeonhole
principle, there are two different subfamilies that contain precisely the same elements
of {1, . . . , n} an odd number of times. But then their symmetric difference is an even-
sunflower. 2

3 Brick Constructions
We start with the following simple construction.

Construction 1: Let k = bn/3c. Make k disjoint groups of size 3 from {1, . . . , n}.
Define F as the family of all sets that intersect each group in exactly 2 elements. Then we
have |F| = 3k, i.e., 3

√
3
n
, whenever n is divisible by 3. This shows that

µodd ≥ 3
√

3 > 1.44. (1)

To prove that this construction is odd-sunflower-free, we need some simple lemmas.
In a multifamily of sets, every set F can occur a positive integer number of times. This

number is called the multiplicity of F . A multifamily of at least two nonempty sets is an
odd-sunflower if the degree of every element of the underlying set is odd or zero. Note that,
similarly to sunflowers, restricting an odd-sunflower multifamily to a smaller underlying
set also gives an odd-sunflower multifamily, unless fewer than two nonempty sets remain.

Lemma 4. If F is odd-sunflower-free family, and H is a multifamily of size at least two,
comprised of elements F , then H is an odd-sunflower multifamily if only if it consists of
an odd number of copies of a single member F ∈ F , and an even number of copies of some
subsets of F .

In particular, if |H| is even, it cannot be an odd-sunflower.

Remark. If F is an antichain, that is, if no F ∈ F has a proper subset that belongs to F ,
then the multifamily H is an odd-sunflower if and only if it consists of an odd number of
copies of the same set F ∈ F .

Proof. The “if” part of the statement is obvious.
Assume that H is an odd-sunflower. Reduce the multifamily H to a family H′ by

deleting all sets of even multiplicity and keeping only one copy of each set whose multiplicity
is odd. This does not change the parity of the degree of any vertex.

Suppose that H′ ⊆ F consists of at least two sets. Since H′ ⊆ F is odd-sunflower-
free, there is an element which is contained in a nonzero even number of sets of H′ and,
therefore, in a nonzero even number of sets in the multifamily H. This contradicts our
assumption that H was an odd-sunflower.

If H′ is empty, then any element covered by H is contained in an even number of sets
from H′, thus H again cannot be an odd-sunflower.

Finally, consider the case when the reduced family H′ consists of a single set F ∈ F . If
all sets in the multifamily H are copies of F , we are done. Otherwise, there are some other
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sets F ′ 6= F participating in H with even multiplicity. If any such F ′ has an element that
does not belong to F , then this element is covered by a nonzero even number of sets of
the multifamily H, contradicting the assumption that H is an odd-sunflower. Therefore,
all such F ′ are subsets of F , as claimed. 2

Lemma 5. If F and G are odd-sunflower-free families, and at least one of them is an
antichain, then F+G is also odd-sunflower-free. Moreover, if both F and G are antichains,
then so is F + G.

Remark. If none of F and G are antichains, then it can happen that F+G contains an odd-
sunflower. For example, if F = {{1}, {1, 2}} and G = {{3}, {3, 4}}, then {{1, 3}, {1, 2, 3},
{1, 3, 4}} is an odd-sunflower.

Proof. The “moreover” part of the statement, according to which F + G is an antichain, is
trivial.

Suppose for contradiction that F + G has a subfamily H consisting of at least two sets
that form an odd-sunflower. Without loss of generality, G is an antichain.

Assume first that the parts of the sets of H that come from G are not all the same.
These parts are the restriction of H to the underlying set of G, so they form a multifamily
which is an odd-sunflower. Applying Lemma 4 to this subfamily, it follows that the parts
of the sets in H that come from F all coincide, contradicting our assumption.

Otherwise, the parts of the sets of H that come from G are all the same, in which case
the parts that come from F are all different. But then we can use that F is sunflower-
free. 2

Corollary 6. For any integers n,m, t > 0, we have foa(n)+foa(m) ≥ foa(n+m), foa(tn) ≥
tfoa(n), µodd ≥ foa(n)1/n, where foa is the function introduced at the end of Section 1.

This follows by repeated application of Lemma 5. We can think of F as the “building
block” of F +F + · · ·+F , so such constructions may be referred to as brick constructions
[7]. When F = C3 consists of the two-element subsets of {1, 2, 3}, we recover Construction
1. This proves (1).

4 Wreath Product Constructions
In this section, we describe another construction that uses the wreath product of two fam-
ilies. This is a common notion in group theory [15], but less common in set theory. It was
introduced in the PhD thesis of the first author [12]; see also [17].

Let n,m be positive integers, F ⊆ 2{1,...,n}, G ⊆ 2{1,...,m} families of subsets of N =
{1, . . . , n} and M = {1, . . . ,m}, respectively. Take n isomorphic copies G1, . . . ,Gn of G
with pairwise disjoint underlying sets M1, . . . ,Mn. Define the wreath product of F and G,
denoted by F o G, on the underlying set ∪ni=1Mi, as follows.

F o G = {
⋃
i∈F

Gi | F ∈ F , Gi ∈ Gi}.



Odd-Sunflowers 446

That is, for each F ∈ F , for every i ∈ F , for every Gi ∈ Gi, we take the set ∪i∈FGi. We
obviously have |F o G| =

∑
F∈F |G||F |. Thus, |F o G| = |F||G|k holds, provided that F is

k-uniform, i.e., |F | = k for every F ∈ F .

Lemma 7. If F and G are odd-sunflower-free families and G is an antichain, then F o G
is also odd-sunflower-free. Moreover, if F is also an antichain, then so is F o G.

Remark. If G is not an antichain, then it may happen that F oG contains an odd-sunflower,
even if F was an antichain. For example, if F = {{1, 2}} and G = {{3}, {3, 4}}, then the
three sets {31, 32},{31, 32, 41},{31, 32, 42} form an odd-sunflower.

Proof. The “moreover” part of the statement, according to which F o G is an antichain, is
trivial.

We need to show that in any family H of at least two sets from F oG, there is an element
contained in a nonzero even number of sets from H. Consider the multifamily H′ of sets
from F , in which the multiplicity of a set F is as large, as many sets of the form ∪i∈FGi

belong to H.
Since F is sunflower-free, there are two possibilities.

Case A: Some set in the multifamily H′ has multiplicity greater than one.
In this case there exists an element i ∈ F such that the multifamily of sets from Gi,

consisting of the intersections of the sets from H with Mi, has at least two distinct sets.
Otherwise, the sets of H that correspond to the repeated set of H′ would coincide, and H
has no repeated sets. Applying Lemma 4 to the multifamily of sets from Gi for such an i,
we find an element of Mi contained in a nonzero even number of sets from H, as required.

Case B : The multifamily H′ is not an odd-sunflower. That is, there exists an element
i ∈ {1, . . . , n} which is covered by an even number of sets in H′.

This means that H has a nonzero even number of sets with nonempty intersections with
Mi. Thus, applying Lemma 4 to the multifamily of sets from Gi formed by these nonempty
intersections, again we find an element of Mi contained in a nonzero even number of sets
from H. This completes the proof. 2

Corollary 8. Let F is a k-uniform odd-sunflower-free antichain on n elements. Then we
have

foa(nm) ≥ |F|(foa(m))k.

In particular, foa(nm) ≥ n(foa(m))n−1, for odd n.

The second part of the corollary follows by choosing F = Cn, the family of all (n− 1)-
element subsets of {1, . . . , n}. These families have high uniformity, so they are natural
candidates to increase the size of the family fast, because the uniformity k appears in the
exponent in Corollary 8. As a simple, concrete application, consider the following.

Construction 2: The family C9 o C3 consists of |C9||C3|8 = 9 · 38 = 310 subsets of a
9 · 3 = 27-element set. Thus, we have

µodd ≥ |C9 o C3|1/27 = 310/27 > 1.502144. (2)



Odd-Sunflowers 447

Lemma 7 implies that C9 o C3 contains no odd-sunflower. Thus, foa(27) ≥ 310, and by
Corollary 6, µodd ≥ foa(27)1/27.

By Corollaries 6 and 8, we get µodd ≥ foa(mn)1/mn ≥ (n|G|n−1)1/mn. Here, to get the
best bound, we need to choose n so as to maximize the last expression. Letting n = x|G|,
we obtain

µodd ≥ (n|G|n−1)1/mn = (x|G|n)1/mn = |G|1/mx1/xm|G|.
Since |G| and m are independent of n, this is equivalent to maximizing x1/x. A simple
derivation shows that the optimal choice is x = e, so we need n to be the largest odd
integer smaller than e|G|, or the smallest odd integer greater than e|G|. In the case of
Construction 2, 3e is closest to 9.

The above reasoning also shows that any lower bound |G|1/m ≤ µodd that comes from
the brick construction using G as a brick, can be slightly improved by taking Cn o G for
some odd n close to e|G|. For example, if G = C9 o C3 is the 16-uniform family of 310 sets
on 27 elements obtained in Construction 2, then we can choose n to be 160511 ≈ e310.

Construction 3: The family C160511 o(C9 oC3) consists of |C160511||C9 oC3|160510 = 160511 ·
31605100 subsets of a 160511 · 27 = 4333797-element set. Thus, we have

µodd ≥ (160511 · 31605100)1/4333797 > 1.502148. (3)

Of course, the improvement on the lower bound for µodd is extremely small as the
families grow.

Concluding remarks

Here we studied the Erdős–Szemerédi-type sunflower problem for odd-sunflowers. We want
to remark that our structural result is also true for (classical) sunflowers, using essentially
the same proof. That is, if n is large enough, brick constructions will never be optimal. As
far as we know, this result is new. The best currently known examples of Deuber et al. [7]
use a combination of a brick construction and some other ad hoc tricks that do not work
for odd-sunflowers.

What about the Erdős–Rado-type sunflower problem, i.e., what is the maximum pos-
sible size of an odd-sunflower-free k-uniform set system? We pose the following weakening
of Erdős and Rado’s conjecture:

Conjecture 9. The maximum size of any odd-sunflower-free family of k-element sets is
at most ck, for a suitable constant c > 0.

Note that the respective problem does not make sense for even-sunflowers, as any
number of disjoint sets is even-sunflower-free.
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1 Main Results
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Theorem 1 (Graham, Leeb, Rothschild). Let Fq be any finite field. For any positive
integers t1, . . . , tk, there exists a minimum n =: Rq(t1, . . . , tk) such that for every k-coloring
f :
[ Fn

q

1

]
→ [k] of the 1-dimensional linear subspaces of Fnq , there exist i ∈ [k] and a linear

subspace U ⊆ Fnq of dimension ti, such that [ U1 ] is monochromatic in color i.
In the case t1 = · · · = tk = t, we write Rq(t1, . . . , tk) = Rq(t; k). The bounds for

Rq(t1, . . . , tk) implied by early proofs of Theorem 1 (see [12], [18]) are quite large due to
repeated use of the Hales-Jewett Theorem [13]. In the case q = 2, the problem can be
reduced to the disjoint unions problem for finite sets, considered by Taylor [19], which gives
the following bound.
Theorem 2 (Taylor). The number R2(t; k) is at most a tower of height 2k(t− 1) of the
form

R2(t; k) ≤ k3k
. .

.
3

.

For comparison, lower bounds attained from applying the techniques from [1] such as
the Lovász Local Lemma to a uniform random coloring are only on the order of

R2(t; k) = Ω

(
2t

t
log2 k

)
.

We improve the bound of Theorem 2 by removing the 3’s from the tower.
Theorem 3. For any t, k, R2(t; k) is at most a tower of height k(t− 1) of the form

R2(t; k) ≤ kk
. .

.
k

.

More recently, Nelson and Nomoto considered the off-diagonal version of this problem
over F2 with two colors, and they proved the following bound.
Theorem 4 (Nelson, Nomoto). For every t ≥ 2,

R2(2, t) ≤ (t+ 1)2t.

Similar probabilistic arguments to those mentioned after Theorem 2 only give lower
bounds linear in t for R2(2, t). Nelson and Nomoto asked if a subexponential upper bound
is possible. While the answer to that question remains to be seen, we provide the following
exponential improvement.
Theorem 5. There exists a constant C such that for all t ≥ 2,

R2(2, t) ≤ Ct6t/4.

We obtain the following analogous results over F3, using the same methodology.
Theorem 6. There exists an absolute polynomial p(x) such that for any t, k, R3(t; k) is at
most a tower of height k(t− 1) of the form

R3(t; k) ≤ p(k)p(k).
. .
p(k)

.

Theorem 7. There exist constants C and A, with A ≈ 13.901 such that for all t ≥ 2,

R3(2, t) ≤ CtAt.
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2 Background and Methodology
Before we discuss the proofs of these results, we give a brief introduction to affine extremal
numbers, which are our principal tool. We say that a subset A ⊆ Fnq contains an affine copy
of B ⊆ Fmq if there is an injective affine map f : Fmq → Fnq with f(B) ⊆ A. If B = {Bi}i∈I
is a family of subsets Bi ⊆ Fmi

q , we say that A is B-free if A has no affine copy of any Bi.
The largest size exaff(n,B) of a B-free subset of Fnq is called the nth affine extremal number
of B. If B = {B}, we write exaff(n, {B}) = exaff(n,B). Determining these affine extremal
numbers dates back at least to the following theorem of Furstenberg and Katznelson [8].

Theorem 8 (Furstenberg, Katznelson). Let Fq be any finite field. For any positive integer
t,

exaff(n,Ftq) = o(qn).

Since any B-free set is Ftq-free for some t, Theorem 8 says that affine extremal numbers
are always o(qn). Furstenberg and Katznelson went on to prove a density version of the
Hales-Jewett Theorem [9], from which Theorem 8 is immediate. Alternative proofs of these
results can be found in [16] and [15], respectively.

The projective version of this problem is even older, beginning with the following result
of Bose and Burton [3].

Theorem 9 (Bose, Burton). Let Fq be a finite field, and let t ≥ 1. Let A be a subset of[ Fn
q

1

]
for which there is no linear t-dimensional subspace U ⊆ Fnq with [ U1 ] ⊆ A. Then

|A| ≤ qn − qn−t+1

q − 1
,

with equality if and only if
[ Fn

q

1

]
\ A = [W1 ] for some linear (n− t+ 1)-dimensional linear

subspace W ⊆ Fnq .

The problem of determining projective extremal numbers asymptotically for general
projective configurations over Fq was solved by Geelen and Nelson [10], who proved a
theorem analogous to the Erdős-Stone-Simonivits Theorem for graphs.

Returning to the affine context, it is unknown in general (see [11], Open Problem 32)
whether the o(qn) term in Theorem 8 can be taken to be of the form (q1−ε)n for some
ε = ε(q, t) > 0. However, for q = 2 and q = 3, we have the following respective results of
Bonin and Qin [2], and of Fox and Pham [7].

Theorem 10 (Bonin, Qin). There exists an absolute constant c such that for every t ≥ 1,
every subset of Fn2 of size at least (21−c2−t

)n contains an affine t-space.

Later on, we will use a more precise bound implied by their argument, namely

exaff(n,Ft2) < 2(1−21−t)n+1.
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Theorem 11 (Fox, Pham). There exist absolute constants c and C0, with C0 ≈ 13.901

such that for every t ≥ 1, every subset of Fn3 of size at least
(

31−cC−t
0

)n
contains an affine

t-space.

The proof of Theorem 10 is entirely self-contained and is no more than a page. Theorem
11, on the other hand, is the culmination of several breakthroughs related to the Cap
Set Problem, starting with the advances in polynomial methods from Croot, Lev, and
Pach [4] and the subsequent proof of the Cap Set Theorem by Ellenberg and Gijswijt [5],
which says that exaff(n,F1

3) ≤ (31−ε)n for some ε > 0. Fox and Lovász [6] then proved
a supersaturation version of this result, from which Fox and Pham derived Theorem 11,
which is a multidimensional extension of the Cap Set Theorem. It is unknown whether the
constant C0 given in the theorem is tight, as probabilistic lower bounds for exaff(n,Ft3) are
on the order of

(
31−3−(1+o(1))t

)n
[7].

3 Proof Outlines
We now show that Theorems 3, 6, and 7 are easy consequences of the affine extremal results
Theorem 10 and Theorem 11. To prove Theorem 5, we prove an additional extremal result
over F2 by way of supersaturation and some observations about sumsets and products of
affine structures.

To begin, we show how Theorem 3 follows from Bonin and Qin’s result, Theorem 10.

Proof of Theorem 3. Since R2(1, . . . , 1) = 1, and we can reasonably define R2(t1, . . . , tk) = 0
if some ti = 0, it suffices to show that

R2(t1, t2, . . . , tk) ≤ (log2 k)2r,

where r = maxi≤k R2(t1, . . . , ti − 1, . . . , tk). In this case, we get by induction that

R2(t1, . . . , tk) ≤ (log2 k)kk
. .

.
k2

≤ kk
. .

.
kk

,

where the height of the tower is
∑

i≤k(ti − 1). Let n = (log2 k)2r, and consider a k-coloring
of
[ Fn

2
1

]
, which we view as a k-coloring of Fn2 \ {0}. Without loss of generality, assume that

at least 2n/k = 2n−log2 k points are given color 1. By our choice of n and Theorem 10, we
have

exaff(n,Fr2) < 2(1−21−r)n+1 = 2n−2 log2 k+1 ≤ 2n−log2 k,

so there is an affine r-dimensional subspace A which is monochromatic in color 1. Note
that 0 /∈ A since 0 was not given a color. Let W be the translate of A containing 0, which
is a linear r-space. Suppose that there is no linear ti-space Ui with Ui \ {0} monochromatic
in color i for any i ≥ 2. Then by our choice of r, there exists a linear (t1− 1)-space U ′1 ⊆ W
with U ′1 \ {0} monochromatic in color 1. Let u ∈ A, and take U1 = span{U ′1, u}, which is a
linear t1-space contained in U ′1 ∪ A, with U1 \ {0} monochromatic in color 1.
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The proof of Theorem 6 is essentially the same, except that we use Theorem 11 in place
of Theorem 10.

We now reformulate the off-diagonal Ramsey problem as an affine extremal problem.
For a subset A ⊆ Fn2 , let ω(A) be the maximum t such that A ∪ {0} contains a linear
t-space. Define the sumset of A to be the set A + A := {x + y : x, y ∈ A}, and let
Bt = {B ⊆ Fm2 : m ≥ 1, ω(B + B) ≥ t} for t ≥ 1. Define m(t) to be the minimum n such
that exaff(Bt) < 2n−t+1. The following observation is implicit in the work of Nelson and
Nomoto [14] on the structural characterization of claw-free binary matroids.

Lemma 12 (Nelson, Nomoto). For any t ≥ 2, R2(2, t) ≤ m(t).

Nelson and Nomoto used the following result of Sanders [17] to prove Theorem 4.

Theorem 13 (Sanders). Let A be a subset of Fn2 of density α < 1/2. Then

ω(A+ A) ≥ n−
⌈
n/ log2

2− 2α

1− 2α

⌉
.

The proof of Theorem 4 from [14] is simply an application of Theorem 13 with α = 21−t

and n = (t+1)2t, noting that n−
⌈
n/ log2

2−2α
1−2α

⌉
≥ αn/2−1 = t for this choice of parameters,

so m(t) ≤ n. By Lemma 12, R2(2, t) ≤ n as well.
We observe that the same bound can be obtained by simply applying Theorem 10 instead

of Sanders’ result, noting that any set A which properly contains an affine (t− 1)-space has
ω(A+ A) ≥ t, and hence

exaff(n,Bt) ≤ exaff(n,Ft−1
2 ) < 2(1−22−t)n+1.

This implies by Lemma 12 that R2(2, t) ≤ m(t) ≤ t2t−2.
The same argument, together with Theorem 11, gives Theorem 7 for R3(2, t). In place

of the sumset A+ A, we consider a set of the form

A→ := {d ∈ Fn3 : there exists x such that x+ λd ∈ A for all λ ∈ F3}.

To improve on this initial bound for m(t), we consider additional affine structures
beyond Ft−1

2 that belong to the family Bt. By taking products of smaller structures which
have a certain supersaturation property, we construct a sequence (Bt)t≥4 with Bt ∈ Bt and
exaff(n,Bt) < (21−c6−t/4

)n for some absolute constant c. This implies Theorem 5, as we have

R2(2, t) ≤ m(t) ≤ 1

c
(t− 1)6t/4.

We leave out most of the details of our argument for the sake of brevity, but we
outline our methods. We construct Bt ∈ Bt as follows. For k ≥ 2, define C2k =
{e1, . . . , e2k−1,

∑2k−1
i=1 ei} ⊆ F2k−1

2 , where ei is the ith standard basis vector. We observe
that ω(C6 + C6) = 4. We further observe that for any A ⊆ Fn2 and B ⊆ Fm2 , the Cartesian
product {(x, y) ∈ Fn+m

2 : x ∈ A, y ∈ B} satisfies

ω((A×B) + (A×B)) = ω(A+ A) + ω(B +B).
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Thus taking Bt to be Cdt/4e6 gives Bt ∈ Bt. We also obtain exaff(n,Bt) <
(

21−c6−t/4
)n
, as

desired, via an iterative process that makes use of supersaturation of C6, in the spirit of [7].
We believe our bounds on exaff(n,Bt), and hence on m(t) ≥ R2(2, t), to be far from the

truth. It remains an open problem to improve these bounds.
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1 Introduction
Saturation problems have been well studied in graph theory. A graph G is H-saturated if
it does not contain a copy of the graph H, but adding any edge to G from its complement
creates a copy of H. Turán’s celebrated theorem [15] can be stated in the language of
saturation: it determines the maximum number of edges in a Kr-saturated n-vertex graph.
In contrast, Erdős, Hajnal and Moon [5] determined the minimum number of edges in a
Kr-saturated n-vertex graph; see the survey [3] for further results in this direction.

In recent years there has been an emphasis on developing the theory of saturation
for posets. Turán-type problems have been extensively studied in this setting (see, e.g.,
the survey [9]). In this paper we are interested in minimum saturation questions à la
Erdős–Hajnal–Moon. In particular, we consider induced saturation problems.

All posets we consider will be (implicitly) viewed as finite collections of finite subsets of
N. In particular, we say that P is a poset on [p] := {1, 2, . . . , p} if P consists of subsets of
[p]. Let P,Q be posets. A poset homomorphism from P to Q is a function φ : P → Q such
that for every A,B ∈ P , if A ⊆ B then φ(A) ⊆ φ(B). We say that P is a subposet of Q if
there is an injective poset homomorphism from P to Q; otherwise, Q is said to be P -free.
Further we say P is an induced subposet of Q if there is an injective poset homomorphism
φ from P to Q such that for every A,B ∈ P , φ(A) ⊆ φ(B) if and only if A ⊆ B; otherwise,
Q is said to be induced P -free.

For a fixed poset P , we say that a family F ⊆ 2[n] of subsets of [n] is P -saturated if F
is P -free, but for every subset S of [n] such that S 6∈ F , then P is a subposet of F ∪ {S}.
A family F ⊆ 2[n] of subsets of [n] is induced P -saturated if F is induced P -free, but for
every subset S of [n] such that S 6∈ F , then P is an induced subposet of F ∪ {S}.

The study of minimum saturated posets was initiated by Gerbner, Keszegh, Lemons,
Palmer, Pálvölgyi and Patkós [8] in 2013. In their work the relevant parameter is sat(n, P ),
which is defined to be the size of the smallest P -saturated family of subsets of [n]. See,
e.g., [8, 12, 14] for various results on sat(n, P ).

The induced analogue of sat(n, P ) – denoted by sat∗(n, P ) – was first considered by
Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan [6]. Thus, sat∗(n, P ) is defined
to be the size of the smallest induced P -saturated family of subsets of [n]. The following
result from [12] (and implicit in [6]) shows that the parameter sat∗(n, P ) has a dichotomy
of behaviour.

Theorem 1.1. [6, 12] For any poset P , either there exists a constant KP with sat∗(n, P ) ≤
KP or sat∗(n, P ) ≥ log2 n, for all n ∈ N.

Probably the most important open problem in the area is to obtain a tight version of
Theorem 1.1; that is, to replace the log2 n in Theorem 1.1 with a term that is as large as
possible. In fact, Keszegh, Lemons, Martin, Pálvölgyi and Patkós [12] made the following
conjecture in this direction.

Conjecture 1.2. [12] For any poset P , either there exists a constant KP with sat∗(n, P ) ≤
KP or sat∗(n, P ) ≥ n+ 1, for all n ∈ N.
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Note that the lower bound of n + 1 is rather natural here. For example, it is the
size of the largest chain in 2[n] as well as the smallest possible size of the union of two
consecutive ‘layers’ in 2[n], namely the layer containing [n] and the layer containing all
subsets of [n] of size exactly n − 1. Furthermore, such structures form minimum induced
saturated families for the so-called fork poset ∨, i.e., sat∗(n,∨) = n + 1 [6]; so the lower
bound in Conjecture 1.2 cannot be increased. There are also no known examples of posets
P for which sat∗(n, P ) = ω(n).

In contrast, Ivan [11, Section 3] presented evidence that led her to conjecture a rather
different picture for the diamond poset ♦ (see Figure 1 for the Hasse diagram of ♦).

Conjecture 1.3. [11] sat∗(n,♦) = Θ(
√
n).

Our main result is the following improvement of Theorem 1.1.

Theorem 1.4. For any poset P , either there exists a constant KP with sat∗(n, P ) ≤ KP

or sat∗(n,P) ≥ 2
√
n− 2, for all n ∈ N.

Thus, if Conjecture 1.3 is true, the lower bound in Theorem 1.4 would be tight up to
a multiplicative constant.

Figure 1: Hasse diagrams for the posets N , Y , ♦ and X.

On the other hand, we prove that Conjecture 1.2 does hold for a class of posets (that
does not include ♦). Given p ∈ N and a poset P on [p] we define the dual P of P as P :=
{[p]\F : F ∈ P}. We say a poset P has legs if there are distinct elements L1, L2, H ∈ P such
that L1, L2 are incomparable, L1, L2 ⊆ H and for any other element A ∈ P \ {L1, L2, H}
we have A ⊇ H. The elements L1 and L2 are called legs and H is called a hip.

Theorem 1.5. Let P be a poset with legs and n ≥ 3. Then sat∗(n, P ) ≥ n+ 1. Moreover,
if both P and P have legs, then sat∗(n, P ) ≥ 2n+ 2.

Our results still leave both Conjecture 1.2 and Conjecture 1.3 open, and it is unclear
to us which of these conjectures is true. However, if Conjecture 1.3 is true we believe it
highly likely that there will be other posets P for which sat∗(n, P ) = Θ(

√
n).

It is also natural to seek exact results on sat∗(n, P ). However, despite there already
being several papers concerning sat∗(n, P ) [1, 4, 6, 10, 11, 12, 13], there are relatively few
posets P for which sat∗(n, P ) is known precisely (see Table 1 in [12] for a summary of most
of the known results). Our next result extends this limited pool of posets, determining
sat∗(n,X) and sat∗(n, Y ) (see Figure 1 for the Hasse diagrams of X and Y ).
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Theorem 1.6. Given any n ∈ N with n ≥ 3,

(i ) sat∗(n, Y ) = n+ 2 and

(ii ) sat∗(n,X) = 2n+ 2.

Note that Theorem 1.6(ii ) easily follows via Theorem 1.5 and an extremal construction.
An application of Theorem 1.5 to Y only yields that sat∗(n, Y ) ≥ n + 1, so we require an
extra idea to obtain Theorem 1.6(i ).

It is natural to consider induced saturation problems for families of posets. Given a
family of posets P , we say that F ⊆ 2[n] is induced P-saturated if F contains no induced
copy of any poset P ∈ P and for every S ∈ 2[n] \ F there exists an induced copy of some
poset P ∈ P in F ∪ {S}. We denote the size of the smallest such family by sat∗(n,P). By
following the proof of Theorem 1.4 precisely, one obtains the following result.

Theorem 1.7. For any family of posets P, either there exists a constant KP with sat∗(n,P) ≤
KP or sat∗(n,P) ≥ 2

√
n− 2, for all n ∈ N.

In light of Theorem 1.7 it is natural to ask whether an analogue of Conjecture 1.2 is
true in this more general setting, or whether (for example) the lower bound on sat∗(n,P)
in Theorem 1.7 is best possible up to a multiplicative constant.

The proofs of Theorems 1.4–1.7 appear in [7]. In the next section we describe how we
make use of a Turán-type result for digraphs in the proof of Theorem 1.4.

2 A connection to a Turán problem for digraphs
In [13] a trick was introduced which can be used to prove lower bounds on sat∗(n, P ) for
some posets P . The idea is to construct a certain auxiliary digraph D whose vertex set
consists of the elements in an induced P -saturated family F ; one then argues that how this
digraph is defined forces D to contain many edges, which in turn forces a bound on the
size of the vertex set of D (i.e., lower bounds |F|). This trick has been used to prove that
sat∗(n,♦) ≥

√
n [13, Theorem 6] and sat∗(n,N) ≥

√
n [10, Proposition 4] (see Figure 1 for

the Hasse diagram of N).
Our proof of Theorem 1.4 utilises a variant of this digraph trick. In particular, by

introducing an appropriate modification to the auxiliary digraph D used in [13], we are
able to deduce certain Turán-type properties ofD. Turán problems in digraphs are classical
in extremal combinatorics and their study can be traced back to the work of Brown and
Harary [2]. In [7] we prove a Turán-type result concerning transitive cycles, stated as
Theorem 2.1 below.

Given k ≥ 3, the transitive cycle on k vertices
−⇀
TCk is a digraph with vertex set [k] and

every directed edge from i to i+ 1 for every i ∈ [k− 1], as well as the directed edge from 1
to k. We establish an upper bound on the number of edges of a digraph not containing
any transitive cycle.



A general bound for the induced poset saturation problem 461

Theorem 2.1. Let n ∈ N and let D be a digraph on n vertices. If D is
−⇀
TCk-free for

all k≥3, then

e(D) ≤
⌊
n2

4

⌋
+ 2.

Note that the bound in Theorem 2.1 is best possible up to an additive constant. Indeed,
consider the n-vertex digraph D with vertex classes A,B of size bn/2c and dn/2e respec-
tively and all possible directed edges from A to B. So D has bn2/4c edges and contains no
transitive cycle.

Data availability statement. A full paper containing the proofs of our results can be
found on arXiv [7].
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1 Introduction
The Turán problem, one of the most central topics in extremal combinatorics, is concerned
with determining the maximum density of graphs without containing a given graph as a
subgraph. Formally, for a graph F , the extremal number of F , denoted by expn, F q, is the
maximum number of edges in an n-vertex graph not containing F as a subgraph. The
celebrated Erdős-Stone-Simonovits Theorem [9, 12] asymptotically solves the problem when
χpF q ě 3. However, for bipartite graphs, not even the order of magnitude is known in general.
Turán [21] in 1941 proposed the study of the five graphs from platonic solids, and his result
covers the tetrahedron graphK4. The problem of octahedron, dodecahedron and icosahedron
graphs were later resolved by Erdős and Simonovits [11] and by Simonovits [19, 20]
respectively; while the innocent looking cube graph remains elusive. Two basic classes of
bipartite graphs with high symmetry are even cycles and complete bipartite graphs; both
of them have been widely studied for several decades [2, 3, 5, 6, 8, 15, 17, 22]. For more on
the bipartite Turán problem, we refer the reader to the comprehensive survey of Füredi
and Simonovits [13].

In this paper, we continue this line of study and determine the order of magnitude of
the extremal number for several highly symmetric bipartite graphs stemming from certain
geometric shapes and periodic tilings, including the prism, the grid, the honeycomb and
certain quadrangulations of the cylinder and the torus.

1.1 The prisms

The 2`-prism C˝
2` :“ C2` ˝K2 is the Cartesian product of 2`-cycle with an edge, consisting

of two vertex disjoint C2` and a matching joining the corresponding vertices on these two
cycles. As C˝

2` contains many 4-cycles, we have a lower bound expn,C˝
2`q ě expn,C4q “

Ωpn3{2q. Note that C˝
4 is the notorious cube graph, for which the best known bounds are

Ωpn3{2q ď expn,C˝
4q ď Opn8{5q [10, 18]. Studying the 2`-prism C˝

2` could shed some light
on the cube problem. An upper bound expn,C˝

2`q “ Opn5{3q can be easily obtained via the
celebrated dependent random choice method [1].

Very recently, He, Li and Feng [14] studied the odd prisms, determined expn,C˝
2k`1q for

any k ě 1 for large n and characterized the extremal graphs. They proposed the following
conjecture to break the 5{3 barrier for 2`-prism.
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Conjecture 1 ([14]). For every ` ě 2, there exists c “ cp`q ą 0 such that expn,C˝
2`q “

Opn5{3´cq.

Our first result provides an optimal upper bound for C˝
2` for every ` ě 4.

Theorem 1.1. For any integer ` ě 4, we have

expn,C˝
2`q “ Θ`pn

3{2
q.

We remark that larger prisms are easier to handle. We can provide a shorter and
different proof of expn,C˝

2`q “ O`pn
3{2q for ` ě 7, which can also be used to show that

expn,C˝
6q “ Opn21{13plog nq24{13q. This, together with the known bound for the cube and

Theorem 1.1, proves Conjecture 1.
It is worth mentioning a closely related conjecture of Erdős. A graph is r-degenerate

if each of its subgraphs has minimum degree at most r. Erdős [7] conjectured that for
a bipartite H, expn,Hq “ Opn3{2q if and only if H is 2-degenerate. This conjecture was
recently disproved by Janzer [16], who constructed, for each ε ą 0, a 3-regular bipartite
graph H with girth 6 such that expn,Hq “ Opn4{3`εq. Theorem 1.1 provides a family of
3-regular girth-4 counterexamples.

1.2 The honeycomb

The hexagonal tiling in honeycomb is one of the most common geometric structures,
appearing in nature in many crystals. It is also the densest way to pack circles in the plane.
As the honeycomb graph H of any size contains C6 as a subgraph, we have a lower bound
expn,Hq ě expn,C6q “ Ωpn4{3q.

Our second result is a matching upper bound Opn4{3q, showing that the hexagonal tiling
appears soon after the appearance of a single hexagon. In particular, we consider the
following graph Hk,` (see Figure 1), which contains any (finite truncation of a) honeycomb
graph as a subgraph when k and ` are sufficiently large.

Definition. For an odd integer k ě 1 and even integer ` ě 2, let Hk,` be the graph with
vertex set V pHk,`q “ txi,j : 1 ď i ď k, 1 ď j ď `u, where xk,1 “ xk,3 “ ¨ ¨ ¨ “ xk,`´1 “ u and
x1,2 “ x1,4 “ ¨ ¨ ¨ “ x1,` “ v (but all the other vertices are distinct) and edge set

EpHk,`q “ txi,jxi,j`1 : 1 ď i ď k, 1 ď j ď `´ 1u Y tx2i´1,jx2i,j : 1 ď i ď k{2, 1 ď j ď `, j is oddu
Y tx2i,jx2i`1,j : 1 ď i ď k{2, 1 ď j ď `, j is evenu.

Theorem 1.2. For positive odd integers k ě 1 and ` ě 2,

expn,Hk,`q “ Θk,`pn
4{3
q.



Extremal number of graphs from geometric shapes 466

v
u

x1,1x2,1x3,1x4,1x5,1x6,1

x2,12 x4,12 x6,12

x2,4

x2,4

x4,4

x4,4

x6,4

x6,4

x8,4

x8,4

x10,4

x10,4

x1,1

x1,2

x1,3

x1,4

Figure 1: The first graph is H7,12. In the second graph, identifying the blue vertices (in the
same column) yields a copy of P11,4; if additionally the red vertices (in the same row) are
identified, then we obtain a copy of T10,4.

1.3 The grid

We will also give an improved bound for the extremal number of the grid. For a positive
integer t, Ft,t is the graph with vertex set rts ˆ rts in which two vertices are joined by an
edge if they differ in exactly one coordinate and in that coordinate they differ by one.
Bradač, Janzer, Sudakov and Tomon [4] determined the extremal number of Ft,t up to a
multiplicative constant which depends on t, showing that for any t ě 2,

Ωpt1{2n3{2
q ď expn, Ft,tq ď eOpt

5qn3{2.

They have asked to determine the correct dependence on t. We make substantial
progress on this question by giving a very short proof of the following bound, which shows
that the dependence on t is polynomial.

Theorem 1.3. For any positive integer t, if n is sufficiently large in terms of t, then

expn, Ft,tq ď 5t3{2n3{2.

It would be interesting to determine the correct power of t in expn, Ft,tq.

1.4 Quadrangulations of cylinder and torus

Next, we consider certain quadrangulations of the cylinder and the torus.

Definition (Quadrangulation of a cylinder). For integers k, ` ě 2, let Pk,` be the graph
with vertex set V pPk,`q “ txi,j : 1 ď i ď k, 1 ď j ď `u, and edge set

EpPk,`q “ txi,jxi`1,j : 1 ď i ď k ´ 1, 1 ď j ď `u Y txi,j`1xi`1,j : 1 ď i ď k ´ 1, 1 ď j ď `, i is oddu
Y txi,jxi`1,j`1 : 1 ď i ď k ´ 1, 1 ď j ď `, i is evenu,

where xi,``1 “ xi,1 for all i P rks.
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Clearly, the extremal number of such a quadrangulated cylinder is at least that of the
4-cycle. Our next result infers that in fact they are of the same order of magnitude.

Theorem 1.4. Let k and ` be positive integers. Then we have

expn, Pk,`q “ Θk,`pn
3{2
q.

If k is even and we glue the two sides of the cylinder Pk`1,`, then we obtain a torus, see
Figure 1.

Definition (Quadrangulation of a torus). For an even integer k ě 4 and integer ` ě 2, let
Tk,` be the graph with vertex set V pTk,`q “ txi,j : 1 ď i ď k, 1 ď j ď `u, and edge set

EpTk,`q “ txi,jxi`1,j : 1 ď i ď k, 1 ď j ď `u Y txi,j`1xi`1,j : 1 ď i ď k, 1 ď j ď `, i is oddu
Y txi,jxi`1,j`1 : 1 ď i ď k, 1 ď j ď `, i is evenu,

where xk`1,j “ x1,j for all j P r`s and xi,``1 “ xi,1 for all i P rks.

For the quadrangulated torus, we provide a general upper bound as follows.

Theorem 1.5. For an even integer k ě 4 and an integer ` ě 2, we have

expn, Tk,`q “ Ok,`pn
3
2
` `

k plog nq2q.

Thus, when k is sufficiently large compared to `, the exponent can be arbitrarily close to
3{2. On the other hand, the exponent is always strictly greater than 3{2 as the probabilistic
deletion method yields the lower bound expn, Tk,`q “ Ωk,`pn

3
2
` 3

4k`´2 q.

2 Ideas of proofs
In this section, we briefly discuss some key ideas in our proofs.

2.1 Shifting embedding schemes: Grid, quadrangulated cylinder,
torus and honeycomb

For Theorems 1.2, 1.3 and 1.4, our embedding strategy is based on the observation that, if
we can find a large collection of paths or cycles with a certain nice property, then we can
repeatedly replace the vertices (or edges) of the chosen paths or cycles with vertices (or
edges) from a new one in the collection to build the desired tilings. Formally, the definition
of an α-rich collection of paths in a graph is as follows.

Definition 2.1. Let α ą 0 and k P N. We say that a collection P of (labelled) paths Pk

is α-rich if for any member x1x2 ¨ ¨ ¨ xk P P and any 2 ď i ď k ´ 1, there exist at least α
distinct vertices x1i such that x1x2 ¨ ¨ ¨ xi´1x1ixi`1 ¨ ¨ ¨ xk P P .
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Figure 2: The process to build grids and honeycomb graphs.

Finding a t ˆ t grid then boils down to constructing an α-rich collection of paths of
length 2t´ 2 with sufficiently large α; see the left side of Figure 2 for an illustration. In
order to find the desired quadrangulations of the cylinder and the torus, we use an analogous
definition of rich cycles.

To deal with honeycomb graphs, we introduce the following definition.

Definition 2.2. Let α ą 0 and k P N. A collection P of paths Pk is α-good if the following
holds. For any x1x2 ¨ ¨ ¨ xk P P and 2 ď i ď k ´ 2, there are at least α pairwise disjoint
edges x1ix1i`1 such that x1x2 ¨ ¨ ¨ xi´1x1ix1i`1xi`2 ¨ ¨ ¨ xk P P .

Finding a honeycomb graph boils down to constructing an α-good collection of paths
for a sufficiently large α; see the right side of Figure 2 for an illustration.

While it is not too hard to find a collection of rich paths and even cycles via supersat-
uration, it is a lot more challenging to construct a collection of good paths. In order to
accomplish the latter, rather than doing a direct counting using supersaturation, we carry
out a weighted count.

2.2 Weighted count of homomorphisms for Theorem 1.1

In this subsection, we give a brief outline of the proof of Theorem 1.1. Let us call an
n-vertex graph H with average degree d clean if for any uv P EpHq, u has at least d{16
neighbours w in H such that dHpv, wq ě d2

128n
. It can be shown that any graph with average

degree at least 2d contains a clean subgraph with average degree at least d.
Let G be a graph of average degree d and let distinct vertices xi, yi for 0 ď i ď ` form a

copy of P ˝
``1 :“ K2 ˝P``1, where xiyi P EpGq for every i and xi´1xi, yi´1yi P EpGq for every

1 ď i ď `. Now the weight of this copy is defined to be 1{
ś`

i“1 maxpdGpxi´1, yiq,
d2

n
q. For

distinct vertices u, v, w, z, we call the 4-tuple pu, v, w, zq rich if uv, wz P EpGq, and moreover
there are at least 4` pairwise vertex-disjoint edges xy P EpGq such that ux, xw, vy, yz P
EpGq. We say that vertices xi, yi (for 0 ď i ď `) form a nice copy of P ˝

``1 if they form a
copy of P ˝

``1, for every 1 ď i ď ` the codegrees satisfy dpxi´1, yiq, dpxi, yi´1q ď C0d
1{2 (for

some suitably defined constant C0), and for every 2 ď i ď `, the 4-tuple pxi´2, yi´2, xi, yiq is
not rich. We also say that vertices xi, yi, x1i, y1i (for 0 ď i ď `) form a nice homomorphic copy
of C˝

2` if x0 “ x10, y0 “ y10, x` “ x1`, y` “ y1`, both txi, yi : 0 ď i ď `u and tx1i, y1i : 0 ď i ď `u
form a nice copy of P ˝

``1, each xi is distinct from all other vertices except possibly x1i and
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each yi is distinct from all other vertices except possibly y1i. We define the weight of a

homomorphic copy of C˝
2` to be

´

ś`
i“1 maxpdpxi´1, yiq,

d2

n
q ¨

ś`
i“1 maxpdpx1i´1, y

1
iq,

d2

n
q

¯´1

.

Let G be a clean, bipartite, n-vertex graph with average degree d ě Cn1{2 and maximum
degree at most Kd, where K is some absolute constant and C is a sufficiently large constant
(which can depend on `). Our proof consists of the following steps.

1. We first prove that the total weight of nice copies of P ˝
``1 in G is at least Ω`pnd

``1q.

2. Noting that by gluing together two nice copies of P ˝
``1, we get a nice homomorphic copy

of C˝
2`, one can easily deduce from step 1 that the total weight of nice homomorphic

copies of C˝
2` in G is Ω`pd

2`q.

3. By carefully analyzing different types of degenerate homomorphic copies of C˝
2`, we

can show that for ` ě 4, the total weight of degenerate nice homomorphic copies of
C˝

2` in G is at most Opnd2`´2q. This is negligible compared to Ω`pd
2`q, showing that

G contains a genuine copy of C˝
2`.

3 Open problem
An open problem left in this paper is determining the extremal number of C˝

6 . We conjecture
that expn,C˝

6q “ Θpn3{2q.
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all graphs. We now state their result formally using the language of the theory of graph
limits (referring to Section 2 for definitions). Let Gk be the set of all graphs with at most k
vertices and Gck be the set of all connected graphs with at most k vertices; t(G,W ) denotes
the homomorphism density of a graph G in a graphon W . The aforementioned result of
Erdős, Lovász and Spencer [8] asserts that for every k ∈ N, there exist x0 ∈ [0, 1]G

c
k and

ε > 0 such that for every x ∈ Bε(x0) ⊆ [0, 1]G
c
k , there exists a graphon W such that

t(G,W )G∈Gc
k

= x. In addition, there exists a function f : [0, 1]G
c
k → [0, 1]Gk , independent

of W , and such that f(t(G,W )G∈Gc
k
) = t(G,W )G∈Gk

. In other words, the dimension of
the feasible region of homomorphic densities of graphs with at most k vertices in graphons
(large graphs) is equal to the number of connected graphs with at most k vertices.

We determine the dimension of the feasible region of densities of k-patterns in permu-
tations; again we refer to Section 2 for definitions. Glebov et al. [10] showed that this
dimension is at least the number of non-trivial indecomposable permutations of size at
most k. Borga and the last author [2] observed utilizing a result of Vargas [20] that this
dimension is at most the number of non-trivial Lyndon permutations of size at most k,
and conjectured [2, Conjecture 1.3] that this bound is tight. Our main result asserts that
this is indeed the case. Similarly to [10], our argument is based on perturbing a permuton
comprised of blow-ups of indecomposable permutations. However, to be able to control
the densities of the larger set of all Lyndon permutations, we choose a suitable order of the
blow ups of indecomposable permutations and analyze the interplay between the blow-ups
using unique decomposition properties into Lyndon words [19].

2 Combinatorial limits
We now introduce notation used throughout this extended abstract. In addition to the
monograph by Lovász [16], which provides a comprehensive introduction to the theory of
graph limits, we refer the reader to [3–5, 17, 18] for basic results concerning graph limits
and to [1, 6, 9, 11–15] for results developing and concerning permutation limits.

2.1 Graph limits

If H and G are two graphs, the homomorphism density of H in G, denoted by t(H,G), is
the probability that a uniformly random function f : V (H) → V (G), is a homomorphism
of H to G. A sequence (Gn)n∈N of graphs is convergent if the number of vertices of Gn

tends to infinity and the values of t(H,Gn) converge for every H.
A graphon is a symmetric measurable function W : [0, 1]2 → [0, 1], i.e., W (x, y) =

W (y, x) for (x, y) ∈ [0, 1]2. The homomorphism density of a graph H in a graphon W is
defined by

t(H,W ) =

∫
[0,1]V (H)

∏
uv∈E(H)

W (xu, xv)dxV (H).

A graphon W is a limit of a convergent sequence (Gn)n∈N of graphs if t(H,W ) is the limit
of t(H,Gn) for every graph H. Every convergent sequence of graphs has a limit graphon
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and every graphon is a limit of a convergent sequence of graphs as shown by Lovász and
Szegedy [17]; also see [7] for a relation to exchangeable arrays.

2.2 Permutations

A permutation of size n is a bijective function π from [n] to [n] (we use [n] to denote
the set of the first n positive integers). The permutation π is often viewed as a word
π(1)π(2) · · · π(n) and its size is denoted by |π|. The pattern induced by elements 1 ≤ k1 <
· · · < km ≤ n is the unique permutation σ : [m] → [m] such that σ(i) < σ(i′) if and
only if π(ki) < π(ki′) for all i, i′ ∈ [m]. The density of a permutation σ in a permutation
π, denoted by d(σ, π), is the probability that the pattern induced by |σ| elements chosen
uniformly at random is equal to σ. Similarly to the graph case, we say that a sequence
(πn)n∈N of permutations is convergent if the sizes of πn tend to infinity and the sequence
of densities d(σ, πn) converges for every permutation σ.

We say that a permutation is non-trivial if its size is at least two. The direct sum of
two permutations π1 and π2 is the permutation π of size |π1|+ |π2| such that π(k) = π1(k)
for k ∈ [|π1|] and π(|π1|+ k) = |π1|+ π2(k) for k ∈ [|π2|]; the permutation π is denoted by
π1⊕π2. A permutation is indecomposable if it is not a direct sum of two permutations; note
that every permutation is a (possibly iterated) direct sum of indecomposable permutations.

A word w1 · · ·wn is Lyndon if no proper suffix of the word w1 · · ·wn is smaller (in the
lexicographic order) than the word w1 · · ·wn itself. For example, the word aab is Lyndon
but the word aba is not. We want to use indecomposable permutations as the alphabet
to form Lyndon words. For this we introduce an order ≺ on the set of indecomposable
permutations such that indecomposable permutations of smaller size precede those of larger
size. Indecomposable permutations of the same size are ordered lexicographically. Hence,
the first five letters are associated with the following five (indecomposable) permutations:
1 ≺ 21 ≺ 231 ≺ 312 ≺ 321. As mentioned above every permutation can be uniquely
decomposed into a direct sum of indecomposable permutations and therefore corresponds
to a word over the alphabet consisting of indecomposable permutations. A permutation
π is Lyndon if the word corresponding to the decomposition of π into indecomposable
permutations is Lyndon. For example, the permutation 21 ⊕ 231 = 21453 is Lyndon but
the permutations 21⊕ 1 = 213 and 21⊕ 21 = 2143 are not. Note that all indecomposable
permutations are Lyndon.

2.3 Permutation limits

A permuton is a probability measure Π on the σ-algebra of Borel subsets from [0, 1]2 that
has uniform marginals, i.e.,

Π([a, b]× [0, 1]) = Π([0, 1]× [a, b]) = b− a

for all 0 ≤ a ≤ b ≤ 1. A Π-random permutation of size n is the permutation σ obtained
by sampling n points according to the measure Π, sorting them according to their x-
coordinates, say (x1, y1), . . . , (xn, yn) for x1 < · · · < xn (note that the x-coordinates are
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pairwise distinct with probability 1), and defining σ so that σ(i) < σ(j) if and only if
yi < yj for i, j ∈ [n]. Finally, the density of a permutation σ in a permuton Π, which is
denoted by d(σ,Π), is the probability that the Π-random permutation of size |σ| is σ.

A permuton Π is a limit of a convergent sequence (πn)n∈N of permutations if, for
every permutation σ, d(σ,Π) is the limit of d(σ, πn). Every permuton is a limit of a
convergent sequence of permutations and every convergent sequence of permutations has
a limit permuton [11,12].

3 Main result
Let Pk be the set of all permutations of size at most k, PLk the set of all non-trivial Lyndon
permutations of size at most k. Our main result is the following.

Theorem 1. For every k ∈ N, there exists x0 ∈ [0, 1]P
L
k and ε > 0 such that for every

x ∈ Bε(x0) ⊆ [0, 1]P
L
k there exists a permuton Π such that

d(σ,Π)σ∈PL
k

= x.

In addition, there exists a function f : [0, 1]P
L
k → [0, 1]Pk such that

f
(
d(σ,Π)σ∈PL

k

)
= d(σ,Π)σ∈Pk

for every permuton Π.

We next sketch the proof of Theorem 1. We start with the existence of the function
f ; we remark that the existence of the function f follows from the results presented in the
extended abstract [20], and we outline the argument here. Let π be a permutation and
let π = π1 ⊕ · · · ⊕ πk be the (unique) direct sum formed by indecomposable permutations.
Further, let w1 · · ·wk be the word corresponding to π1 ⊕ · · · ⊕ πk; it is well-known that
the word w1 · · ·wk can be uniquely expressed as a concatenation of Lyndon words in non-
increasing lexicographic order, and let π′

1, . . . , π
′
` be the permutations corresponding to

these Lyndon words. For example, if π = 1324576 = 1 ⊕ 21 ⊕ 1 ⊕ 1 ⊕ 21, then π′
1 is

1 ⊕ 21 = 132 and π′
2 is 1 ⊕ 1 ⊕ 21 = 1243 which are both Lyndon. It can be shown

using [19, Theorem 3.1.1(a)] that the constituents of the product of π′
1 × . . . × π′

` (in
the flag algebra sense) are only permutations that either are direct sums of fewer than k
indecomposable permutations or are direct sums of k indecomposable permutations but
are lexicographically at least as large as π. It follows that every permutation σ that is not
Lyndon can be expressed as a polynomial of Lyndon permutations of size at most |σ| (in
the flag algebra sense), which implies the existence of the function f ; in fact, the function
f is polynomial.

We next sketch the proof of the main part of Theorem 1, which yields the (matching)
lower bound on the dimension on the feasible region of pattern densities. For the lower
bound, we use a different mapping of indecomposable permutations to letters; note that this
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s1t1,1

s1t1,2

s1t1,3

s2t2,1

s2(t2,2 + t2,3)

s3(t3,1 + t3,2)

s3t3,3

s4t4,1

s4t4,2

s5t5,1

s5t5,2

s5t5,3

Figure 1: The permuton Π comprised of the “blow-up permutons” of the permutations 321,
312, 231, 21 and 132; the scaling factors si and ti,j are placed near their associated parts.

changes which permutations are Lyndon. The compression of a permutation π, which is
denoted by π̂, is the permutation obtained by (iteratively) “merging” consecutive elements
that increase by one; for example 2̂31 = 21, 3̂412 = 21, 2̂341 = 21, and 1̂342 = 132. The
new order < on indecomposable permutations is defined using ≺ on their compressions,
and if two different indecomposable permutations have the same compression, then ≺ is
used directly. For example, 3412 < 321, and so the letter associated with 3412 precedes
the letter associated with 321. Note that while the permutation 321 ⊕ 3412 = 3216745 is
Lyndon with respect to ≺ it is not with respect to <. However, it can be shown that the
number of Lyndon permutations of size k is the same with respect to ≺ and to <.

Fix k and let π1, . . . , πN be all non-trivial Lyndon permutations of size at most k listed
in the decreasing (lexicographic) order of the words corresponding to their indecomposable
blocks; we emphasize that the modified order < is used both to define which permutations
are Lyndon and to order the Lyndon permutations. For s1, . . . , sN ∈ [0, 1] and ti,j ∈ [0, 1],
i ∈ [N ] and j ∈ [|πi|] such that the sum of ti,j’s is at most one, we define a permuton Π to be
the permuton comprised of the “blow-up permutons” of the permutations π1, . . . , πN . For
each i ∈ [N ] the “blow-up permuton” uses a segment of horizontal length ti,j corresponding
to the j’th point of the permutation πi, j ∈ [|πi|]. The “blow-up permutons” then get scaled
by s1, . . . , sN , respectively; see Figure 1 for illustration. We next consider the Jacobian
matrix of the densities d(π1,Π), . . . , d(πN ,Π) viewed as functions of s1, . . . , sN and observe
that its determinant is a polynomial in the variables si and ti,j and the coefficient of the
monomial formed by the product of all ti,j is non-zero; the latter is argued by making use
of [19, Theorem 3.1.1(a)]. Hence, the Jacobian determinant is not identically zero and so
there exists a choice of si and ti,j such that the determinant is non-zero, which implies the
existence of the point x0 ∈ [0, 1]P

L
k and the real ε > 0 from the statement of Theorem 1.
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1 Introduction and preliminaries
In network science, it is useful to have the ability to evaluate the nodes according to their
importance in the given network with respect to some criterion. Centrality measures, a
tool for this evaluation, are based on various properties of nodes such as the sizes of their
neighborhoods or their distances to other parts of the network. The choice of the most
suitable centrality heavily depends on what is being represented by the corresponding
network, resulting in the impossibility to directly compare these measures.

In this work, we study the properties of betweenness centrality, which is based on
the fraction of shortest paths passing through the given vertex. More precisely, for a
vertex u ∈ V (G) of a graph G = (V,E) the betweenness centrality of u (or shortly just
betweenness) is

B(u) =
∑

{v,w}∈V (G)

σvw(u)

σvw
,

where σvw denotes the number of shortest paths between v and w and σvw(u) is the number
of such paths passing through u [4]. The betweenness centrality of a graph G, denoted
B(G), is defined as the average betweenness centrality of its vertices. Although having a
wide range of applications, for example in the assessment of electric-grid vulnerability [1], in
the measuring of dependencies in object-oriented software systems [10], in arms transfer [2]
or in citation networks [12], there has not been many theoretical results about properties
of betweenness centrality.

One of the few theoretical aspects studied is the distribution of betweenness centrality
values and specifically its extremal cases, be it either distinct betweenness for all vertices [9]
or betweenness centrality being the same for all vertices [6, 7, 8]. In the latter case, such
graph G is called betweenness-uniform, or shortly a BUG, and its complement G is called
a coBUG. Our main result is in understanding of the structure of betweenness-uniform
graphs with betweenness value below one and in disproving the following conjecture.

Conjecture 1 (Coroničová-Hurajová, Madaras (2013) [6]). For any rational value α in
the interval (3/4,∞), there exists a betweenness-uniform graph with betweenness value of
α.

Note that the authors of the above-mentioned conjecture use a definition of between-
ness that counts contributions of ordered pairs of vertices, whereas our definition counts
contributions of unoriented pairs, resulting in betweenness values smaller by a factor of
one-half.

In the following text, we use standard graph-theoretic notation, namely the diameter
diam(G) being the longest of the shortest paths inside G, and G = (V,

(
n
2

)
\ E) being the

complement of the graph G. A graph is k-regular if each vertex has exactly k neighbors.
The fact that graphs G and H are isomorphic is denoted by G ≈ H. Also, Kn denotes the
complete graph on n vertices and Ka,b denotes the complete bipartite graph with parts of
sizes a and b.



On the structure and values of betweenness centrality in dense BUGs 480

2 Known constructions of betweenness-uniform graphs
and their values

It is an open problem to characterize all betweenness-uniform graphs and the spectrum of
betweenness values that are attained on their vertices. We introduce some of the known
classes of BUGs to give the reader some intuition.

The simplest BUGs are the vertex-transitive graphs, i.e., the graphs in which for each
pair of vertices there is an automorphism of the graph mapping one vertex onto the other.
[6, 11] This holds for example for cycles, complete graphs, or complete bipartite graphs
with the same sizes of parts.

It has been shown that the average betweenness centrality of an arbitrary connected
graph G is related to the average pairwise distances of its vertices: B(G) = 1

2
(n−1)(l(G)−

1), where l(G) is the average distance between pairs of vertices G and n is the number
of its vertices [3, 5]. Using this expression and the fact that average betweenness is equal
to betweenness of any vertex in a BUG, it is not hard to see that any half-integer can be
obtained as a value of betweenness in a vertex-transitive graph.

Moreover, it has been shown that for a given n, there are superpolynomially many
BUGs that are not vertex-transitive [6]. A class containing many such graphs is the class
of distance-regular graphs. A graph is distance-regular if for any two vertices x and y, the
number of vertices in distance a from x and in distance b from y depends only on the triple
(a, b, dist(x, y)).Any distance-regular graph is a BUG [6].

There is a construction allowing the creation of a BUG G′ from a smaller k-regular
BUG G. Let H be a disjoint union of ` distinct cliques of multiplicity ni and order ri for
each i ∈ {1, . . . , `}. Then replace each vertex of G by H and for Hx and Hy being the
copies of H that replaced x and y, make a full-join of Hx and Hy whenever xy ∈ E(G) [6].
The betweenness value in G′ is given by

B(G′) =
1

2

(
mB(G) +m− 1−

∑̀
i=1

niri(ri − 1)

m

)
,

where m = |V (H)| =
∑`

i=1 niri. Take G ≈ Kn for n ≥ 2 and consider graphs G′,
G′′ obtained by doing the above-mentioned construction with disjoint unions of cliques
H ′ =

⋃c
a=1Kr′a and H ′′ =

⋃c−1
a=1Kr′′a where for i ≤ c−2, r′i = r′′i and r′′c−1 = r′c−1+ r

′
c. Then

with an increasing number of vertices in the disjoint unions of cliques, we can construct
G′, G′′ with decreasing |B(G′)−B(G′′)|.

3 Betweenness-uniform graphs with betweenness value
below one

Based on the fact that only non-adjacent pairs of vertices can contribute to the betweenness
of other vertices, we show the following relation between the density of the complement of
G, G, and the resulting average betweenness centrality.
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Lemma 2. For a connected graph G, we have B(G) ≥ |E(G)|
|V (G)| , with equality if and only if

G has diameter at most 2.

3.1 No BUGs with diameter ≥ 3 and betweenness below one

By Lemma 2, betweenness-uniform graphs with betweenness-centrality below one are quite
dense. For dense graphs, it is often easier to analyze their structure and properties by
studying their complements. We start by observing that complements of graphs with
diameter at least three have a simple structure.

Theorem 3. A connected graph G satisfies diam(G) ≥ 3 if and only if G is connected and
contains a spanning tree which is a double star.

By combining Theorem 3 and Lemma 2 and observing that a complement of a double
star is not a BUG leads to the following corollary.

Corollary 4. There is no connected betweenness-uniform graph of diameter greater than
two having betweenness centrality below one.

3.2 Structure of BUGs with diameter 2 and betweenness below
one

Due to Corollary 4, we can restrict the remaining analysis to betweenness-uniform graphs
with diameter two. In these graphs, each shortest path contributes to exactly one vertex.

Consider G a complement of a BUG of diameter two with |V (G)| = n. We say that a
vertex v is close to an edge e in G if v is adjacent to at least one endpoint of the given
edge; in particular, the two endpoints of e are close to e. Let CG(e) be the set of vertices
close to the edge e, and let CG(v) be the set of edges that are close to the vertex v.

Observe that for a vertex v and an edge e = {x, y} in G, v is close to e if and only if
no shortest path from x to y in G passes through v, and thus x and y do not contribute to
the betweenness of v in G. In particular, for an edge e = {x, y} of G, there are n− |CG(e)|
shortest paths from x to y in G, each passing through a different vertex of V \CG(e). We
denote the contribution of the edge e to each vertex of V (G) \ CG(e) as the weight of the
edge e, w(e) = 1/(n− |CG(e)|).

The weight of a vertex v, w(v) =
∑

e∈CG(v)w(e), is closely related to the betweenness
of v.

Proposition 5. Let G be of diameter two. Then for all x ∈ V (G),

B(x) =
(∑

e∈E

w(e)
)
− w(x).

Corollary 6. G is a BUG if and only if all vertices of G have the same weight.
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Furthermore, as we are interested only in betweenness values below one, G must have
more vertices than edges by Lemma 2.

Observation 7. If G is a BUG with B(G) < 1, then G has some components which are
trees.

Considering x a leaf adjacent to y, x, y ∈ V (G), by comparing CG(x) and CG(y), we
obtain a restriction on the structure of the tree components of G.

Lemma 8. For G a BUG, any vertex of degree one appears only in a star component of
G.

Conditioning on the vertices having the same weight, we even prohibit stars of different
sizes.

Proposition 9. All the tree components of a coBUG G are stars of the same size.

Let us call a BUG G exotic if it has B(G) < 1 and G contains a component different
from a star.

Conjecture 10. There are no exotic betweenness-uniform graphs.

A graph G is (m,t)-uniform if |CG(v)| = m for every v ∈ V (G) and |CG(e)| = t for
every e ∈ E(G). Note that if G is disconnected and (m, t)-uniform, then G is always a
BUG with betweenness value m/t. Indeed, in an (m, t)-uniform graph G, every vertex has
weight m

n−t . However, we can show that there can be no exotic BUGs whose complements
have nontrivial (m, t)-uniform components.

Theorem 11. There is no exotic BUG with a complement containing an (m, t)-uniform
component other than a star.

Note that there exist infinitely many BUGs of betweenness exactly one whose comple-
ments have both a star component and an (m, t)-uniform non-star component. There are
also BUGs whose complements have a star component and a non-(m, t)-uniform compo-
nent, but we have not found any such BUG with betweenness below one.

3.3 Only values k
k+1 on the interval 〈0, 67〉

Apart from showing that a non-star component of a coBUG with density less than one
would have to be non-(m,t)-uniform, we prove that some small stars cannot occur as a
component of a coBUG with any other types of components, by which we show that there
are no exotic BUGs with betweenness below 6

7
.

By comparing the vertices and edges in the closeness relation and their weights, we can
infer the following forbidden structures in components of coBUGs.

Lemma 12. Let H be a component of a coBUG. Then
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• H has no vertex of degree one unless H ≈ K1,` for some ` ≥ 1.

• H has no vertex of degree two whose neighbours are adjacent unless H ≈ K1,1,` for
some ` ≥ 1.

• H has no two adjacent vertices a, b of degree two, whose neighbours c and d are
adjacent, i.e. ab, ac, bd, cd ∈ E(H), unless H ≈ C4.

• H has no adjacent vertices a, b of degree two, whose neighbours e and c have a common
neighbour d, i.e. ab, bc, cd, de, ea ∈ H, unless H ≈ C5

• H has no vertices a, b, c of degree two such that ab, bc ∈ E(H)

By using Lemma 12 and by counting of edges we can conclude the following lemma.

Lemma 13. Let v be a vertex of a non-star component of a coBUG G. If deg(v) = d,
then |CG(v)| ≥ 2d.

By considering the weight `
n−(`+1)

of vertices in a star K1,`, by careful consideration of
obtainable weights, by using of Lemmas 12 and 13 and by a case analysis we can prove the
following theorem.

Theorem 14. Let H be one of the following: K1, K2, K1,2, K1,3, K1,4, K1,5, K1,6. If G is
a coBUG of density less than 1 containing H as a connected component, then all the other
components of G are isomorphic to H as well.

This result allows us to both disprove the Conjecture 1 and to generalize previous result
by Hurajová and Madaras [6] claiming that there are no betweenness-uniform graphs in
the interval (0, 1

2
).

Corollary 15. If G is a BUG with B(G) ≤ 6
7
, then B(G) ∈ {0, 1

2
, 2
3
, 3
4
, 4
5
, 6
7
}. Moreover,

any such BUG is a complement of a disjoint union of stars of the same size.
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1 Introduction
The graph removal lemma, first proved by Ruzsa and Szemerédi [22], is a fundamental result
in extremal graph theory. It also has important applications to additive combinatorics and
property testing. The lemma states that for every fixed graph H and ε > 0, if an n-vertex
graph G contains εn2 edge-disjoint copies of H then G it contains δnv(H) copies of H, where
δ = δ(ε,H) > 0. Unfortunately, the current proofs of the graph removal lemma give only
very weak bounds on δ = δ(ε,H) and it is a very important problem to understand the
dependence of δ on ε. The best known result, due to Fox [11], proves that 1/δ is at most
a tower of exponents of height logarithmic in 1/ε. Ideally, one would like to have better
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bounds on 1/δ, where an optimal bound would be that δ is polynomial in ε. However, it is
known [2] that δ(ε,H) is polynomial in ε only if H is bipartite. This situation led Fox and
Wigderson [12] to initiate the study of minimum degree conditions which guarantee that
δ(ε,H) depends polynomially or linearly on ε. Formally, let δ(ε,H; γ) be the maximum
δ ∈ [0, 1] such that if G is an n-vertex graph with minimum degree at least γn and with
εn2 edge-disjoint copies of H, then G contains δnv(H) copies of H.

Definition 1.1. Let H be a graph.

1. The linear removal threshold of H, denoted δlin-rem(H), is the infimum γ such that
δ(ε,H; γ) depends linearly on ε, i.e. δ(ε,H; γ) ≥ µε for some µ = µ(γ) > 0 and all
ε > 0.

2. The polynomial removal threshold of H, denoted δpoly-rem(H), is the infimum γ such
that δ(ε,H; γ) depends polynomially on ε, i.e. δ(ε,H; γ) ≥ µε1/µ for some µ =
µ(γ) > 0 and all ε > 0.

Trivially, δlin-rem(H) ≥ δpoly-rem(H). Fox and Wigderson [12] initiated the study of
δlin-rem(H) and δpoly-rem(H), and proved that δlin-rem(Kr) = δpoly-rem(Kr) =

2r−5
2r−3

for every
r ≥ 3, where Kr is the clique on r vertices. They further asked to determine the removal
lemma thresholds of odd cycles. Here we completely resolve this question. The following
theorem handles the polynomial removal threshold.

Theorem 1.2. δpoly-rem(C2k+1) =
1

2k+1
.

Theorem 1.2 also answers another question of Fox and Wigderson [12], of whether
δlin-rem(H) and δpoly-rem(H) can only obtain finitely many values on r-chromatic graphs H
for a given r ≥ 3. Theorem 1.2 shows that δpoly-rem(H) obtains infinitely many values for 3-
chromatic graphs. In contrast, δlin-rem(H) obtains only three possible values for 3-chromatic
graphs. Indeed, the following theorem determines δlin-rem(H) for every 3-chromatic H. An
edge xy of H is called critical if χ(H − xy) < χ(H).

Theorem 1.3. For a graph H with χ(H) = 3, it holds that

δlin-rem(H) =


1
2

H has no critical edge,
1
3

H has a critical edge and contains a triangle,
1
4

H has a critical edge and odd-girth(H) ≥ 5.

Theorems 1.2 and 1.3 show a separation between the polynomial and linear removal
thresholds, giving a sequence of graphs (i.e. C5, C7, . . . ) where the polynomial threshold
tends to 0 while the linear threshold is constant 1

4
. The proof of Theorem 1.3 appears in

the full version of this paper.
The parameters δpoly-rem and δlin-rem are related to two other well-studied minimum de-

gree thresholds: the chromatic threshold and the homomorphism threshold. The chromatic
threshold of a graph H is the infimum γ such that every n-vertex H-free graph G with



The Minimum Degree Removal Lemma Thresholds 487

δ(G) ≥ γn has bounded cromatic number, i.e., there exists C = C(γ) such that χ(G) ≤ C.
The study of the chromatic threshold originates in the work of Erdős and Simonovits [10]
from the ’70s. Following multiple works [4, 14, 15, 7, 5, 24, 25, 18, 6, 13, 19], the chromatic
threshold of every graph was determined by Allen et al. [1].

Moving on to the homomorphism threshold, we define it more generally for families
of graphs. The homomorphism threshold of a graph-family H, denoted δhom(H), is the
infimum γ for which there exists an H-free graph F = F (γ) such that every n-vertex H-
free graph G with δ(G) ≥ γn is homomorphic to F . When H = {H}, we write δhom(H).
This parameter was widely studied in recent years [17, 21, 16, 8, 23]. It turns out that
δhom is closely related to δpoly-rem(H), as the following theorem shows. For a graph H,
let IH denote the set of all minimal (with respect to inclusion) graphs H ′ such that H is
homomorphic to H ′.

Theorem 1.4. For every graph H, δpoly-rem(H) ≤ δhom(IH).

Note that IC2k+1
= {C3, C5, . . . , C2k+1}. Using this, the upper bound in Theorem 1.2

follows immediately by combining Theorem 1.4 with the result of Ebsen and Schacht [8]
that δhom({C3, C5, . . . , C2k+1}) = 1

2k+1
. The lower bound in Theorem 1.2 was established

in [12].

2 Proof of Theorem 1.4
We say that an n-vertex graph G is ε-far from a graph property P (e.g. being H-free for
a given graph H, or being homomorphic to a given graph F ) if one must delete at least
εn2 edges to make G satisfy P . Trivially, if G has εn2 edge-disjoint copies of H, then it is
ε-far from being H-free. The following result is from [20].

Theorem 2.1. For every graph F on f vertices and for every ε > 0, there is q = qF (ε) =
poly(f/ε), such that the following holds. If a graph G is ε-far from being homomorphic to
F , then for a sample of q vertices x1, . . . , xq ∈ V (G), taken uniformly with repetitions, it
holds that G[{x1, . . . , xq}] is not homomorphic to F with probability at least 2

3
.

Theorem 2.1 is proved in Section 2 of [20]. In fact, [20] proves a more general result on
property testing of the so-called 0/1-partition properties. Such a property is given by an
integer f and a function d : [f ]2 → {0, 1,⊥}, and a graph G satisfies the property if it has
a partition V (G) = V1 ∪ · · · ∪ Vf such that for every 1 ≤ i, j ≤ f (possibly i = j), it holds
that (Vi, Vj) is complete if d(i, j) = 1 and (Vi, Vj) is empty if d(i, j) = 0 (if d(i, j) =⊥ then
there are no restrictions). One can express the property of having a homomorphism into
F in this language, simply by setting d(i, j) = 0 for i = j and ij /∈ E(F ). In [20], the class
of these partition properties is denoted GPP0,1, and every such property is shown to be
testable by sampling poly(f/ε) vertices. This implies Theorem 2.1.

For a graphH on [h] and integers s1, s2, . . . , sh > 0, we denote byH[s1, . . . , sh] the blow-
up of H where each vertex i ∈ V (H) is replaced by a set Si of size si. The following lemma
is standard, and follows from the hypergraph version of the Kővári-Sós-Turán theorem [9].
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Lemma 2.2. Let H be a fixed graph on vertex set [h] and let s1, s2, . . . , sh ∈ N. There exists
a constant c = c(H, s1, . . . , sh) > 0 such that the following holds. Let G be an n-vertex
graph and V1, . . . , Vh ⊆ V (G). Suppose that G contains at least ρnh copies of H mapping i
to Vi for all i ∈ [h]. Then G contains at least cρ

1
c ·ns1+···+sh copies of H[s1, . . . , sh] mapping

Si to Vi for all i ∈ [h].

Proof of Theorem 1.4. Recall that IH is the set of minimal graphs H ′ (with respect to
inclusion) such that H is homomorphic to H ′. For convenience, put δ := δhom(IH). Our
goal is to show that δpoly-rem(H) ≤ δ + α for every α > 0. So fix α > 0 and let G be
a graph with minimum degree δ(G) ≥ (δ + α)n and with εn2 edge-disjoint copies of H.
By the definition of the homomorphism threshold, there is an IH-free graph F (depending
only on IH and α) such that if a graph G0 is IH-free and has minimum degree at least
(δ+ α

2
)·|V (G0)|, then G0 is homomorphic to F . Observe that if a graph G0 is homomorphic

to F then G0 is H-free, because F is free of any homomorphic image of H. It follows that G
is ε-far from being homomorphic to F , because G is ε-far from being H-free. Now we apply
Theorem 2.1. Let q = qF (ε) be given by Theorem 2.1. We assume that q � log(1/α)

α2 and
n� q2 without loss of generality. Sample q vertices x1, . . . , xq ∈ V (G) with repetition and
let X = {x1, . . . , xq}. By Theorem 2.1, G[X] is not homomorphic to F with probability at
least 2/3. As n� q2, the vertices x1, . . . , xq are pairwise-distinct with probability at least
0.99. Also, for every i ∈ [q], the number of indices j ∈ [q]\{i} with xixj ∈ E(G) dominates
a binomial distribution B(q − 1, δ(G)

n
). By the Chernoff bound (see e.g. [3, Appendix A])

and as δ(G) ≥ (δ + α)n, the number of such indices is at least (δ + α
2
)q with probability

1 − e−Ω(qα2). Taking the union bound over i ∈ [q], we get that δ(G[X]) ≥ (δ + α
2
)|X|

with probability at least 1 − qe−Ω(qα2) ≥ 0.9, as q � log(1/α)
α2 . Hence, with probability at

least 1
2
it holds that δ(G[X]) ≥ (δ + α

2
)|X| and G[X] is not homomorphic to F . If this

happens, then G[X] is not IH-free (by the choice of F ), hence G[X] contains a copy of
some H ′ ∈ IH . By averaging, there is H ′ ∈ IH such that G[X] contains a copy of H ′ with
probability at least 1

2|IH |
. Put k = |V (H ′)| and let M be the number of copies of H ′ in G.

The probability that G[X] contains a copy of H ′ is at most M( q
n
)k. Using the fact that

q = polyH,α(1
ε
), we conclude that M ≥ 1

2|IH |
· (n

q
)k ≥ polyH,α(ε)nk. As H → H ′, there

exists H ′′, a blow-up of H ′, such that H ′′ have the same number of vertices as H, and
that H ⊂ H ′′. By Lemma 2.2 for H ′ with Vi = V (G) for all i, there exist polyH,α(ε)nv(H′′)

copies of H ′′ in G, and thus polyH,α(ε)nv(H) copies of H. This completes the proof.

3 Concluding remarks and open questions
It would be interesting to determine the possible values of δpoly-rem(H) for 3-chromatic
graphs H. So far we know that 1

2k+1
is a value for each k ≥ 1. Is there a graph H with

1
5
< δpoly-rem(H) < 1

3
? Also, is it true that δpoly-rem(H) > 1

5
if H is not homomorphic to

C5?
Another question is whether the inequality in Theorem 1.4 is always tight, i.e. is it

always true that δpoly-rem(H) = δhom(IH)?
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Finally, we wonder whether the parameters δpoly-rem(H) and δlin-rem(H) are monotone,
in the sense that they do not increase when passing to a subgraph of H. We are not aware
of a way of proving this without finding δpoly-rem(H), δlin-rem(H).
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Finding general conditions which ensure that a graph is Hamiltonian is a central
topic in graph theory. An old and well known conjecture in the area states that any
d-regular n-vertex graph G whose second largest eigenvalue in absolute value λ(G) is
at most d/C, for some universal constant C > 0, has a Hamilton cycle. We obtain two
main results which make substantial progress towards this problem. Firstly, we settle
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general case we show that λ(G) ≤ d/C(log n)1/3 implies the existence of a Hamilton
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1 Introduction
A Hamilton cycle in a graph G is a cycle passing through all the vertices of G. If it exists,
then G is called Hamiltonian. Being one of the most central notions in Graph Theory, it has
been extensively studied by numerous researchers, see e.g., [1, 9, 13, 15, 16, 20, 23, 28, 31,
32, 34, 38], and the surveys [22, 33]. In particular, the problem of deciding Hamiltonicity
of a graph is known to be NP-complete and thus, finding general conditions which ensure
that G has a Hamilton cycle is one of the most popular topics in Graph Theory. For
instance, two famous theorems of this nature are the celebrated result of Dirac [19], which
states that if the minimum degree of an n-vertex graph G is at least n/2, then G contains
a Hamilton cycle, and the criterion of Chvátal and Erdős [13] that a graph is Hamiltonian
if its connectivity number is at least as large as its independence number.

In fact, most of the classical criteria for Hamiltonicity focus on rather dense graphs. A
prime example of this is clearly Dirac’s theorem stated above, but also the Chvátal-Erdős
condition requires the graph to be relatively dense, of average degree Ω(

√
n). In contrast,

sufficient conditions that ensure Hamiltonicity of sparse graphs seem much more difficult
to obtain. A natural starting point towards this topic is to consider sparse random graphs,
to which a lot of research has been dedicated in the last 50 years. In a breakthrough
paper in 1976, Pósa [38] proved that the binomial random graph model G(n, p) with p ≥
C log n/n for some large constant C almost surely contains a Hamilton cycle. In doing
so, he invented the influential rotation-extension technique for finding long cycles and
paths, which has found numerous further applications since then. Pósa’s result was later
refined by Korshunov [26] and in 1983, a more precise threshold for Hamiltonicity was
obtained by Bollobás [8] and Komlós and Szemerédi [25], who independently showed that
if p = (log n+log log n+ω(1))/n, thenG(n, p) is almost surely Hamiltonian. It is a standard
exercise to note that this is essentially tight - indeed, if p = (log n+log log n−ω(1))/n, then
G(n, p) almost surely has a vertex with degree at most 1, and hence is not Hamiltonian.
In parallel, significant attention has also been given to the Hamiltonicity of the random
d-regular graph model Gn,d - it is known that Gn,d almost surely contains a Hamilton cycle
for all values of 3 ≤ d ≤ n− 1. For this result, the reader is referred to Cooper, Frieze and
Reed [14] and Krivelevich, Sudakov, Vu and Wormald [30] and their references.

Given the success of the study of Hamilton cycles in sparse random graphs, it be-
came natural to then consider pseudorandom graphs, which are deterministic graphs that
resemble random graphs in various important properties. A convenient way to express
pseudorandomness is via spectral techniques and was introduced by Alon. An (n, d, λ)-
graph is an n-vertex d-regular graph G whose second largest eigenvalue in absolute value,
λ(G), is such that λ(G) ≤ λ. Roughly speaking, λ(G) is a measure of how “smooth” the
edge-distribution of G is, and the smaller its value, the closer to “random” G behaves. The
reader is referred to [29] for a detailed survey concerning pseudorandom graphs.

In a rather influential paper, Krivelevich and Sudakov [27] employed Pósa’s rotation-
extension technique to prove the very general result that (n, d, λ)-graphs are Hamiltonian,
provided λ is significantly smaller than d. Precisely, they showed that if n is sufficiently
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large, then

d/λ ≥ 1000 log n(log log log n)

(log log n)2
(1)

guarantees that any (n, d, λ)-graph contains a Hamilton cycle. It is worth mentioning
that Hefetz, Krivelevich and Szabó [23] provided a more general sufficient condition for
Hamiltonicity in terms of expansion and some variant of high connectivity, yet for (n, d, λ)-
graphs their condition essentially reduces to (1).

The above result on Hamiltonicity of (n, d, λ)-graphs has found numerous applications
in the last 20 years towards some well-known problems, some of which we will discuss later.
Given its significance and generality, it leads to the very natural and fundamental question
of whether a smaller ratio of d/λ is already sufficient to imply Hamiltonicity. Krivelevich
and Sudakov [27] conjectured that it should suffice that d/λ is only a large enough constant.

Conjecture 1.1. There exists an absolute constant C > 0 such that any (n, d, λ)-graph
with d/λ ≥ C contains a Hamilton cycle.

2 Main results
Despite the plethora of incentives, there has been no improvement until now on the Kriv-
elevich and Sudakov bound stated in (1). We make significant progress towards Conjec-
ture 1.1 in two ways. First, we improve on the Krivelevich and Sudakov bound in general
by showing that a spectral ratio of order (log n)1/3 already guarantees Hamiltonicity.

Theorem 2.1. There exists a constant C > 0 such that any (n, d, λ)-graph with d/λ ≥
C(log n)1/3 contains a Hamilton cycle.

The proof of the above result will rely on the Pósa rotation-extension method with various
new ideas. Namely, we will need to develop some techniques in order to use this method
in a robust manner.

Secondly, we confirm Conjecture 1.1 in full when the degree is polynomial in the order
of the graph.

Theorem 2.2. For every constant α > 0, there exists a constant C > 0 such that any
(n, d, λ)-graph with d ≥ nα and d/λ ≥ C contains a Hamilton cycle.

In fact, Theorem 2.2 is a corollary of a more general statement that we will prove which in
particular states that (n, d, λ)-graphs with linearly many vertex-disjoint cycles are Hamil-
tonian.

3 Applications and related problems
Both Theorem 2.1 and Theorem 2.2 immediately yield improvements in several applica-
tions which made use of the result of Krivelevich and Sudakov. One application is an
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important special case of a famous open question of Lovász [35] from 1969 concerning the
Hamiltonicity of a certain class of well-behaved graphs (see e.g., [17] and its references for
more background on the problem).

Conjecture 3.1. Every connected vertex-transitive graph contains a Hamilton path, and,
except for five known examples, a Hamilton cycle.

Since Cayley graphs are vertex-transitive and none of the five known exceptions in Lovász’s
conjecture is a Cayley graph, the conjecture in particular includes the following, which was
asked much earlier in 1959 by Rapaport Strasser [39].

Conjecture 3.2. Every connected Cayley graph is Hamiltonian.

For these conjectures, a proof is currently out of sight. Indeed, notable progress towards
them in their full generality are a result of Babai [5] that every vertex-transitive n-vertex
graph contains a cycle of length Ω(

√
n) (see [18] for a recent improvement) and a result of

Christofides, Hladký and Máthé [12] that every vertex-transitive graph of linear minimum
degree contains a Hamilton cycle.

Given this, it is natural to consider the “random” version of Conjecture 3.2. Indeed, Alon
and Roichman [4] showed that in any groupG, a random set S of O(log |G|) elements is such
that the Cayley graph generated by them, Γ(G,S), is almost surely connected. Therefore, a
particular instance of Conjecture 3.2 is to show that Γ(G,S) is almost surely Hamiltonian,
which is itself a conjecture of Pak and Radoičić [37]. In fact, this relates directly to
Conjecture 1.1 since it can be shown, generalizing the result of Alon and Roichman, that
if |S| ≥ C log |G| for some large constant C, then Γ(G,S) is almost surely an (n, d, λ)-
graph with d/λ ≥ K for some large constant K. Hence, Conjecture 1.1 would imply the
Hamiltonicity of Γ(G,S). Improving on several earlier results [11, 27, 36] we will show
how Theorem 2.1 can be used to prove that if |S| is of order log5/3 n, then Γ(G,S) is
almost surely Hamiltonian. We will also give an improved bound on a related problem
of Akbari, Etesami, Mahini, and Mahmoody [3] concerning Hamilton cycles in coloured
complete graphs which use only few colours.

Another application of our results concerns one of the central themes in Additive Com-
binatorics, the interplay between the two operations sum and product. A well-known fact
in this area is that any multiplicative subgroup A of the finite field Fq of size at least q3/4
must contain two elements x, y such that x+ y also belongs to A. Motivated by this, Alon
and Bourgain [3] studied more complex additive structures in multiplicative subgroups. In
particular, they proved that when a subgroup has size |A| ≥ q3/4(log q)1/2−o(1), then there
is a cyclic ordering of the elements of A such that the sum of any two consecutive elements
is also in A. Using Theorem 2.2, we can improve on Alon and Bourgain’s result, showing
that the additional polylog-factor can be avoided. This shows that when |A| is of order
q3/4, not only does it contain x, y, x+ y ∈ A but also much more complex structures.

Finally, we give an application of our techniques to another problem related to Con-
jecture 3.2. Motivated by this conjecture, Pak and Radoičić [37] showed that every group
G has a set of generators S of size at most log2 |G| such that the Cayley graph Γ(G,S)
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is Hamiltonian, which is optimal since there are groups that do not have generating sets
of size smaller than log2 |G|. Since their proof relies on the classification of finite simple
groups, they asked to find a classification-free proof of this result. Using the methods de-
veloped for the proof of Theorem 2.2 we give a classification-free proof that there is always
such a set S with |S| = O(log n).
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1 Introduction
A remarkable result due to Kahn and Kim [5] says that in any d-regular graph G, the
probability that a vertex is contained in a uniformly chosen matching in G is 1 − (1 +

od(1))d
− 1

2 . This shows that the structure of a d-regular graph has essentially no impact on
the probability that a vertex is contained in a uniformly chosen matching.

In this paper we are interested in uniformly chosen perfect matchings. Then, surely,
each vertex is contained in every perfect matching. Hence, as the statement for vertices is
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trivial, what about the probability that an edge is contained in a random perfect matching?
Is each edge equally likely contained in random perfect matching? A moment of thought
reveals that this is wrong in a very strong sense. In every odd-regular graph with exactly
one bridge, the bridge is contained in every perfect matching, while the edges adjacent to
the bridge are contained in none of the perfect matchings. Therefore, in order to avoid a
trivial statement further conditions are needed.

Hall’s condition for the existence of perfect matchings in bipartite graphs says that the
neighbourhood of an (independent) set should be at least as large as the set itself, which
is clearly also a necessary condition. Here, we assume that this property is present in a
robust sense in order to avoid the trivial scenarios mentioned above. More precisely, let
ν, τ > 0 and G be a graph on n vertices. Then, we define the ν-robust neighbourhood
RNν,G(S) of a set S ⊆ V (G) in G to be the set of vertices of G which have at least νn
neighbours in S. We say that G is a robust (ν, τ)-expander if RNν,G(S) ≥ |S|+νn for each
S ⊆ V (G) satisfying τn ≤ |S| ≤ (1 − τ)n. Robust expansion is a fairly mild assumption
and consequently it proved to be useful in several situations, see for example [3, 6, 7].

We denote by P(G) the set of all perfect matchings in G and write M ∼ U(P(G))
to refer to a uniformly chosen matching from P(G). Our main result implies that such
matchings M are extremely well-distributed in robust expanders.

Theorem 1. For any δ > 0, there exists τ > 0 such that for all ν > 0, there exists n0 ∈ N
for which the following holds. Let n ≥ n0 be even and d ≥ δn. Then, for any d-regular
robust (ν, τ)-expander G on n vertices, M ∼ U(P(G)), and e ∈ E(G), we have

P[e ∈M ] = (1 + on(1))d
−1.

In fact much more is true. Fix any matching N in G, let M ∼ U(P(G)), and consider
X := |M ∩ N |. Then, linearity of expectation and Theorem 1 imply that E[X] = (1 +
on(1))d

−1|N |. Employing the heuristic that each edge is independently present in M ∼
U(P(G)) with probability d−1, then we expect that X has a binomial distribution with
parameters |N | and d−1. This is approximated by a Poisson distribution with parameter
d−1|N |, whenever |N | grows with n. Our next result confirms this.

To this end, we define the total variation distance of two integer-valued random variables
Y and Z as dTV(Y, Z) := 1

2

∑
k∈Z |P[Y = k] − P[Z = k]|, which measures how close two

distributions are. Moreover, we write Y ∼ Po(λ) if Y is a random variable which follows
a Poisson distribution with parameter λ.

Theorem 2. For any δ > 0, there exists τ > 0 such that for all ν > 0, there exists
n0 ∈ N for which the following holds. Let n ≥ n0 be even and d ≥ δn. Then, for any
d-regular robust (ν, τ)-expander G on n vertices, M ∼ U(P(G)), any matching N in G,
X := |M ∩N |, and Y ∼ Po(d−1|N |), we have dTV(X, Y ) = on(1).

The fact that N is a matching is not crucial for our argument, however note for example
that if N is a star, then X is a {0, 1}-valued random variable. Hence, X can only converge
to a Poisson distribution if N is somewhat spread out. In particular, when N is a spanning
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r-regular graph for some fixed r, we can derive an analogue of Theorem 2 (see Section 2),
which answers a question of Spiro and Surya [8].

Theorem 2 has some interesting consequences. We define pm(G) := |P(G)| and sup-
pose G and M are as in Theorem 2. Let N be a perfect matching in G. Then, Theorem 2
implies that

pm(G−N)

pm(G)
= P[M ∩N = ∅] = (1 + on(1))e

− n
2d .

For a graph G with a perfect matching, we denote by G◦ a subgraph of G where one perfect
matching is removed. Various combinatorial problems can be expressed as determining
pm(G◦)
pm(G)

. For example, when G = Kn
2
,n
2
, this ratio is equal to the probability that a random

permutation of order n
2
is fixed-point-free, and it is well known that this probability equals

(1 + on(1))e
−1. The case when G = Kn also has a combinatorial interpretation, see [4].

Let Ka×b denote the complete multipartite graph with a parts, each of size b. As an in-
terpolation between the casesKn

2
,n
2
andKn, one may ask whether pm(K◦r×n

r
)(pm(Kr×n

r
))−1

converges to a limit. Johnston, Kayll, and Palmer [4] formulated this as a conjecture (and
conjectured the limit value). Recently this was resolved by Spiro and Surya [8]. As all these
graphs are robust expanders (excluding Kn

2
,n
2
; we discuss bipartite graphs in Section 2),

Theorem 2 reproves the result due to Spiro and Surya [8].
In fact, Spiro and Surya [8] also speculate whether for any α > 1

2
, all regular graphs

G on an even number n of vertices with δ(G) ≥ αn satisfy pm(G◦)
pm(G)

→ e−
1
2α , but consider

this statement far too strong to be true. As it is trivial to show that graphs on n vertices
with δ(G) ≥ (1

2
+ on(1))n are robust expanders, Theorem 2 shows that this statement is

actually true.

Our proof strategy is as follows (see the full version of this article [2] for more details).
Let G,M,N , and X be as in the statement of Theorem 2. We estimate the ratios of the
form P[X=k]

P[X=k−1] via the so-called switching method. Knowing all relevant fractions of this
type already exhibits the distribution of X, which has the advantage that the probabilities
P[X = k] do not need to be calculated directly.

The switching method is implemented as follows. Fix a positive integer k and denote by
Mk andMk−1 the sets of perfect matchings in G which contain precisely k and k−1 edges
of N , respectively. Then, construct an auxiliary bipartite graph H on vertex classesMk

andMk−1 by joining two perfect matchings M ∈Mk and M ′ ∈Mk−1 if there is a cycle C
of length 2` in G which contains precisely one edge of N and alternates between edges ofM
and M ′. (In other words, M ∈Mk and M ′ ∈Mk−1 are adjacent in H if N ∩M ′ ⊆ N ∩M
and the extra edge in (N ∩M)\M ′ can be ‘switched out’ ofM to obtainM ′ by exchanging
` edges of M for ` edges of M ′, where these 2` edges altogether form a cycle.)

Note that if all perfect matchings inMk have degree (roughly) dk in H, while all perfect
matchings in Mk−1 have degree (roughly) dk−1, then dk|Mk| ≈ e(H) ≈ dk−1|Mk−1|.
Hence, P[X=k]

P[X=k−1] = |Mk|
|Mk−1|

≈ dk−1

dk
. Therefore, the crux of the proof consists in precisely

estimating the number of such alternating cycles.
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Counting the number of cycles of a certain length can be achieved using random walks
as follows. Given a d-regular graph, note that the number of walks of length ` starting
at u is precisely d`, and so the probability that a simple random walk that starts in u
is in v after ` steps is equal to the number of walks from u to v of length ` divided by
d`. Since simple random walks are rapidly mixing in robust expanders, one can precisely
estimate such probabilities, and therefore the number of such walks. A simple counting
argument can eliminate those walks which are not paths, and so we can accurately count
the number of cycles of fixed length in a regular robust expander. In practice, we have to
consider simple random walks that use in every second step an edge from a fixed perfect
matching M . However, this additional technicality does not affect the mixing properties
of such walks and so we can still precisely count them.

We remark that Spiro and Surya [8] also used the switching method, which is common
for this type of problems. Our contribution is to use longer cycles and perform the analysis
with Markov chains; although the intuition is that the estimations become less precise with
larger cycles, we employ key properties of Markov chains to show that in fact the opposite
is true. Besides the fact that our results are substantially more general, the analysis also
becomes significantly shorter and cleaner.

2 Extensions
In the full version of this paper we showed that uniformly chosen perfect matchings in
robust expanders contain each edge asymptotically equally likely. In fact, for a larger
set of disjoint edges, these events are approximately independent. As robust expanders
are a fairly large class of graphs, this in particular contains graphs G on n vertices with
δ(G) ≥ (1

2
+ on(1))n, which confirms a question of Spiro and Surya [8] in a strong form.

2.1 Regular subgraphs

Spiro and Surya [8] also suggest to estimate the probability that a uniformly chosen perfect
matching of Turán graphs intersects a fixed spanning r-regular subgraph.

Theorem 3. For any δ > 0, there exists τ > 0 such that for all ν > 0, there exists n0 ∈ N
for which the following holds. Let n ≥ n0 be even, d ≥ δn, and let r ≤ n

1
50 be a positive

integer. Then, for any d-regular robust (ν, τ)-expander G on n vertices, M ∼ U(P(G)),
any spanning r-regular subgraph N in G, X := |M ∩ E(N)|, and Y ∼ Po( rn

2d
), we have

dTV(X, Y ) = on(1).

As a corollary, one can calculate the probability that r perfect matchings, each chosen
independently and uniformly at random, are (edge-)disjoint. This relates to a problem
of Ferber, Hänni, and Jain [1], which asks for the probability of selecting r edge-disjoint
copies of a graph H in a host graph G. They answer this question for Hamilton cycles in
the complete graph. The following corollary is an analogue for perfect matchings in the



Random perfect matchings in regular graphs 501

more general class of robust expanders. The proof follows immediately from Theorem 3
by induction on r.

Corollary 4. For any δ > 0, there exists τ > 0 such that for all ν > 0, there exists n0 ∈ N
for which the following holds. Let n ≥ n0 be even, d ≥ δn, and r ≤ n

1
50 . Then, for any

d-regular robust (ν, τ)-expander G on n vertices and independent M1, . . . ,Mr ∼ U(P(G)),
we have

P[M1, . . . ,Mr are disjoint] = (1 + on(1))e
− n

2d(
r
2).

2.2 Bipartite graphs

Of particular interest are perfect matchings in (balanced) bipartite graphs, but bipartite
graphs are not robust expanders as the neighbourhood of one of the partition classes is
only at most as large as the class itself. However, the notion of robust expanders can be
adapted to bipartite graphs. Let G be a bipartite graph with vertex partition (A,B) and
|A| = |B| = n. We say that G is a bipartite robust (ν, τ)-expander if RNν,G(S) ≥ |S|+ νn
for each S ⊆ A satisfying τn ≤ |S| ≤ (1− τ)n.

The following is an analogue of Theorems 1–3 for bipartite graphs. This then also
includes an approximation for the number of derangements.

Theorem 5. For any δ > 0, there exists τ > 0 such that for all ν > 0, there exists n0 ∈ N
for which the following holds. Let n ≥ n0, d ≥ δn, and r ≤ n

1
50 . Let G be a balanced

bipartite d-regular robust (ν, τ)-expander on 2n vertices and suppose that N is a matching
in G or a spanning r-regular subgraph of G. Let M ∼ U(P(G)), let X := |M ∩E(N)|, let
Y ∼ Po(d−1e(N)), and let e ∈ E(G). Then, P[e ∈ M ] = (1 + on(1))d

−1 and dTV(X, Y ) =
on(1).
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Abstract
We study generalized quasirandom graphs whose vertex set consists of q parts (of

not necessarily the same sizes) with edges within each part and between each pair
of parts distributed quasirandomly; such graphs correspond to the stochastic block
model studied in statistics and network science. Lovász and Sós showed that the
structure of such graphs is forced by homomorphism densities of graphs with at most
(10q)q + q vertices; subsequently, Lovász refined the argument to show that graphs
with 4(2q + 3)8 vertices suffice. Our results imply that the structure of generalized
quasirandom graphs with q ≥ 2 parts is forced by homomorphism densities of graphs
with at most 4q2 − q vertices, and, if vertices in distinct parts have distinct degrees,
then 2q + 1 vertices suffice. The latter improves the bound of 8q − 4 due to Spencer.
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and Chung, Graham and Wilson [9] in the 1980s, and is also deeply related to Szemerédi’s
Regularity Lemma [40]. Indeed, the Regularity Lemma asserts that each graph can be
approximated by partitioning into a bounded number of quasirandom bipartite graphs.
There is also a large body of literature concerning quasirandomness of various kinds of
combinatorial structures such as groups [24], hypergraphs [5, 6, 22, 23, 28, 31, 37, 39],
permutations [4, 10, 32, 33], Latin squares [11, 17, 20, 25], subsets of integers [8], tourna-
ments [3, 7, 13, 14, 27, 26], etc. Many of these notions have been treated in a unified way
in the recent paper by Coregliano and Razborov [15].

The starting point of our work is the following classical result [9] on quasirandom
graphs: a sequence of graphs (Gn)n∈N is quasirandom with density p if and only if the
homomorphism densities of the single edge K2 and the 4-cycle C4 in (Gn)n∈N converge to p
and p4, i.e., to their expected densities in the Erdős-Rényi random graph with density p. In
particular, quasirandomness is forced by homomorphism densities of graphs with at most
4 vertices. We consider a generalization of quasirandom graphs, which corresponds to the
stochastic block model in statistics. In this model, the edge density of a (large) graph is
not homogeneous as in the Erdős-Rényi random graph model, however, the graph can be
partitioned into q parts such that the edge density is homogeneous inside each part and
between each pair of the parts. Lovász and Sós [35] established that the structure of such
graphs is forced by homomorphism densities of graphs with at most (10q)q + q vertices.
Lovász [34, Theorem 5.33] refined this result by showing that homomorphism densities of
graphs with at most 4(2q + 3)8 vertices suffice. Our main result (Theorem 1) improves
this bound: the structure of generalized quasirandom graphs with q ≥ 2 parts is forced by
homomorphism densities of graphs with at most 4q2 − q vertices. Our line of arguments
substantially differs from that in [35, 34], in particular, it is more explicit and so of a more
constructive nature, which is of importance in relation to applications [2, 19, 29, 30].

Spencer [41] considered generalized quasirandom graphs with q parts with an additional
assumption that vertices in distinct parts have distinct degrees, and established that the
structure of such graphs is forced by homomorphism densities of graphs with at most 8q−4
vertices. Addressing a question posed in [41], we show (Theorem 2) that graphs with at
most max{2q + 1, 4} vertices suffice in this restricted setting.

We present our arguments using the language of the theory of graph limits, which is
introduced in Section 2. We remark that similarly to arguments presented in [35, 34],
although not explicitly stated there, our arguments also apply in a more general setting of
kernels in addition to graphons (see Section 2 for the definitions of the two notions). In
Section 3, we state our main results and sketch the main ideas of their proofs.

2 Notation
We now introduce the notions and tools from the theory of graph limits that we need
to present our results; we refer the reader to the monograph by Lovász [34] for a more
comprehensive introduction. We also rephrase results concerning quasirandom graphs and
generalized quasirandom graphs with q parts presented in Section 1 in the language of the
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theory of graph limits.
If H and G are two graphs, the homomorphism density of H in G, denoted by t(H,G),

is the probability that a random mapping of the vertex set of H to the vertex set of G is
a homomorphism of H to G. A sequence (Gn)n∈N of graphs is convergent if the number
of vertices of Gn tends to infinity and the values of t(H,Gn) converge for every graph H
as n→∞. A sequence (Gn)n∈N of graphs is quasirandom with density p if it is convergent
and the limit of t(H,Gn) is equal to p|E(H)| for every graph H, where E(H) denotes the
edge set of H. If the particular value of p is irrelevant, we just say that a sequence of
graphs is quasirandom instead of quasirandom with density p.

The theory of graph limits provides analytic ways of representing sequences of conver-
gent graphs. A kernel is a bounded measurable function U : [0, 1]2 → R that is symmetric,
i.e., U(x, y) = U(y, x) for all (x, y) ∈ [0, 1]2. The points in the domain [0, 1] of a kernel are
often referred to as vertices. A graphon is kernel whose values are restricted to [0, 1]. The
homomorphism density of a graph H in a kernel U is defined as follows:

t(H,U) =

∫
[0,1]V (H)

∏
uv∈E(H)

U(xu, xv)dxV (H);

we often just briefly say the density of a graph H in a kernel U rather than the homomor-
phism density of H in U . A graphon W is a limit of a convergent sequence (Gn)n∈N of
graphs if t(H,W ) is the limit of t(H,Gn) for every graph H. Every convergent sequence
of graphs has a limit graphon and every graphon is a limit of a convergent sequence of
graphs [36]; also see [16] for relation to exchangeable arrays. Two kernels (or graphons)
U1 and U2 are weakly isomorphic if t(H,U1) = t(H,U2) for every graph H. Note that any
two limits of a convergent sequence of graphs are weakly isomorphic, and we refer particu-
larly to [1] for results on the structure of weakly isomorphic graphons and more generally
kernels.

We now revisit the notion of quasirandom graphs using the language of the theory of
graph limits. Observe that a sequence of graphs is quasirandom with density p if and only
if the sequence is convergent and its limit is the graphon equal to p everywhere. Hence,
the following holds for every graphon W : W is weakly isomorphic to the graphon equal to
p everywhere if and only if t(K2,W ) = p and t(C4,W ) = p4. More strongly, we say that a
kernel (or graphon) U is forced by graphs contained in a set H if every kernel U ′ such that
t(H,U ′) = t(H,U) for every graph H ∈ H is weakly isomorphic to U . In particular, the
constant graphon is forced by the graphs K2 and C4.

A q-step kernel U is a kernel such that [0, 1] can be partitioned to q non-null measurable
sets A1, . . . , Aq such that U is constant on Ai×Aj for all 1 ≤ i, j ≤ q but no such partition
into q−1 parts exists; a q-step graphon is a q-step kernel that is also a graphon. If the value
of q is not important, we just briefly say a step kernel or a step graphon. Observe that
step graphons correspond to stochastic block models and so to generalized quasirandom
graphs discussed in Section 1. In particular, the result of Lovász and Sós [35] mentioned
in Section 1 asserts that every q-step graphon is forced by graphs with at most (10q)q + q
vertices, and the result of Lovász [34, Theorem 5.33] that every q-step graphon is forced
by graphs with at most 4(2q + 3)8 vertices.
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3 Results
We now state our two main results and sketch the ideas behind their proofs.

Theorem 1. The following holds for every q ≥ 2 and every q-step kernel U : if the density
of each graph with at most 4q2 − q vertices in a kernel U ′ is the same as in U , then the
kernels U and U ′ are weakly isomorphic.

To sketch the proof of Theorem 1, we need to recall the notion of a quantum graph: a
quantum graph is a finite linear combination of graphs (called constituents) and the density
of a quantum graph G in a kernel U is the linear combination of densities of graphs forming
G in U with the coefficients as in G. Fix now a q-step kernel U , and let U ′ be another
kernel such that the density of each graph with at most 4q2−q vertices in U ′ is the same as
in U . Lovász [34, Proposition 14.44] established the existence of a quantum graph Qk with
constituents having k(k + 1) vertices such that t(Qk, U

′′) = 0 if and only if U ′′ is weakly
isomorphic to a step kernel with at most k − 1 parts. It follows that t(Qq, U) 6= 0 and
t(Qq+1, U) = 0 and so t(Qq, U

′) 6= 0 and t(Qq+1, U
′) = 0, which yields that U ′ is a q-step

kernel.
The main step of our argument is a construction of a quantum graph Ps1,...,sq with

s1 + · · · + sq roots, which are split into q groups of s1, . . . , sq roots, with the following
property: when each root of Ps1,...,sq is assigned a vertex of a q-step kernel, i.e., a point of
[0, 1], the rooted quantum graph Ps1,...,sq evaluates to zero unless the roots in each of the
q groups are chosen from the same part of the step kernel. We show that there exists a
quantum rooted graph Ps1,...,sq for each choice of parameters s1, . . . , sq between q + 2 and
2q + 2 such that

• each constituent of Ps1,...,sq has at most s1 + · · ·+ sq + 2q(q − 1) vertices, and

• if the roots in the same group are chosen from the same part but roots from different
groups are from different parts, then the value of Ps1,...,sq is non-zero and does not
depend on the parameters s1, . . . , sq.

By introducing edges between some of the roots of Ps1,...,sq , it is possible to extract the
values of the densities of U ′ within the q parts and between the pairs of the parts, and so
these values need to be the same as the corresponding values in U . If we consider different
choices of the parameters s1, . . . , sq in addition to introducing edges between the roots, it
is also possible to extract a system of q equations that determines the sizes of the parts
of U ′ uniquely, which yields that the kernels U and U ′ are weakly isomorphic. Finally,
the analysis of the range of parameters s1, . . . , sq needed in the argument yields the bound
given in Theorem 1 on the number of vertices of graphs that need to be considered.

To state our second result, recall that if U is a kernel and x ∈ [0, 1] is a vertex of U ,
then the degree of x is ∫

[0,1]

U(x, y)dy.
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Theorem 2. The following holds for every q ≥ 2 and every q-step kernel U such that the
degrees of vertices in different parts are different: if the density of each graph with at most
2q + 1 vertices in a kernel U ′ is the same as in U , then the kernels U and U ′ are weakly
isomorphic.

We now sketch the proof of Theorem 2. Fix q ≥ 2 and a q-step kernel U with properties
given in the statement of Theorem 2 and let U ′ be another kernel such that the density of
each graph with at most 2q + 1 vertices in U ′ is the same as in U . To prove Theorem 2,
we construct for every choice of reals d1, . . . , dq ∈ R a quantum graph Gd1,...,dq with 2q + 1
vertices such that the density of Gd1,...,dq in a kernel is zero if and only if the degree of
almost every vertex of the kernel is equal to one of the values d1, . . . , dq. The assumption
of Theorem 2 now yields that the sets of the degrees of the vertices of the kernels U and
U ′ are the same. We next construct a quantum graph with q vertices, one of them being a
root, which forces the root to be from a part of a step kernel with a specific degree. These
rooted quantum graphs are then used to force the sizes of the parts, the densities within the
parts and between all pairs of the parts. Finally, we use the fact that a step kernel (see [12,
Lemma 11], also see [34, Proposition 14.14]) is the minimizer of the density of C4 among
all partitioned kernels with same sizes of the parts, densities within the parts and between
the pairs of the parts, to conclude that the kernels U and U ′ are weakly isomorphic.

We conclude by stating as an open problem whether it suffices in Theorem 1 to consider
homomorphism densities of graphs with o(q2) vertices. To supplement the open problem,
we show that the order of graphs needs to be at least linear in q. Our argument is similar
to that used in analogous scenarios, e.g., in [18, 21]. For reals a1, . . . , aq > 0 such that
a1+· · ·+aq < 1, let Ua1,...,aq be the (q+1)-step graphon with parts whose sizes are a1, . . . , aq
and 1− a1 − · · · − aq, and that is equal to one within each of the first q parts and to zero
elsewhere. Observe that if H is a graph that, after removing isolated vertices, consists of
k components with respectively n1, . . . , nk vertices then

t
(
H,Ua1,...,aq

)
=

k∏
i=1

q∑
j=1

ani
j .

It follows that if

t
(
K`+1, Ua1,...,aq

)
= t
(
K`+1, Ua′1,...,a

′
q

)
for every ` = 1, . . . , q − 1, (1)

then the homomorphism density of every graph with at most q vertices is the same in
Ua1,...,aq and in Ua′1,...,a

′
q
. View (t(K`+1, Ua1,...,aq))

q−1
`=1 ∈ Rq−1 as a function of a1, . . . , aq−1.

If its arguments a1, . . . , aq−1 are distinct, then the Jacobian matrix can be shown to be
invertible and the Implicit Function Theorem gives, for every a′q sufficiently close to aq, a
vector (a′1, . . . , a′q−1) close to (a1, . . . , aq−1) such that (1) holds. It follows that there are two
non-weakly-isomorphic (q + 1)-step graphons that have the same homomorphism density
of every graph with at most q vertices.
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Abstract
Assume λ = {k1, k2, . . . , kq} is a partition of kλ = ∑

q
i=1 ki. A λ-list assignment of

G is a kλ-list assignment L of G such that the colour set ⋃v∈V (G)L(v) can be par-
titioned into ∣λ∣ = q sets C1,C2, . . . ,Cq such that for each i and each vertex v of G,
∣L(v) ∩ Ci∣ ≥ ki. We say G is λ-choosable if G is L-colourable for any λ-list assign-
ment L of G. The concept of λ-choosability is a refinement of choosability that puts
k-choosability and k-colourability in the same framework. If ∣λ∣ is close to kλ, then
λ-choosability is close to kλ-colourability; if ∣λ∣ is close to 1, then λ-choosability is
close to kλ-choosability. This paper studies Hadwiger’s Conjecture in the context of
λ-choosability. Hadwiger’s Conjecture is equivalent to saying that every Kt-minor-
free graph is {1⋆(t−1)}-choosable for any positive integer t. We prove that for t ≥ 5,
for any partition λ of t − 1 other than {1 ⋆ (t − 1)}, there is a Kt-minor-free graph
G that is not λ-choosable. We then construct several types of Kt-minor-free graphs
that are not λ-choosable, where kλ − (t − 1) gets larger as kλ − ∣λ∣ gets larger.
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1 Introduction
Given graphs H and G, we say H is a minor of G (or G has an H-minor) if a graph
isomorphic to H can be obtained from a subgraph of G by contracting edges. Let Kt
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be the t-vertex complete graph. A graph G is Kt-minor-free if G has no Kt-minor. In
1943, Hadwiger [8] conjectured the following upper bound on the chromatic number of
Kt-minor-free graphs:

Conjecture 1 (Hadwiger’s Conjecture). For every integer t ≥ 1, every Kt-minor-free graph
is (t − 1)-colourable.

This conjecture is a deep generalization of the Four Colour Theorem, and has motivated
many developments in graph colouring and graph minor theory. Hadwiger [8] and Dirac [6]
independently showed that Hadwiger’s Conjecture holds for t ≤ 4. Wagner [27] proved that
for t = 5 the conjecture is equivalent to the Four Colour Theorem, which was subsequently
proved by Appel, Haken and Koch [2,3] and Robertson, Sanders, Seymour and Thomas [20],
both using extensive computer assistance. Robertson, Seymour and Thomas [21] went one
step further and proved Hadwiger’s Conjecture for t = 6, also by reducing it to the Four
Colour Theorem. The conjecture for t ≥ 7 is open and seems to be extremely challenging.
For more on Hadwiger’s Conjecture, see the survey of Seymour [23].

The evident difficulty of Hadwiger’s Conjecture has inspired many researchers to study
the following natural weakening (cf. [9, 10,19]):

Conjecture 2 (Linear Hadwiger’s Conjecture). There exists a constant C > 0 such that
for every integer t ≥ 1, every Kt-minor-free graph is Ct-colourable.

For many decades, the best general upper bound on the chromatic number of Kt-
minor-free graphs was O(t

√
log t), which was proved independently by Kostochka [12,

13] and Thomason [24] in the 1980s. In 2019, Norine, Postle and Song [15] broke this
barrier, and proved that the maximum chromatic number of Kt-minor-free graphs is in
O(t(log t)1/4+o(1)). Following a series of improvements, [14, 16–18] the best known bound
is O(t log log t) due to Delcourt and Postle [5].

A list assignment of a graph G is a mapping L that assigns to each vertex v of G a set
L(v) of permissible colours. An L-colouring of G is a proper colouring f of G such that
for each vertex v of G, f(v) ∈ L(v). We say G is L-colourable if G has an L-colouring. A
k-list assignment of G is a list assignment L with ∣L(v)∣ ≥ k for each vertex v. We say G
is k-choosable if G is L-colourable for any k-list assignment L of G. The choice-number of
G is the minimum integer k such that G is k-choosable.

Hadwiger’s Conjecture is also widely considered in the setting of list colourings. Voigt [26]
constructed planar graphs (hence K5-minor-free) with choice-number 5. Hence the list ver-
sion of Hadwiger’s Conjecture is false. Nevertheless, the list version of Linear Hadwiger’s
Conjecture, proposed by Kawarabayashi and Mohar [10] in 2007, remains open.

Conjecture 3 (List Hadwiger’s Conjecture). There exists a constant C > 0 such that for
every integer t ≥ 1, every Kt-minor-free graph is Ct-choosable.

The current state-of-the-art upper bound on the choice-number of Kt-minor-free graphs
is O(t(log log t)6) [18]. If Conjecture 3 is true, then a natural problem is to determine the
minimum value of C. Barát, Joret and Wood [4] constructed Kt-minor-free graphs that
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are not 4(t − 3)/3-choosable, implying C ≥ 4
3 in Conjecture 3. Improving upon this result,

Steiner [22] recently proved that the maximum choice-number of Kt-minor-free graphs is
at least 2t − o(t), and hence C ≥ 2 in Conjecture 3.

This paper considers Hadwiger’s Conjecture in the context of λ-choosability, which
was introduced by Zhu [28]. In general, k-colourability and k-choosability behave very
differently. Indeed, bipartite graphs can have arbitrary large choice-number. λ-choosability
is a refinement of the concept of choosability that puts k-choosability and k-colourability
in the same framework and considers a more complex hierarchy of colouring parameters.

Definition 1. Let λ = {k1, k2, . . . , kq} be a multiset of positive integers. Let kλ = ∑q
i=1 ki and

∣λ∣ = q. A λ-list assignment of G is a list assignment L such that the colour set ⋃v∈V (G)L(v)
can be partitioned into q sets C1,C2, . . . ,Cq such that for each i and each vertex v of G,
∣L(v) ∩Ci∣ ≥ ki. We say G is λ-choosable if G is L-colourable for any λ-list assignment L
of G.

Note that for each vertex v, ∣L(v)∣ ≥ ∑q
i=1 ki = kλ. So a λ-list assignment L is a kλ-list

assignment with some restrictions on the set of possible lists.
For a positive integer a, let mλ(a) be the multiplicity o f a in λ. If mλ(a) = m, then

instead of writing m times the integer a, we write a⋆m. For example, λ = {1⋆k1,2⋆k2,3}
means that λ is the multiset consisting of k1 copies of 1, k2 copies of 2 and one copy of 3. If
λ = {k}, then λ-choosability is the same as k-choosability; if λ = {1⋆k}, then λ-choosability
is equivalent to k-colourability. So the concept of λ-choosability puts k-choosability and
k-colourability in the same framework.

For λ = {k1, k2, . . . , kq} and λ′ = {k′1, k′2, . . . , k′p}, we say λ′ is a refinement of λ if p ≥ q
and there is a partition I1, I2, . . . , Iq of {1,2, . . . , p} such that ∑j∈It k

′
j = kt for t = 1,2, . . . , q.

We say λ′ is obtained from λ by increasing some parts if p = q and kt ≤ k′t for t = 1,2, . . . , q.
We write λ ≤ λ′ if λ′ is obtained from a refinement of λ by increasing some parts. It
follows from the definitions that if λ ≤ λ′, then every λ-choosable graph is λ′-choosable.
Conversely, Zhu [28] proved that if λ /≤ λ′, then there is a λ-choosable graph that is not
λ′-choosable. In particular, λ-choosability implies kλ-colourability, and if λ ≠ {1⋆kλ}, then
there are kλ-colourable graphs that are not λ-choosable.

All the partitions λ of a positive integer k are sandwiched between {k} and {1 ⋆ k}
in the above order. As observed above, {k}-choosability is the same as k-choosability,
and {1 ⋆ k}-choosability is equivalent to k-colourability. By considering each partition λ
of k, λ-choosability provides a complex hierarchy of colouring parameters that interpolate
between k-colourability and k-choosability.

The framework of λ-choosability provides room to explore strengthenings of coloura-
bility and choosability results. For example, Kermnitz and Voigt [11] proved that there
are planar graphs that are not {1,1,2}-choosable. This result strengthens Voigt’s result
that there are non-4-choosable planar graphs, and shows that the Four Colour Theorem
is sharp in the sense that for any partition λ of 4 other than {1 ⋆ 4}, there is a planar
graph that is not λ-choosable. This paper considers Hadwiger’s Conjecture in the context
of λ-choosability.
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2 Results
This paper constructs several examples of Kt-minor-free graphs that are not λ-choosable
where kλ ≥ t − 1 and q is close to kλ. In particular, if the multiplcity of 1 in λ is large
enough, then the number of parts of λ will be close to kλ.

First we strengthen the above-mentioned result of Kermnitz and Voigt to Kt-minor-free
graphs for t ≥ 5 as follows:

Theorem 1. For every integer t ≥ 5, there exists a Kt-minor-free graph that is not {1 ⋆
(t − 3),2}-choosable.

If λ is a partition of t− 1 other than {1⋆ (t− 1)}, then {1⋆ (t− 3),2} is a refinement of
λ. Hence we have the following corollary.

Corollary 2. If λ is a partition of t−1 other than {1⋆(t−1)}, then there is a Kt-minor-free
graph that is not λ-choosable.

For a multiset λ of positive integers, let h(λ) be the maximum t such that every
Kt-minor-free graph is λ-choosable. Since Kkλ+1 is not kλ-colourable and hence not λ-
choosable, we know that h(λ) ≤ kλ + 1.

For a multiset λ of positive integers, kλ − ∣λ∣ measures the “distance" of λ-choosability
from kλ-colourability. Hadwiger’s Conjecture says that if kλ − ∣λ∣ = 0, then h(λ) = kλ + 1.
By Theorem 1, if kλ − ∣λ∣ ≥ 1, then h(λ) ≤ kλ, provided that kλ ≥ 5. It seems natural that
if kλ − ∣λ∣ gets bigger, then kλ −h(λ) also gets bigger, provided that kλ is sufficiently large.
The next result shows this is true for various λ.

Theorem 3. For each integer a ≥ 0, there exists an integer t1 = t1(a) such that for every
integer t ≥ t1, there exists a Kt-minor-free graph that is not {1⋆(t−2a−6),3a+6}-choosable.

For the λ in Theorem 3, kλ = t+a, h(λ) ≤ t−1 and ∣λ∣ = t−(2a+5). As kλ−∣λ∣ = 3a+5 tends
to infinity, the difference kλ−h(λ) ≥ a+1 also tends to infinity, provided that kλ ≥ φ(kλ−∣λ∣),
where φ is a certain given function. It remains open whether such a conclusion holds for
all λ. We conjecture a positive answer.

Conjecture 4. There are functions φ,ψ ∶ N→ N for which the following hold:

• limn→∞ψ(n) =∞.

• For any multiset λ of positive integers, if kλ ≥ φ(kλ− ∣λ∣), then kλ−h(λ) ≥ ψ(kλ− ∣λ∣).

It is easy to see that if kλ − ∣λ∣ = b, then {1 ⋆ (kλ − 2b′),2 ⋆ b′} is a refinement of λ,
where b ≥ b′ ≥ b/2. Thus to prove Conjecture 4, it suffices to prove it for λ of the form
{1 ⋆ k1,2 ⋆ k2}.

Theorem 4 below shows that Conjecture 4 holds for any λ of the form {1 ⋆ k1,3 ⋆ k2}.

Theorem 4. For each integer a ≥ 0, there exists an integer t2 = t2(a) such that for every
integer t ≥ t2, there exists a Kt-minor-free graph that is not {1 ⋆ (t − 5a − 9),3 ⋆ (2a + 3)}-
choosable.
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As ∣λ∣ becomes very small compared to kλ, say ∣λ∣ is constant and kλ tends to infinity,
then λ-choosability becomes very close to kλ-choosability. The following result, which
generalizes the main result of Steiner [22], deals with such λ.

Theorem 5. For every ε ∈ (0,1) and q ∈ N, there exists an integer t3 = t3(q, ε) such that
for every integer t ≥ t3 and k1, k2, . . . , kq ∈ N satisfying

q

∑
j=1

kj ≤ (2 − ε)t,

there exists a Kt-minor-free graph G that is not {k1, k2, . . . , kq}-choosable.

The q = 1 case of above theorem was proved by Steiner [22].
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Abstract

Given a collection of hypergraphs H = (H1, . . . ,Hm) with the same vertex set, an
m-edge graph F ⊂ ∪i∈[m]Hi is a transversal if there is a bijection φ : E(F )→ [m] such
that e ∈ E(Hφ(e)) for each e ∈ E(F ). How large does the minimum degree of each Hi

need to be so that H necessarily contains a copy of F that is a transversal? Each Hi

in the collection could be the same hypergraph, hence the minimum degree of each
Hi needs to be large enough to ensure that F ⊆ Hi. Since its general introduction
by Joos and Kim [Bull. Lond. Math. Soc., 2020, 52(3): 498–504], a growing body of
work has shown that in many cases this lower bound is tight. In this paper, we give a
unified approach to this problem by providing a widely applicable sufficient condition
for this lower bound to be asymptotically tight. This is general enough to recover
many previous results in the area and obtain novel transversal variants of several
classical Dirac-type results for (powers of) Hamilton cycles. For example, we derive
that any collection of rn graphs on an n-vertex set, each with minimum degree at
least (r/(r+1)+ o(1))n, contains a transversal copy of the r-th power of a Hamilton
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cycle. This can be viewed as a rainbow version of the Pósa-Seymour conjecture.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-072

1 Introduction
Given an integer m ≥ 1, we say that H = (H1, . . . , Hm) is a hypergraph collection on vertex
set V if, for each i ∈ [m], the hypergraph Hi has vertex set V . We call the collection a
graph collection if each hypergraph in the collection has uniformity two. Given an m-edge
hypergraph F on V , we say that H has a transversal copy of F if there is a bijection
φ : E(F ) → [m] such that e ∈ Hφ(e) for each e ∈ E(F ). We will also use the adjective
rainbow for a transversal copy of F . Indeed, we can think of the edges of hypergraph Hi

to be coloured with colour i and, in this framework, a transversal copy of F is a copy of
F in

⋃
i∈[m]Hi with edges of pairwise distinct colours. We are interested in the following

general question formulated originally by Joos and Kim [6].

Question 1. Let F be an m-edge hypergraph with vertex set V , H be a family
of hypergraphs, and H = (H1, . . . , Hm) be a hypergraph collection on vertex set V
with Hi ∈ H for each i ∈ [m]. Which conditions on H guarantee a transversal copy
of F in H?

By taking H1 = H2 = · · · = Hm, it is clear that such a property needs to guarantee
that each hypergraph in H contains F as a subhypergraph. However, this alone is not
always sufficient, not even asymptotically. For example, Aharoni, DeVos, de la Maza,
Montejano and Šámal [1] showed that if G = (G1, G2, G3) is a graph collection on [n] with
e(Gi) > (26−2

√
7

81
)n2 for each i ∈ [3], then G contains a transversal which is a triangle. As

shown in [1], the constant 26−2
√
7

81
> 1/4 is optimal. On the other hand, Mantel’s theorem

states that any graph with at least n2/4 edges must contain a triangle.
Instead of a lower bound on the total number of edges, it is also natural to investigate

what can be guaranteed with a lower bound on the minimum degree. It turns out that
even in this more restrictive setting, there can be a discrepancy between the uncoloured
and the rainbow versions of the problem. To make this more precise, we give the following
two definitions, where, for a k-uniform hypergraph H and 1 ≤ d < k, we let δd(H)
be the minimum number of edges of H that any set of d vertices of V (H) is contained
in. Moreover, for a hypergraph collection H = (H1, . . . , Hm), we denote |H| = m and
δd(H) = mini∈[m] δd(Hi).

Definition 1.1 (Uncoloured minimum degree threshold). Let F be an infinite family of
k-uniform hypergraphs. By δF ,d we denote, if it exists, the smallest real number δ such
that for all α > 0 and for all but finitely many F ∈ F the following holds. Let n = |V (F )|
and H be any n-vertex k-uniform hypergraph with δd(H) ≥ (δ+α)nk−d. Then H contains
a copy of F .
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For example, if F is the family of graphs consisting of a cycle on n vertices for each
n ∈ N, then we have δF ,1 = 1/2. Indeed, this follows from Dirac’s theorem which states
that any graph with minimum degree at least n/2 has a Hamilton cycle.

Definition 1.2 (Rainbow minimum degree threshold). Let F be an infinite family of k-
uniform hypergraphs. By δrb

F ,d we denote, if it exists, the smallest real number δ such that
for all α > 0 and for all but finitely many F ∈ F the following holds. Let n = |V (F )|
and H be any k-uniform hypergraph collection on n vertices with |H| = |E(F )| and
δd(H) ≥ (δ + α)nk−d. Then H contains a transversal copy of F .

If the two values are well-defined, it must be that δrb
F ,d ≥ δF ,d. Indeed, if H contains no

copy of F , the collection H consisting of |E(F )| copies of H does not contain a transversal
copy of H either. However, Montgomery, Müyesser, and Pehova [11] made the following
observation which shows that δrb

F ,d can be much larger than δF ,d. Set F = {k × (K2,3 ∪
C4) : k ∈ N} where k×G denotes the graph obtained by taking k vertex-disjoint copies of
G. It follows from a result of Kühn and Osthus [7] that δF ,1 = 4/9. Consider the graph
collection H = (H1, . . . , Hm) on V obtained in the following way. Partition V into two
almost equal vertex subsets, say A and B, and suppose that H1 = H2 = · · · = Hm−1 are
all disjoint unions of a clique on A and a clique on B. Suppose that Hm is a complete
bipartite graph between A and B. Observe that each Hi in this resulting graph collection
has minimum degree b|V |/2c. Further observe that if H contains a transversal copy of
some F ∈ F , the edge of K2,3 or C4 that gets copied to an edge of Hm would be a bridge
(an edge whose removal disconnects the graph) of F . However, neitherK2,3 nor C4 contains
a bridge. Hence, δrb

F ,d ≥ 1/2.
On the other hand, there are many natural instances where δrb

F ,d = δF ,d. When this
equality holds, we say that the corresponding family F is d-colour-blind, or just colour-blind
in the case F is a family of graphs (and d = 1). For example, Joos and Kim [6], improving
a result of Cheng, Wang, and Zhao [4] and confirming a conjecture of Aharoni [1], showed
that, if n ≥ 3, then any n-vertex graph collection G = (G1, . . . , Gn) with δ(Gi) ≥ n/2 for
each i ∈ [n] has a transversal copy of a Hamilton cycle. This generalises Dirac’s classical
theorem and implies that the family F of n-cycles is colour-blind1. There are many more
families of colour-blind (hyper)graphs. In particular, matchings [2, 8, 9, 10], Hamilton
`-cycles [3], factors [2, 11], and spanning trees [11] have been extensively studied. We
recall that for 1 ≤ ` < k, a k-uniform hypergraph is called an `-cycle if its vertices can be
ordered cyclically such that each of its edges consists of k consecutive vertices and every
two consecutive edges (in the natural order of the edges) share exactly ` vertices.

Building on techniques introduced by Montgomery, Müyesser, and Pehova [11], we give
a widely applicable sufficient condition for a family of hypergraphs F to be colour-blind.
Our condition gives a unified proof of several of the aforementioned results, as well as many
new rainbow Dirac-type results. The following theorem lists some applications, though we
believe that our setting can capture even more families of hypergraphs.

1In fact, in this particular case, the corresponding thresholds are exactly the same, and there is no need
for an error term.
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Theorem 1.3. The following families of hypergraphs are all d-colour-blind.

(A) The family of the r-th powers of Hamilton cycles for fixed r ≥ 2 (and d = 1).

(B) The family of k-uniform Hamilton `-cycles for the following ranges of k, `, and d.

(B1) 1 < ` < k/2 and d = k − 2;

(B2) 1 ≤ ` < k/2 or ` = k − 1, and d = k − 1;

(B3) ` = k/2 and k/2 < d ≤ k − 1 with k even.

Remark 1. Theorem 1.3 (B2) when ` = k−1 was originally proven by Cheng, Han, Wang,
Wang, and Yang [3], who raised the problem of obtaining the rainbow minimum degree
threshold for a wider range of ` ∈ [k− 2]. Moreover, the case of Hamilton cycles in graphs
(i.e. k = 2 and d = ` = 1) was previously proven by Cheng, Wang, and Zhao [4] (and their
result was sharpened by Joos and Kim [6]).

2 Towards the statement of the main theorem
The precise statement of our main theorem is quite technical, therefore we provide some
intuition here and refer the interested reader to the arXiv preprint [5]. Firstly, we look
at hypergraph families F with a ‘cyclic’ structure. That is, we assume there exists a k-
uniform hypergraph A such that all F ∈ F can be obtained by gluing several copies of
A in a Hamilton cycle fashion, and in this case we say that F is a Hamilton A-cycle.
Similarly, an A-chain is a graph obtained by gluing several copies of A in a path-like
fashion. Moreover, the first (resp. last) copy of A in that chain is called the start (resp.
the end) of the chain. For example, for k-uniform Hamilton cycles, A would be a single
k-uniform edge (see Figure 1), whereas for the r-th power of a Hamilton cycle, A would
be a a clique on r vertices (see Figure 2).

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

Figure 1: A 5-uniform 2-path is an A-chain, with A being (any ordering of) a single 5-uniform edge. The
numbering of the vertices in each edge denotes the (ordered) isomorphism between that edge and A.

In the uncoloured setting, most of the well-studied problems fit into this framework,
including everything listed in Theorem 1.3. A common framework for embedding such
hypergraphs with cyclic structure is the absorption method. Our main result essentially
states that if there is an absorption-based proof that δ is the uncoloured minimum d-degree
threshold for some F with cyclic structure, then the rainbow minimum d-degree threshold
of F is equal to δ. While some partial progress towards such an abstract statement was
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Figure 2: The square of a path is an A-chain, with A being (any ordering of) a triangle.

already made in [11], our approach does not require the need to make ad-hoc strengthenings
to the uncoloured version of the result, allowing for a very short proof of Theorem 1.3. To
achieve this, we codify what it means for there to be streamlined absorption proof for the
uncoloured result, and we use the existence of such a proof as a black-box. We do so through
two properties: Ab and Con. Property Ab states that every k-uniform hypergraph with
minimum d-degree at least (δ + α)nk−d contains an absorber for A, i.e. a set of vertices
which can absorb any small set of vertices into an A-chain. Property Con states that in
every k-uniform hypergraph with minimum d-degree at least (δ + α)nk−d, any two copies
S and T of A can be connected into an A-chain of bounded length with start S and end
T .

In addition to properties Ab and Con which guarantee we can rely on a streamlined
absorption proof for the uncoloured result, our main theorem assumes another property,
which we call property Fac. One reason why transversal versions of Dirac-type results are
more difficult is that every single hypergraph in the collection as well as every single vertex
of the host graph needs to be utilised in the target spanning structure (the transversal).
This is crucial as demonstrated by the construction given after Definition 1.2. In this
construction, the possibility of finding a transversal copy of F is ruled out by showing
that a particular graph in the collection (namely the hypergraph Hm) cannot be used in
a transversal copy of a K2,3 or C4. Therefore, in addition to some properties which are
related to the uncoloured case and where colours do not play any role, we require a property
concerning the coloured case which we call Fac. This roughly states that vertex-disjoint
copies of A (the building block of the hypergraph we are trying to find) can be found in a
rainbow fashion using a fixed, adversarially specified set of hypergraphs from the collection.
This ensures that we never get stuck while trying to use up every single colour/hypergraph
that we start with.

Our main theorem claims that if properties Ab, Con and Fac hold for A, then the
family of Hamilton A-cycles is d-colour-blind. In all our applications (see Theorem 1.3),
in order to ensure that properties Ab and Con hold, we rely on existing lemmas in the
literature without having to do any extra work. Moreover, when A is a single edge (as
it is the case for Theorem 1.3 (B)), the property Fac is trivial to check. For powers of
Hamilton cycles, however, this property is more delicate and, in order to verify it, we rely
on a non-trivial coloured property from [11].
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3 Proof overview
We will now attempt to give a self-contained account of the main ideas of our proof strategy.
For the purposes of the proof sketch, it will be conceptually (and notationally) simpler to
imagine that we are trying to prove that the family of (2-uniform) Hamilton cycles is
colour-blind. Observe that a Hamilton cycle is an A-cycle with A being an edge.

Proposition 3.1 (Theorem 2 in [4]). For any α > 0, there exists n0 ∈ N such that
the following holds. Let G be a graph collection on vertex set [n] with |G| = n and
δ(G) ≥ (1/2 + α)n. Then G contains a transversal copy of a Hamilton cycle.

The basic premise of our approach, which is shared with [11], is that Proposition 3.1
becomes significantly easier to prove if we assume that |G| = (1 + o(1))n, that is, if we
have a bit more colours than we need to find a rainbow Hamilton cycle on n vertices.
Thus, relying on the hypergraph analogue of Lemma 3.4 from [11], it is enough to show
the following.

Proposition 3.2. Let 1/n � ζ � κ, α. Let G be a graph collection on [n] with |G| =
(1 + κ− ζ)n and δ(G) ≥ (1/2 + α)n. Let a, b ∈ [n] be distinct vertices. Then, G contains
a rainbow Hamilton path with a and b as its endpoints, using every colour Gi with i ∈
[(1− ζ)n].

Unfortunately, due to the technicalities present in the statement, Proposition 3.2 is far
from trivial to show. Most of the novelty in the proof of our main theorem is the way
we approach Proposition 3.2 for arbitrary A-chains satisfying Ab, Con, and Fac. We
now proceed to explain briefly how we achieve this, and how the three properties come in
handy.

Firstly, in the setting of Proposition 3.2, it is quite easy to find a few rainbow paths
using most of the colours from the set [(1− ζ)n]. Below is a formal statement of a version
of this for arbitrary A-chains, where we write s(A) ·n for the number of edges of an A-cycle
spanning n vertices.

Lemma 3.3. Let 1/n � 1/T � ω, α. Let A be k-uniform graph and d ∈ [k − 1]. Let
δ be the minimum d-degree threshold for the containment of a Hamilton A-cycle. Let H
be a k-uniform hypergraph collection on [n] with δd(H) ≥ (δ + α)nk−d and suppose that
|H| ≥ s(A) · n. Then H contains a rainbow collection of T -many pairwise vertex-disjoint
A-chains covering all but at most ωn vertices of H.

Although it is easy to use most of the colours coming from a colour set using the above
result, a challenge in Proposition 3.2 is that we need to use all of the colours coming from
the set [(1 − ζ)n]. As we are currently concerned with the case when A consists of a
single edge, this will not be a major issue. Indeed, using the minimum degree condition
on each of the colours, we can greedily find rainbow matchings using small colour subsets
of [(1 − ζ)n]. For arbitrary A, we would like to proceed in the same way; however, say
when A is a triangle, the situation becomes considerably more complicated. This is why
the property Fac is built into the assumptions of the main theorem.
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Our ultimate goal is to build a single A-chain connecting specific ends, not just a
collection of A-chains. Hence, we rely on the property Con to connect the ends of the
paths we obtained via Lemma 3.3 (as well as the greedy matching we found for the purpose
of exhausting a specific colour set). An issue is that Con is an uncoloured property,
whereas we would like to connect these ends in a rainbow manner. Here we rely on the
following trick: in hypergraph collections where each hypergraph has good minimum d-
degree conditions, we can pass down to the following auxiliary hypergraph K which also has
good minimum d-degree conditions. An edge appears in K if and only if that edge belongs
to Ω(n) many colours in the original hypergraph collection. We can use the property Con
on K to connect ends via short uncoloured paths, and later assign greedily one of the many
available colours to the edges on this path.

As is the case with many absorption-based arguments, the short connecting paths
we find will be contained in a pre-selected random set. After all the connections are
made, there will remain many unused vertices inside this random set. To include these
vertices inside a path, we use the property Ab. Similarly to Con, property Ab is an
uncoloured property, but we can use again the trick of passing down to an appropriately
chosen auxiliary hypergraph.
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k-cycles is Θ(nbk/2c). Moreover, they proposed a conjecture for the maximum number of 5-
cycles in an n-vertex planar graph which was verified much later by Győri et al. in [6]. The
maximum number of 6-cycles and 8-cycles was settled asymptotically by Cox and Martin
in [3], and later the same authors [4] also determined the maximum number of 10-cycles
and 12-cycles asymptotically.

Following the work of Hakimi and Schmeichel [8], Alon and Caro [1] considered the
general problem of maximizing copies of a given graph H among n-vertex planar graphs.
Wormald [11] and later independently Eppstein [5] showed that for 3-connected H, the
maximum number of copies of H is Θ(n). The order of magnitude in the case when H is a
tree was determined in [7], and the order of magnitude for an arbitrary graph was settled
by Huynh, Joret and Wood [9]. Note that by Kuratowski’s theorem [10] such problems
can be thought of as generalized Turán problems where we maximize the number of copies
of the graph H while forbidding all subdivisions of K5 and K3,3.

Given that the order of magnitude of the maximum number of copies of any graph
H in an n-vertex planar graph is determined, it is natural to look for sharp asymptotic
results. While in recent times a number of results have been obtained about the asymptotic
number of H-copies in several specific cases, less is known for general classes of graphs. Cox
and Martin [3] introduced some general tools for studying such problems and conjectured
that in the case of an even cycle C2k with k ≥ 3, the maximum number of copies is
asymptotically nk/kk. We confirm their conjecture.

Theorem 1. For every k ≥ 3, the maximum number of copies of C2k in an n-vertex planar
graph is

nk

kk
+ o(nk).

A construction containing this number of copies of C2k is obtained by taking a C2k

and replacing every second vertex by an independent set of approximately n/k vertices,
each with the same neighborhood as the original vertex. Cox and Martin [3] proved that
a weaker upper bound of nk

k!
+ o(nk) holds for the number of copies of C2k and introduced

a general method for (asymptotically) maximizing the number of copies of a large variety
of graphs in a planar graph. We will discuss this method in Section 2 and present another
conjecture of Cox and Martin which implies Theorem 1. In Section 3, we prove this stronger
conjecture (Theorem 2). We have learned that Asaf Cohen Antonir and Asaf Shapira have
independently obtained a bound within a factor of e of the optimal bound attained in
Theorem 2.

2 Reduction lemma of Cox and Martin
For a positive integer n we will consider functions w : E(Kn)→ R satisfying the conditions:

1. For all e ∈ E(Kn), w(e) ≥ 0,

2.
∑

e∈E(Kn)
w(e) = 1.



The maximum number of copies of an even cycle in a planar graphs 528

For a subgraph H ′ of Kn and a function w satisfying Conditions 1 and 2, let

pw(H ′) :=
∏

e∈E(H′)

w(e).

Also for a fixed graph H and w satisfying Conditions 1 and 2 let

β(w,H) :=
∑

H∼=H′⊆Kn

pw(H ′).

For simplicity of notation, we will often omit statements about isomorphism in the
sums. Cox and Martin proved several reduction lemmas for pairs of graphs H and K, in
which an optimization problem involving β(w,K) implies a corresponding upper bound on
the maximum number of copies of the graph H among n-vertex planar graphs. We state
the reduction lemma which Cox and Martin proved for cycles. For an integer k ≥ 3, let

β(k) = sup
w
β(w,Ck),

where w is allowed to vary across all n and all weight functions satisfying Conditions 1
and 2.

Lemma 1 (Cox and Martin [3]). For all k ≥ 3, the number of 2k-cycles in a planar graph
is at most

β(k)nk + o(nk).

Cox and Martin conjectured that β(k) ≤ 1
kk
. By Lemma 1 such a bound immediately

implies Theorem 1. In Section 3, we prove that this bound indeed holds.

Theorem 2. For all k ≥ 3,

β(k) ≤ 1

kk
.

Equality is attained only for weight functions satisfying w(e) = 1
k
for e ∈ E(C) and w(e) =

0 otherwise, where C is a fixed cycle of length k of Kn.

3 Proof of Theorem 2
Proof. Let us fix an integer n, a complete graphKn and a function w satisfying Conditions 1
and 2. Let us assume w maximizes

∑
Ck⊆Kn

pw(Ck). Let Pj be a path with j vertices. A
(j + 2)-vertex path with terminal vertices u and v is denoted by uPjv. For vertices u and
v, a subgraph H of Kn and an integer j such that 2 ≤ j ≤ n, we define

fH(j, u, v) =
∑

uPj−2v⊆H

pw(uPj−2v),
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and
fH(j, u) =

∑
v∈V (H)\{u}

f(j, u, v).

In the case when H is the complete graph Kn we simply write f(j, u, v) and f(j, u). The
following lemma will be essential in the proof of Theorem 2. Related lemmas were also
deduced in the original paper of Cox and Martin [3] (see Lemmas 4.5 and 4.6 in their
paper), and both approaches can be used to deduce an upper bound of 1/k on the weight
of every edge.

Lemma 2. Let k ≥ 2, and let e1 = u1v1 and e2 = u2v2 be distinct edges of Kn such that
w(e1) > 0 and w(e2) > 0. Then we have f(k, u1, v1) = f(k, u2, v2).

Proof of Lemma 2. Omitted for space. Full proofs can be found in the Arxiv preprint of
the same title.

From Lemma 2, for an edge uv with non-zero weight w(uv) > 0 we may assume
f(j, u, v) = µ for some fixed constant µ. Hence we have∑

Ck⊆Kn

pw(Ck) =
1

k

∑
uv∈E(Kn)

w(uv)f(j, u, v) =
µ

k

∑
uv∈E(Kn)

w(uv) =
µ

k
. (1)

Furthermore w(e) ≤ 1/k for every edge e ∈ E(Kn). Indeed,

w(e)µ =
∑
e∈Ck

pw(Ck) ≤
∑

Ck⊆Kn

pw(Ck) =
µ

k
.

For any subgraph G of Kn and any vertex v ∈ V (Kn) we denote
∑

u∈V (G)w(uv) by
dG(v). Furthermore, for a vertex set S ⊆ V (G), we denote the graph G[V (G)\S] by G\S.
Also for an edge e ∈ E(G), the graph with vertex set V (G) and edge set E(G) \ {e} is
denoted by G \ e.

Lemma 3. For a fixed integer r such that 3 ≤ r ≤ n and distinct vertices v1 and u
there exists a sequence v2, v3, . . . , vr−1 of distinct vertices such that for every integer t
satisfying 1 ≤ t ≤ r − 1, where G1 = Kn \ v1u and Gi = Kn \ {v1, v2, . . . , vi−1} for every
i = 2, 3, . . . , r − 1, we have

fG1(r, v1, u) ≤ dG1(v1)dG2(v2) · · · dGt−1(vt−1)fGt(r − t+ 1, vt, u).

Proof. Omitted for space.

Lemma 4. For any non-negative weight function w : E(Kn) → R and for every vertex v
and integer r with 2 ≤ r ≤ n, we have

f(r, v) ≤

(∑
e∈E(Kn)

w(e)

r − 1

)r−1

.
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Remark 1. In Lemma 4, we do not require that
∑

e∈E(Kn)
w(e) = 1, only that the weights

are non-negative.

Proof. Omitted for space.

In order to finish the proof of Theorem 2 it is sufficient to show that µ ≤ 1

kk−1
by (1).

Choose an edge v0v1 with the maximum weight w(v0v1). Let us denote the graph Kn \
v0v1 by G1. By Lemma 3 we have a sequence of vertices v2, v3, . . . , vk−1 ∈ V (Kn) satisfying
the following inequality for every t where 1 ≤ t ≤ k − 1 and Gi = Kn \ {v1, v2, . . . , vi−1}
for all i ∈ {2, 3, . . . , r − 1}:

fG1(k, v1, v0) ≤ dG1(v1)dG2(v2) · · · dGt−1(vt−1)fGt(k − t+ 1, vt, v0). (2)

Here we distinguish the following two cases.

Case 1: Suppose that dG1(v1)+dG2(v2)+· · ·+dGk−2
(vk−2) ≤

k − 2

k
. Then by the inequality

of the arithmetic and geometric means we have

k−2∏
i=1

dGi
(vi) ≤

(∑k−2
i=1 dGi

(vi)

k − 2

)k−2

≤ 1

kk−2
.

From (2) we obtain the desired inequality

µ = fG1(k, v1, v0) ≤

(
k−2∏
i=1

dGi
(vi)

)
· fGk−1

(2, vk−1, v0) ≤
1

kk−2
1

k
≤ 1

kk−1
.

Even more the inequality holds with equality if and only if w(v0v1) = w(v1v2) = · · · =
w(vk−2vk−1) = w(vk−1v0) = 1/k (here we use that for all e, w(e) ≤ 1/k). Therefore equality
is attained in Theorem 2 only for weight functions satisfying w(e) = 1

k
for e ∈ E(C) and

w(e) = 0 otherwise, where C is a fixed cycle of length k of Kn.

Case 2: Suppose that dG1(v1) + dG2(v2) + · · ·+ dGk−2
(vk−2) >

k − 2

k
. Proof of this case is

omitted for space.

References
[1] Noga Alon and Yair Caro. On the number of subgraphs of prescribed type of pla-

nar graphs with a given number of vertices. In North-Holland Mathematics Studies,
volume 87, pages 25–36. Elsevier, 1984.

[2] Asaf Cohen Antonir and Asaf Shapira. Bounding the number of odd paths in planar
graphs via convex optimization. arXiv preprint arXiv:2208.02097, 2022.

[3] Christopher Cox and Ryan R Martin. Counting paths, cycles, and blow-ups in planar
graphs. Journal of Graph Theory, 101(3):521–558, 2022.



The maximum number of copies of an even cycle in a planar graphs 531

[4] Christopher Cox and Ryan R Martin. The maximum number of 10-and 12-cycles in
a planar graph. Discrete Mathematics, 346(2):113245, 2023.

[5] David Eppstein. Connectivity, graph minors, and subgraph multiplicity. Journal of
Graph Theory, 17(3):409–416, 1993.

[6] Ervin Győri, Addisu Paulos, Nika Salia, Casey Tompkins, and Oscar Zamora. The
maximum number of pentagons in a planar graph. arXiv preprint arXiv:1909.13532,
2019.

[7] Ervin Győri, Addisu Paulos, Nika Salia, Casey Tompkins, and Oscar Zamora. Gener-
alized planar tur\’an numbers. arXiv preprint arXiv:2002.04579, 2020.

[8] Seifollah Louis Hakimi and Edward F Schmeichel. On the number of cycles of length
k in a maximal planar graph. Journal of Graph Theory, 3(1):69–86, 1979.

[9] Tony Huynh, Gwenaël Joret, and David R Wood. Subgraph densities in a surface.
Combinatorics, Probability and Computing, 31(5):812–839, 2022.

[10] Casimir Kuratowski. Sur le probleme des courbes gauches en topologie. Fundamenta
mathematicae, 15(1):271–283, 1930.

[11] Nicholas C Wormald. On the frequency of 3-connected subgraphs of planar graphs.
Bulletin of the Australian Mathematical Society, 34(2):309–317, 1986.



Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications
EUROCOMB’23

Prague, August 28 - September 1, 2023

3-uniform linear hypergraphs without a
long Berge path

(Extended abstract)

Ervin Győri∗ Nika Salia†

Abstract

Extensions of the Erdős-Gallai theorem for general hypergraphs are well stud-
ied. In this work, we prove the extension of the Erdős-Gallai theorem for linear
hypergraphs. In particular, we show that the number of hyperedges in an n-vertex 3-
uniform linear hypergraph, without a Berge path of length k as a subgraph is at most
(k−1)

6 n for k ≥ 4. This is an extended abstract for EUROCOMB23 of the manuscript
arXiv:2211.16184.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-074

1 Introduction
Finding the maximum number of edges in a graph with fixed order not containing another
graph as a subgraph is a central problem in extremal combinatorics. This work considers
problems where a path of fixed length is forbidden. This problem is well understood for
graphs and r-uniform hypergraphs. The Erdős–Gallai theorem states that a graph of order
n containing no path of length k as a subgraph contains at most k−1

2
n edges. This bound

is sharp for infinitely many n. In particular, equality holds if and only if n is a multiple
of k and the graph is isomorphic to the union of n

k
cliques of size k. This theorem was

extended to r-uniform hypergraphs by Győri, Katona and Lemons [11]. In order to state
their result, we will introduce the necessary definitions.
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For an integer r, a hypergraph H is r-uniform if it is a family of r-element sets of finite
family V (H). We will use the following extension of this definition. For a set of integers R,
a hypergraph H is R-uniform if it is a family of sets of the finite family V (H), such that
the sizes of the sets are elements of R. Paths in hypergraphs can be defined in a number
of ways. In this paper, we follow the definition of Berge [2]. A Berge path of length k in
a hypergraph H is an alternating sequence v1, h1, v2, . . . , hk, vk+1 of distinct vertices and
hyperedges such that {vi, vi+1} ⊆ hi for all i ∈ [k]. A Berge cycle of length k is also
defined similarly. The vertices vi, i ∈ [k + 1], are defining vertices of the Berge path and
the hyperedges hi, i ∈ [k], are defining hyperedges of the Berge path.

Theorem (Győri, Katona and Lemons [11]). Let H be an n-vertex r-uniform hypergraph
containing no Berge path of length k as a subgraph. Then if r ≥ k > 2 then the number of
hyperedges of H is at most k−1

r+1
n. If k > r + 1 > 2 then the number of hyperedges of H is

at most (kr)
k
n.

The remaining case k = r + 1 was settled later in [3], the bound matches with the
bound in Theorem 1 for k > r + 1 case. Forbidden path problems for connected graphs
and hypergraphs including their stability versions are well studied, we refer interested
readers to [16, 1, 13, 6, 15, 8, 7, 9]. Uniform hypergraphs with bounded circumference was
studied in [5, 12] and references therein.

Here we introduce some necessary technical definitions. For a hypergraph H let E(H)
be the hyperedge set and V (H) be the vertex set, we denote their sizes by e(H) and v(H)
accordingly. The hypergraph H is linear if for any two distinct hyperedges h1, h2 we have
|h1 ∩ h2| ≤ 1. For a vertex set V , V ⊆ V (H), we define another hypergraph HV . Where
V (HV ) = V and E(HV ) = {h \ V : h ∈ E(H), |h \ V | ≥ 2}. Note that if H is {2, 3}-
uniform linear hypergraph then HV is {2, 3}-uniform linear hypergraph also. The induced
hypergraph on the vertex set V is denoted by H[V ]. For a hypergraph H we denote two-
shadow of H by ∂H. It is a graph on the same vertex set as H and the set of edges is
{{u, v} : {u, v} ⊆ h ∈ E(H)}. The degree of a vertex v in a hypergraph H is the number
of hyperedges incident to the vertex v and is denoted by dH(v). The minimum degree of
a vertex in a hypergraph H is denoted by δH(v). The circumference of H is the length of
the longest Berge cycle in a hypergraph H and is denoted by c(H). The neighborhood of a
vertex v in a hypergraph H is denoted by NH(v). For a hypergraph H and sub-hypergraph
H′ we denote the hypergraph on the same vertex set as H and hyperedge set E(H)\E(H′)
by H \H′.

2 Main results
Recently Gyárfás, Ruszinkó, and Sárközy [10] initiated the study of three uniform linear
hypergraphs not containing a linear path, a matching, and a small tree. In particular,
they proved that the maximum number of hyperedges in an n vertex three uniform linear
hypergraph not containing a linear path of k edges is 1.5nk. In this paper, we prove
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the extension of Erdős-Gallai theorem for linear 3-uniform hypergraphs but instead of
forbidding linear paths, we forbid Berge paths.

Theorem 1. Let H be an n vertex 3-uniform linear hypergraph, containing no Berge path
of length k ≥ 4. Then the number of hyperedges in H is at most k−1

6
n.

Note that the upper bound is sharp for infinitely many k and n. In particular for
all k for which there exists a Steiner Triple System (a 3-uniform hypergraph that every
pair of vertices is covered by precisely one hyperedge) and n multiple of k, there exists an
n-vertex 3-uniform linear hypergraph H, containing no Berge path of length k with k−1

6
n

hyperedges. Where H is the disjoint union of n
k
copies of k-vertex Steiner Triple Systems.

In order to prove Theorem 1 with induction for k, we need a stronger and more general
statement of the theorem.

Theorem 2. Let H be an n vertex {2, 3}-uniform linear hypergraph, containing no Berge
path of length k ≥ 4. Then the number of edges in ∂H is at most k−1

2
n.

Note that Theorem 1 is a direct corollary of Theorem 2. The following remark shows
that the condition k ≤ 4 in Theorem 2 is necessary since for k < 4 we have different
bounds.

Remark. Let H be an n vertex linear {2, 3}-uniform hypergraph, containing no Berge path
of length k.

• If k = 1 then e(∂H) = 0;

• If k = 2 then e(∂H) ≤ v(H); The upper-bound is sharp and the equality is achieved if
and only if is v(H) multiple of 3 and H is v(H)

3
independent hyperedges of size three.

• If k = 3 then e(∂H) ≤ 3v(H)−1
2

. The upper-bound is sharp and the equality is achieved
if and only if v(H) is odd and H is v(H)−1

2
hyperedges of size three sharing the same

vertex for every n ≥ 3.

We find it challenging to obtain the precise bound for the problem initiated by Gyárfása,
Ruszinkó, and Sárközy [10]. Consequently, we would like to put forth a natural conjecture.

Conjecture 3. Let H be an n vertex 3-uniform linear hypergraph, containing no linear
path of length k ≥ 5. Then the number of hyperedges in H is at most 2k−1

6
n.

Note that, this bound is sharp for infinitely many pairs of n and k. In particular
for every k such that there exists a Steiner Triple System on 2k vertices and for every
n multiple of 2k. The hypergraph containing n

2k
copies of a Steiner Triple System on 2k

vertices achieves the desired bound.
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3 Proof of Theorem 2
For the full proof see manuscript [14].

We prove Theorem 2 by induction on k. At first, we consider the base case when k = 4.
We may assume H is a connected hypergraph since the upper bound is linear for n and
the additive constant is 0. If H is Berge cycle free then e(∂H) ≤ 3(n−1)

2
(the upper-bound

is attained by hyperedges of size three sharing a fixed vertex). If H contains a Berge cycle
it must be a Berge cycle of length 3 or 4 since it is a linear hypergraph. If H contains
Berge cycle of length 4 then by connectivity v(H) ≤ 4, hence e(H) ≤

(
4
2

)
= 3n

2
. If H

contains a cycle of length 3, we denote it by C3. Cycle C3 is a linear cycle since H is a
linear hypergraph. If all of the hyperedges of C3 are size three then by the connectivity of
H we have H = C3 and e(∂H) = 9 = 3n

2
. If two of the hyperedges are size three then by

the connectivity of H we have H = C3 and e(∂H) = 7 < 3n
2
. If at most one hyperedge is

size three then we have e(∂H) ≤ 3n
2
. So the base case k = 4 is done.

Let H be an n-vertex linear {2, 3}-uniform hypergraph containing no Berge path of
length k for some integer k > 4. Suppose by way of contradiction that e(∂H) > n(k−1)

2
.

Without loss of generality, we may assume n is minimal, in particular, we assume all linear
{2, 3}-uniform hypergraphs containing no Berge path of length k with n′ vertices, n′ < n,
contain at most n(k−1)

2
edges in the shadow. Note that from the minimality of n we have

the hypergraph H is connected. Even more, for each vertex v, HV (H)\{v} contains no Berge
path of length k, thus from the minimality of n we have d∂H(v) > k−1

2
. Hence we have

δ∂H(v) ≥
⌈
k
2

⌉
. Note that since e(∂H) > n(k−1)

2
the longest path of H is length k− 1 by the

induction hypothesis.
We omit the proof of the following Claims.

Claim 4. c(H) ≥
⌈
k+1
2

⌉
.

Let C` := v1, h1, v2, h2, . . . h`−1, v`, h`, v1 be a longest Berge cycle of H. Some C` defining
hyperedges hi are size three, let us denote the third vertex by xi, that is hi = {vi, vi+1, xi} for
hyperedges of size three. From Claim 4 we have ` ≥

⌈
k+1
2

⌉
. Let us denote the hypergraph

HV (H)\{vi:i∈[`]} by H′.

Claim 5. The hypergraph H′ is BPk−`-free.

If k − ` ≥ 4 then by Claim 5 and induction hypothesis for hypergraph H′ we have

e(∂H′) ≤ (n− `)(k − `− 1)

2
. (1)

For a vertex u ∈ V (H′) we define the set S(u) := NH\C`
(u) ∩ V (C`), L(u) := {vi : u = xi}

and R(u) := {vi+1 : u = xi}. For a vertex set S such that S ⊆ V (C`) let S+ be a set S
shifted right, in particular S+ := {vi : vi−1 ∈ S}, the indices are taken module `. Similarly
we definite S−, in particular S− is a set for which S = (S−)+. Naturally we denote the set
(S−)− with S−− and the set (S+)+ with S++. Note that L(u)+ = R(u), thus the size of
L(u) and R(u) are the same.
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In what follows we are going to estimate the number of edges in ∂H, in the following
way

e(∂H) = e(∂HV (C`)) + e∂H(V (C`), V (H′)) + e(∂H′). (2)

Noting that eG(A,B) denotes the number of edges between vertex set A and B in G. In
most cases, we will use a naive upper bound for e(∂HV (C`)) ≤

(
`
2

)
. For k − ` ≥ 4, we

estimate e(∂H′) by the induction hypotheses as in Equation 1. We estimate the number
of edges from V (H′) to V (C`), for each vertex u ∈ V (H′) in ∂H. In particular the number
of adjacent vertices to u is |L(u)| + |R(u)| + |S(u)|. Since each defining hyperedge of C`

provides at most two edges crossing between the vertices V (H′) and V (C`) we have a naive
upper bound for e∂H(V (C`), V (H′)) which is enough for most of the cases.

e∂H(V (C`), V (H′)) ≤ 2`+
∑

u∈V (H′)

|S(u)| . (3)

Since C` is a longest Berge cycle of H we are able to get an upper bound for |S(u)|
from the following claim.

Claim 6. For a vertex u ∈ V (H′) we have (S(u) ∪ L(u)) ∩ S(u)− = ∅.

Note that if a vertex vi ∈ S(u) then vi+1 /∈ S(u) from Claim 6. Thus we have |S(u)| ≤ `
2

for each vertex u of H′. Therefore e∂H(V (C`), V (H′)) ≤ 2`+ `
2
(n− `) from Equation 3. If

k − ` ≥ 4 then by Equation 2 and 1 we have a contradiction

e(∂H) ≤
(
`

2

)
+2`+

`(n− `)
2

+
(n− `)(k − `− 1)

2
=
n(k − 1)

2
+
`

2
(`+4− k) ≤ n(k − 1)

2
.

We study the rest of the possible values of ` separately, ` ∈ {k−3, k−2, k−1, k}. Let x be
the number of defining hyperedges of C` incident to a vertex of H′. Note that 0 ≤ x ≤ `.

If ` = k then C` = H otherwise we have a Berge path of length k inH by the connectivity
of H. Thus we have n = k = ` and

e(∂H) ≤
(
`

2

)
=
n(k − 1)

2
.

If ` = k − 1 then H′ contains no hyperedge by Claim 5. Since H does not contain a
Berge path of length k, if a hyperedge hi adjacent to a vertex from V (H′), then neither
vi nor vi+1 is a vertex of S(u), for all u ∈ V (H). In particular for u, u′ ∈ V (H′) we have
L(u)∩ (S(u))− = ∅. By this observation and Claim 6 every vertex of V (H′) is adjacent to
at most k−1−x

2
vertices of C` with a non-defining hyperedge, that is |S(u)| ≤ k−1−x

2
. Thus

by Equation 2 we have

e(∂H) ≤
(
k − 1

2

)
+ 2x+

k − 1− x
2

(n− (k − 1)).

Hence if n ≥ k+2 or n = k+1 and x ≤ k−1
2

then we have e(∂H) ≤ n(k−1)
2

, since x ≤ k−1.
As e(∂H) > n(k−1)

2
we have n ≥ k + 1.
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If n = k + 1 and x > k−1
2

then there are two C` non-defining hyperedges hi and hi+1

such that {xi, xi+1} = V (H′). Since H does not contain a Berge path of length k, if a
defining vertex of C` is incident to both vertices of H′, either both incidences are from a
defining hyperedge or both incidences are from a non-defining hyperedge. If vj is incident
to both vertices of H′ with hj−1 and hj such that j 6= i−1, i, i+1 then vj is not incident to
vi+1. Otherwise, if there is a hyperedge f ′ incident to vj and vj+1, then it is a non-defining
hyperedge and the following is a Berge path or a Berge cycle of length k,

xi+1, hi+1, vi+2, . . . , vj, f
′, vi+1, hi, vi, . . . , vj+1, hj, xj.

If a vertex vj is adjacent to x1 or x2 with a non-defining hyperedge then vj+1 is not adjacent
to a vertex from {x1, x2}. Thus for each vertex vj ∈ V (C`), j /∈ {i−1, i, i+1}, either there
is at most one vertex from V (H′) adjacent to it, or if there are two then vjvi+1 is not an
edge of ∂H or vj+1 is not adjacent to any vertex of V (H′). Note that if there is a defining
hyperedge of C` not incident to a vertex of H′ then we may choose i such that i − 1 has
exactly one neighbor in V (H′). If all defining hyperedges of C` are incident to a vertex of
H′ then we may choose any i from [k− 1]. Thus we have a contradiction from Equation 2

e(∂H) ≤
(
k − 1

2

)
+ k − 1 + 2 ≤ n(k − 1)

2
.

The proof of remaining cases ` = k − 2 and ` = k − 3 involves more structural study
and can be seen in the original manuscript.
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Abstract

Structural convergence is a framework for convergence of graphs by Nešetřil and
Ossona de Mendez that unifies the dense (left) graph convergence and Benjamini-
Schramm convergence. They posed a problem asking whether for a given sequence
of graphs (Gn) converging to a limit L and a vertex r of L it is possible to find a
sequence of vertices (rn) such that L rooted at r is the limit of the graphs Gn rooted
at rn. A counterexample was found by Christofides and Král’, but they showed that
the statement holds for almost all vertices r of L. We offer another perspective to the
original problem by considering the size of definable sets to which the root r belongs.
We prove that if r is an algebraic vertex (i.e. belongs to a finite definable set), the
sequence of roots (rn) always exists.
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1 Introduction
The field of graph convergence studies asymptotic properties of large graphs. The goal is
to define a well-behaved notion of a limit structure that describes the limit behavior of a
convergent sequence of graphs. Several different approaches are studied. The two most
prominent types of convergence are defined for sequences of dense [2][7][6] and sparse graphs
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[1][4]. The recently introduced notion of structural convergence by Nešetřil and Ossona de
Mendez offers a generalizing framework for these cases using ideas from analysis, model
theory and probability [8][9].

Structural convergence is a framework of convergence for general relational structures;
however, we follow the usual approach that we restrict to the of language graphs and
rooted graphs without loss of generality. Our arguments remain valid in the general case
(e.g. as in [3]). The Stone pairing of a formula ϕ in the language of graphs and a finite
graph G, denoted by ⟨ϕ,G⟩, is the probability that ϕ is satisfied by a tuple of vertices of G
selected uniformly at random (for ϕ sentence, we set ⟨ϕ,G⟩ = 1 if G |= ϕ, and ⟨ϕ,G⟩ = 0
otherwise). A sequence of finite graphs (Gn) is said to be FO-convergent if the sequence
(⟨ϕ,Gn⟩) converges for each ϕ. The limit structure L, called modeling, is a graph with
measure ν on a standard Borel space satisfying that all the first-order definable are sets
measurable. The value ⟨ϕ, L⟩ is defined as the measure of the set ϕ(L), the set of solutions
of ϕ in L, using the appropriate power of the measure ν. A modeling L is a limit of an
FO-convergent sequence (Gn) if lim⟨ϕ,Gn⟩ = ⟨ϕ, L⟩ for each ϕ. A modeling limit does not
exist for each convergent sequence. It is known to exist for all sequences of graphs from a
class C if and only if C is a nowhere dense class [10].

The authors of this framework asked in [8] the following question: given a sequence
(Gn) converging to a modeling L and a vertex of r of L, is there a sequence of vertices (rn)
such that the graphs Gn rooted at rn converge to L rooted at r? Christofides and Král’
provided an example that the answer is negative in general. However, they also proved
that it is possible to find such a sequence (rn) for almost all choices of the vertex r. That
is, if the root of L is chosen at random (according to the measure ν), the vertices (rn) exist
with probability 1 [3].

In this paper, we refine the original problem by considering the root r to be an algebraic
vertex of L. That is, r belongs to a finite definable set of L. We prove that the sequence
of roots (rn) always exists under such condition. Our main result reads as follows:

Theorem 1. Let (Gn) be an FO-convergent sequence of graphs with a modeling limit L
and r be an algebraic vertex of L. Then there is a sequence (rn), rn ∈ V (Gn), such that
(Gn, rn) FO-converges to (L, r).

Note that Theorem 1 deals with full FO-convergence and not just convergence with
respect to sentences (called elementary convergence), for which it is a trivial statement
(see the case of p = 0 in Lemma 3).

2 Notation
All graphs are finite except modelings, which are of size continuum. The vertex set of
a graph G is denoted by V (G). We use N = {1, 2, . . . },N0 = N ∪ {0} and [n] =
{1, 2, . . . , n}, [n]0 = [n] ∪ {0}. The set of formulas in p free variables in the language
of graphs is denoted by FOp and FO =

⋃
p∈N0

FOp is the set of all formulas. Tuples of
vertices, free variables, etc. are denoted by boldface letters, e.g. x = (x1, . . . , xp). Multiset
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is a set that allows multiplicities of its elements. The power set of a set X is denoted by
2X .

Let G be an arbitrary graph and r one of its vertices. By (G, r) we denote the graph
G rooted at r. Formally, considering G as a structure in the language of graphs, we add
a new constant “Root” to the vocabulary and interpret it as r. We refer to the extended
language as the language of rooted graphs. The set of formulas in the extended language
is denoted by FO+. Note that FOp ⊆ FO+

p .
Let L be a modeling. A formula ϕ ∈ FOp is algebraic in L if ϕ(L) is finite, where

ϕ(L) = {v ∈ V (L)p : L |= ϕ(v)} is the set of solutions of ϕ in L. A vertex of L is algebraic
if it satisfies an algebraic formula.

3 Rooting in algebraic sets
We prove the following statement, which is equivalent to Theorem 1.

Theorem 2. Let (Gn) be an FO-convergent sequence of graphs with a modeling limit L
and ξ(x) be an algebraic formula in L. Then there is a sequence (rn), rn ∈ V (Gn), and a
vertex r ∈ ξ(L) such that (Gn, rn) FO-converges to (L, r).

Obviously, Theorem 2 is implied by Theorem 1. The converse follows from fact that ξ
has only finitely many solutions in L and we can iteratively root them one by one until we
reach r.

Fix (Gn), L and ξ for the rest of the paper. Without loss of generality, assume that
|ξ(Gn)| = |ξ(L)| for each n and ξ(L) is an inclusion-minimal definable set in L. We
prove Theorem 2 in three steps. First, we consider a single formula ϕ in the language of
rooted graphs and show that we can find the roots (rn) and r such that lim⟨ϕ, (Gn, rn)⟩ =
⟨ϕ, (L, r)⟩. Then we consider an arbitrary finite collection of formulas ϕ1, . . . , ϕk and con-
struct a single formula ψ with the property that convergence of ⟨ψ, (Gn, rn)⟩ to ⟨ψ, (L, r)⟩
implies convergence of each ⟨ϕi, (Gn, rn)⟩ to ⟨ϕi, (L, r)⟩. Finally, a routine use of compact-
ness extends the previous to all formulas, which proves the theorem.

3.1 Single formula

For a formula ϕ(x) ∈ FO+
p , let ϕ−(x, y) ∈ FOp+1 be the formula created from ϕ by replacing

each occurrence of the term “Root” by “y” (we assume that y does not appear in ϕ).

Lemma 3. For a given ϕ ∈ FO+
p there is a sequence (rn), rn ∈ ξ(Gn), and a vertex

r ∈ ξ(L) such that lim⟨ϕ, (Gn, rn)⟩ = ⟨ϕ, (L, r)⟩.

Proof. If p = 0, then either the sentence (∀y)(ξ(y) → ϕ−(y)) or (∀y)(ξ(y) → ¬ϕ−(y)) is
satisfied in L (using the assumption that ξ(L) is an inclusion-minimal definable set); hence,
it holds in each Gn from a certain index on. Therefore, an arbitrary choice of rn ∈ ξ(Gn)
and r ∈ ξ(L) meets the conclusion.
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Let ν be the measure associated to the modeling L. Define fL : V (L)p → 2ξ(L) to be
the function that sends v to the set {u ∈ ξ(L) : L |= ϕ−(v, u)}. Consider the pushforward
measure µL on 2ξ(L) of the p-th power of ν by fL. Viewing 2ξ(L) as a lattice, we are mostly
interested in the measure of the filter generated by atoms of 2ξ(L). Let X↑ denote the
filters generated by X ∈ 2ξ(L). Observe that for u ∈ ξ(L) we have µL({u}↑) = ⟨ϕ, (L, u)⟩.
Suppose that |ξ(L)| = t and define an ordering RL = (u1, u2, . . . , ut) such that µL(RL) =
(µL({ui}↑))i∈[t] satisfies µL({u1}↑) ≥ µL({u2}↑) ≥ · · · ≥ µL({ut}↑). Define similarly for
each n the function fn : V (Gn)

p → 2ξ(Gn), measure µn (as the pushforward of the uniform
measure) and the vector Rn.

We claim that the sequence
(
µn(Rn)

)
⊂ ([0, 1]t, ∥ · ∥∞) converges to µL(RL). Then

an arbitrary choice of an index i ∈ [t] yields the sequence (rn) and vertex r as the i-th
elements of the vectors Rn, resp. RL.

The claim follows from the fact that the vectors µn(Rn) continuously depend on the
values ⟨ψk,ℓ, Gn⟩, where ψk,ℓ(x1, . . . ,xk) ∈ FOk·p is

(∃y1, . . . , yℓ)

(
l∧

i=1

ξ(yi) ∧
∧

1≤i<j≤ℓ

yi ̸= yj ∧
k∧

i=1

ℓ∧
j=1

ϕ−(xi, yj)

)

for ℓ ∈ [m]0, k ∈
[(

m
ℓ

)]
and that ⟨ψk,ℓ, Gn⟩ → ⟨ψk,ℓ, L⟩. This continuous dependency can

be proved by inclusion-exclusion with a help of classical results from combinatorics and
complex analysis: Girard-Newton formulas [11] and the continuous dependency of the roots
of a polynomial on its coefficients [12].

3.2 Finite collection of formulas

In this part, we use Lemma 3 to prove an analogous statement for a finite collection of
formulas.

Lemma 4. For given formulas ϕ1, . . . , ϕk there is a sequence (rn), rn ∈ ξ(Gn), and a vertex
r ∈ ξ(L) such that lim⟨ϕi, (Gn, rn)⟩ = ⟨ϕi, (L, r)⟩ for each ϕi.

Proof. Since for sentences any choice of (rn) and r works, we assume that neither of
ϕ1, . . . , ϕk is a sentence.

Consider an inclusion-maximal set I ⊆ [k] for which there is v ∈ ξ(L) such that every
i ∈ I satisfies ⟨ϕi, (L, v)⟩ > 0, denote |I| by k′. If I = ∅, we can choose (rn) and r
arbitrarily; hence, assume otherwise. For i ∈ I set Ai = {⟨ϕi, (L, u)⟩ : u ∈ ξ(L)} ∩ (0, 1].
Take a vector e ∈ Nk′ of exponents with the property that for each distinct a, b ∈×i∈I Ai

we have
∏

i∈I a
ei
i ̸=

∏
i∈I b

ei
i . Such a vector exists as each Ai is finite and contains only

positive values. The set of bad choices of rational exponents that make the values for
particular a, b coincide form a (k′−1)-dimensional hyperplane in Qk′ . We can surely avoid
finitely many of such hyperplanes (one for each choice of a and b) to find a good vector of
positive rational exponents and scale them to integers.
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Use Lemma 3 for the formula ψ of the form∧
i∈I

ei∧
j=1

ϕi(xi,j),

where all the tuples xi,j are pairwise disjoint, to obtain roots (rn) and r. In particular, we
can take the vertex r such that ⟨ψ, (L, r)⟩ > 0 (due to our choice of I).

We have lim⟨ϕi, (Gn, rn)⟩ = ⟨ϕi, (L, r)⟩ > 0 for each i ∈ I as

⟨ψ, (L, r)⟩ =
∏
i∈I

⟨ϕi, (L, r)⟩ei ,

using our selection of exponents e.
Also, it holds that lim⟨ϕj, (Gn, rn)⟩ = ⟨ϕj, (L, r)⟩ = 0 for each j ̸∈ I: for the formula

χ =
∧

i∈I∪{j} ϕi(xi), we have lim⟨χ, (Gn, rn)⟩ = ⟨χ, (L, r)⟩ = 0 due to the maximality of I
(this is for any choice of (rn) and r). We have

⟨χ, (Gn, rn)⟩ =
∏

i∈I∪{j}

⟨ϕi, (Gn, rn)⟩

and as for some ε > 0 there is n0 such that ⟨ϕi, (Gn, rn)⟩ > ε for each i ∈ I and n ≥ n0,
the factor ⟨ϕj, (Gn, rn)⟩ must tend to 0.

We remark that the rationalization of the fact that the sequence
(
⟨ϕj, (Gn, rn)⟩

)
for

j ̸∈ I even converge is the reason why we are proving Theorem 2 instead of Theorem 1
directly. We are using the fact that we can choose the set I (and the root r for the formula
ψ) such that any rooting (rn) makes the sequence ⟨χ, (Gn, rn)⟩ converge to 0.

4 Concluding remarks
An iterative use of Theorem 1 or 2 allows us to gain complete control over the algebraic
elements as we can consider each of them separately.

We note that it is possible to root solutions of algebraic formulas with multiple free
variables as the projection to each coordinate yields an algebraic set. Moreover, the natural
modification of Theorem 2 remains valid for FO-convergent sequences (Gn) without a
modeling limit. The proofs are analogous except that the set I in Lemma 4 is defined as an
inclusion-maximal set for which there are roots (rn) such that lim⟨

∧
i∈I ϕi(xi), (Gn, rn)⟩ >

0.
Besides the original problem in [8], our motivation was the study of structural conver-

gence of sequences created via gadget construction, see [5]. Using the result of this paper,
we conclude that FO-convergence is preserved if the gadgets replace only finitely many
edges (under natural additional assumptions).

In the typical case, the modeling L is of size continuum and the set of algebraic vertices
(which is at most countable) has measure 0. Hence, our results reveal only a negligible
portion of vertices of L for which the roots (rn) exist, which shows that there is still room
for further research.
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Abstract

The dichromatic number of a digraph D is the smallest k such that D can be
partitioned into k acyclic subdigraphs, and the dichromatic number of an undirected
graph is the maximum dichromatic number over all its orientations. We present
bounds for the dichromatic number of Kneser graphs and Borsuk graphs, and for the
list dichromatic number of certain classes of Kneser graphs and complete multipartite
graphs. The bounds presented are sharp up to a constant factor. Additionally, we
give a directed analogue of Sabidussi’s theorem on the chromatic number of graph
products.
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We consider graphs and digraphs without loops or multiple edges/arcs. A proper k-
colouring of a graph G = (V,E) is a mapping f : V → [k] = {1, ..., k} such that f−1(i)
is an independent set for any i ∈ [k]. The chromatic number of G, denoted by χ(G), is
the minimum k for which G has a proper k-colouring. A proper k-colouring of a digraph
D = (V,A) is a mapping f : V → [k] such that f−1(i) is acyclic for any i ∈ [k], and the
dichromatic number of D, denoted by ~χ(D), is the minimum k for which D has a proper
k-colouring. Note that this definition generalizes the usual colouring, in the sense that
the chromatic number of a graph is equal to the dichromatic number of its corresponding
bidirected digraph. The notion was introduced by Neumann-Lara in 1982 [17] and it
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was later rediscovered by Mohar [14]. Since then it has been shown that many classical
results hold also in this setting [3, 8, 9, 10]. However, some fundamental questions remain
unanswered. The dichromatic number of an undirected graph G, denoted by ~χ(G), is
the maximum dichromatic number over all its orientations. Erdős and Neumann-Lara
conjectured the following.

Conjecture 1. [5] For every integer k there exists an integer r(k) such that ~χ(G) ≥ k for
any undirected graph G satisfying χ(G) ≥ r(k).

For instance, r(1) = 1 and r(2) = 3. But it is already unknown whether r(3) exists.
Mohar and Wu [15] managed to prove the fractional analogue of Conjecture 1.

The Kneser graph with parameters n, k, denoted by KG(n, k), is the graph with vertex
set
(
[n]
k

)
(i.e. the set of subsets of [n] of size k) where two vertices u, v are adjacent if and

only if u∩ v = ∅. It is well-known [7, 12, 13] that χ(KG(n, k)) = n− 2k+2 for 1 ≤ k ≤ n
2
,

as Kneser conjectured [11, 20]. Providing further evidence for Conjecture 1, Mohar and Wu
showed that Kneser graphs with large chromatic number have large dichromatic number.

Theorem 2. [15] For any positive integers n, k with 1 ≤ k ≤ n
2
we have that ~χ(KG(n, k)) ≥⌊

n−2k+2
8 log2

n
k

⌋
.

Note that, since χ(KG(n, k)) ≥ ~χ(KG(n, k)), this estimate is sharp up to a constant
factor when k is a constant fraction of n. Improving Theorem 2 asymptotically, we show
that the dichromatic number of Kneser graphs is of the order of their chromatic number
in general.

Theorem 3. There exists a positive integer n0 such that, for all n ≥ n0 and 2 ≤ k ≤ n
2
,

we have that ~χ(KG(n, k)) ≥
⌊

1
16
χ(KG(n, k))

⌋
.

We did not try to optimize the constant 1
16
. The proof of Theorem 3 is based on

Greene’s proof of Kneser’s conjecture, but it also relies on Theorem 2 for solving the case
of large k. Note that the bound cannot be extended to k = 1 (see Theorem 11).

Kneser’s conjecture was an open problem for more than two decades [11, 20]. The
famous resolution by Lóvasz [12] was inspired by the analogy between Kneser graphs and
Borsuk graphs. Let n be a natural number and a < 2 a positive real number. The Borsuk
graph with parameters n + 1 and a, denoted by BG(n + 1, a), is the undirected graph
with vertex set Sn = {x ∈ Rn+1 | ‖x‖ = 1} where two vertices x, y are adjacent if and
only if distRn+1(x, y) ≥ a. It is known that χ(BG(n + 1, a)) ≥ n + 2, which in fact is
equivalent to the Borsuk–Ulam theorem [13]. On the other hand, if a is not too small, an
(n + 2)-colouring of BG(n + 1, a) can be obtained by projecting the faces of an inscribed
(n+1)-dimensional simplex. Regarding the dichromatic number of Borsuk graphs, we can
show the following.

Theorem 4. ~χ(BG(n+ 1, a)) ≥ n+ 2 for any n ≥ 1.
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Next, we look at list colourings. They were introduced by Erdős, Rubin and Taylor
[6], and, independently, by Vizing [19]. A k-list assignment to a graph G = (V,E) (or
to a digraph D = (V,A)) is a mapping L : V →

(Z+

k

)
. A colouring (a mapping) f :

V → Z+ is said to be accepted by L if f(v) ∈ L(v) for every v ∈ V . G (resp. D) is
k-list colourable if every k-list assignment accepts a proper colouring. The list chromatic
number of G (resp. the list dichromatic number of D), also called its choice number, is
the minimum k such that G (resp. D) is k-list colourable, and it is denoted by χ`(G)
(resp. ~χ`(D)). Similarly, the list dichromatic number of G, denoted by ~χ`(G), is the
maximum list dichromatic number over all orientations of G. Bensmail, Harutyunyan and
Le [2] gave a sample of instances where the list dichromatic number of digraphs behaves
as its undirected counterpart.

Recently, Bulankina and Kupavskii [4] studied the list chromatic number of Kneser
graphs. They proved the following two results.

Theorem 5. [4] For any positive integers n, k with 1 ≤ k ≤ n
2
we have that χ`(KG(n, k)) ≤

n ln n
k
+ n.

Theorem 6. [4] Let s ≥ 3 be an integer. If n is sufficiently large and 3 ≤ k ≤ n1/2−1/s,
then χ`(KG(n, k)) ≥ 1

2s2
n lnn. For k = 2, we have that χ`(KG(n, k)) ≥ 1

32
n lnn for

sufficiently large n.

However, good bounds for larger k are still unknown. Using the arguments of Bulankina
and Kupavskii, as well as ideas from [15], we can prove the directed version of Theorem 6.

Theorem 7. For every ε ∈ R+ there exists a constant cε ∈ R+ such that ~χ`(KG(n, k)) ≥
cεn lnn for all n ≥ 2k with 2 ≤ k ≤ n1/2−ε.

Dense Kneser graphs have some similarities with complete multipartite graphs. Denote
by Km∗r the complete r-partite graph with m vertices on each part. Alon determined, up
to a constant factor, the list chromatic number of Km∗r, answering a question of Erdős,
Rubin and Taylor [6].

Theorem 8. [1] There exist two positive constants c1 and c2 such that for every m ≥ 2
and for every r ≥ 2

c1r lnm ≤ χ`(Km∗r) ≤ c2r lnm.

His proof can be adapted to find an analogous bound for the list dichromatic number
of Km∗r when m is not too small.

Theorem 9. For every ρ > 3, there exist constants C1, C2 ∈ R+ such that if r ≥ 2 and
m ≥ lnρ r then

C1r lnm ≤ ~χ`(Km∗r) ≤ C2r lnm.

In what follows we present a proof of Theorem 9. The following probabilistic result will
be required.
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Theorem 10. (Simple Concentration Bound, [16]) Let X be a random variable determined
by n independent trials, and satisfying the property that changing the outcome of any single
trial can affect X by at most c. Then

P(|X − EX| > t) ≤ 2e−
t2

2c2n .

Proof of Theorem 9. The upper bound is implied by Theorem 8. We may assume that m
is large enough. Let V1, ..., Vr be the parts of Km∗r.

Claim. There is a constant c and an orientation D of Km∗r such that, if ` ≥ c ln(rm),
then

(i) each subgraph of Km∗r isomorphic to K` has a directed cycle in D;

(ii) for each Ui ⊆ Vi and Uj ⊆ Vj with |Ui| = |Uj| = ` and i 6= j, D[Ui∪Uj] has a directed
cycle.

Proof. Orient the edges of Km∗r at random, independently and with probability 1
2
. Let

E, E ′ be the events that (i), (ii) hold, respectively. Put ` = dc ln(rm)e. There are
(
r
`

)
m`

copies of K` in Km∗r, and
(
r
2

)(
m
`

)2 subgraphs of the form Km∗r[Ui ∪ Uj]. Furthermore, K`

(resp. Km∗r[Ui ∪ Uj]) has 2
`(`−1)

2 orientations (resp. 2`2), among which `! (resp. at most
(2`)!) are acyclic. Therefore,

P(Ec) ≤
(
r

`

)
m``! 2−

`(`−1)
2 ≤

(
rm2−

`−1
2

)`
≤
(
e
`
c2−

`−1
2

)`
<

1

2
and

P(E ′c) ≤
(
r

2

)(
m

`

)2

(2`)! 2−`
2 ≤

(
2er2m22−`

)` ≤ (e 2`
c
+12−`+1

)`
<

1

2

if c is large enough. Hence P(E ∩ E ′) > 0 for some c.

Let k = bCr lnmc, where 0 < C ≤ 1 is a constant for now unspecified. We start by
showing that there exists an assignment of k-lists from a palette C of br lnmc colours such
that, for any given set A ⊆ C of at most 4

3
lnm colours, each part has at least 1

2
m1−δ

vertices that avoid the colours from A on their lists, where δ = 2C ln 5.
Assign to each vertex v of D a random k-list L(v) chosen independently and uniformly

among the
(|C |
k

)
possible k-lists. Given i ∈ [r] and A ⊆ C , consider the random variable

Xi,A = |{v ∈ Vi | L(v) ∩ A = ∅}|. Note that there are exactly
(|C |−|A|

k

)
k-lists avoiding the

colours in A. Devoting ourselves to the case |A| =
⌊
4
3
lnm

⌋
, we have that

EXi,A = m

(|C |−|A|
k

)(|C |
k

) ≥ m

(
|C | − |A| − k
|C | − k

)k
= m

(
1− |A|
|C | − k

)k

≥ m

(
1−

4
3
lnm

(1− C)r lnm− 1

)Cr lnm
≥ m

(
1− 4

5

)2C lnm

= m1−δ
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if m is large enough and C is not too large. By the Simple Concentration Bound (Theo-
rem 10),

P(Xi,A <
1

2
m1−δ) ≤ P(|Xi,A − EXi,A| >

1

2
m1−δ) ≤ 2e−

1
8
m1−2δ

.

Let E be the event that Xi,A <
1
2
m1−δ for some i ∈ [r] and A ⊆ C with |A| ≤ 4

3
lnm. We

have that

P(E) ≤ r

(
|C |⌊

4
3
lnm

⌋)2e− 1
8
m1−2δ ≤ r

(
e
br lnmc⌊
4
3
lnm

⌋)b 43 lnmc
2e−

1
8
m1−2δ

≤ r(er)
4
3
lnm2e−

1
8
m1−2δ ≤ 2e5 ln r lnm−

1
8
m1−2δ ≤ 2e5m

1
ρ lnm− 1

8
m1−2δ

if m is large enough. Consequently, if δ < 1
2
(1 − 1

ρ
) and m is large enough, there exists a

list assignment L′ satisfying the desired property. This is the assignment that we are going
to use.

Now let f be a proper colouring of D. We claim that there exists a set of indices I ⊆ [r]
of size at least 3r

4
such that |f(Vi)| ≤ 4c ln2(rm) for each i ∈ I. Indeed, if more than r

4

parts are coloured with more than 4c ln2(rm) colours each, then one of the colours appears
on more than cr ln2(rm)

|C | ≥ c ln
2(rm)
lnm

≥ c ln(rm) parts. By the choice of D, f is not proper, a
contradiction.

For each i ∈ [r] define the set Ai = {γ ∈ C | |Vi ∩ f−1(γ)| ≥ c ln(rm)}. We claim that
if f is acceptable then |Ai| > 4

3
lnm for every i ∈ I. Indeed, otherwise, by the choice of

the lists, at least 1
2
m1−δ vertices of Vi have been coloured with colours not from Ai. Thus

one of these colours is used at least
1
2
m1−δ

4c ln2(rm)
≤ c ln(rm)

times on Vi. If m is large enough, this implies that

m1−δ ≤ 8c2 ln3(rm) ≤ 8c2(m
1
ρ + lnm)3 ≤ 9c2m

3
ρ .

If we further assume that δ < 1 − 3
ρ
, we get a contradiction when m is large. Therefore

|Ai| > 4
3
lnm for every i ∈ I.

Now, by the choice of D, the sets A1, ..., Ar are mutually disjoint. But then

|C | ≥
r∑
i=1

|Ai| ≥
∑
i∈I

|Ai| >
4

3
|I| lnm ≥ r lnm ≥ |C |.

This contradiction shows that there is no acceptable proper colouring for the k-list assign-
ment L′.

We do not know what happens with other values of m, r. What is clear is that the
bound of Theorem 9 is not valid in general. Indeed, if m ≤ ln r then Theorem 11 implies
that ~χ(Km∗r) ≤ ~χ(Kmr) ≤ cr for some constant c.
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Theorem 11. [2] Let T be a tournament of order n. Then ~χ`(T ) ≤ n
log2 n

(1 + o(1)).

Some of our proofs rely on graph products. Let G,H be graphs (resp. digraphs).
The Cartesian product of G and H is the graph (resp. digraph) G�H with vertex set
V (G) × V (H) where there is an edge between (u, x) and (v, y) (resp. an arc from (u, x)
to (v, y)) if and only if either u = v and {x, y} ∈ E(H) (resp. and (x, y) ∈ A(H)), or
x = y and {u, v} ∈ E(G) (resp. and (u, v) ∈ A(G)). A well-known theorem of Sabidussi
[18] states that for any two graphs G and H the chromatic number of its product is
χ(G�H) = max{χ(G), χ(H)}. His proof can be adapted to show an analogous result for
digraphs.

Theorem 12. Let G and H be digraphs. Then ~χ(G�H) = max{~χ(G), ~χ(H)}.
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In [13], Kahn gave the strongest possible, affirmative, answer to Shamir’s prob-
lem, which had been open since the late 1970s: Let r > 3 and let n be divisible by
r. Then, in the random r-uniform hypergraph process on n vertices, as soon as the
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prove the analogue of this result for clique factors in the random graph process: At
the time that the last vertex joins a copy of the complete graph Kr, the random graph
process contains a Kr-factor. Our proof draws on a novel sequence of couplings which
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1 Introduction
When can we cover the vertices of a graph with disjoint isomorphic copies of a small
subgraph? The study of this question goes back at least to 1891, when Julius Petersen, in
his Theorie der regulären graphs [16], provided sufficient conditions for a graph to contain a
perfect matching, that is, a cover of the vertices with pairwise disjoint edges. Let Hr(n, π)
be the random r-uniform hypergraph on the vertex set V = [n] where each of the Nr =

(
n
r

)
possible hyperedges of size r is present independently with probability π. The binomial
random graph in this notation is then G(n, p) = H2(n, p). In 1979, Shamir asked the
following natural question, as reported by Erdős [6]:

Question 1.1. How large does π = π(n) need to be for Hr(n, π) to contain a perfect
matching whp1, that is, a collection of n/r vertex-disjoint hyperedges2?

A closely related question, posed by Ruciński [18] and Alon and Yuster [1], is:

Question 1.2. For which p = p(n) does the random graph G(n, p) contain a Kr-factor
whp?

That is, for which p(n) does G(n, p) contain a collection of n/r vertex-disjoint copies of
Kr? In the following, we will also call a copy ofKr an r-clique. For r = 2, the two questions
are the same — and thanks to Erdős and Rényi [5], we have known since 1966 that there
is a sharp threshold3 for the existence of a perfect matching at p0 = logn

n
. The lower bound

for this is immediate: At p = (1 − ε)p0, some vertices in the graph are still isolated, so
there cannot be a perfect matching. The upper bound relies on Tutte’s Theorem, for which
there is no known hypergraph analogue.

On the other hand, for the case r > 3, these questions remained some of the most promi-
nent open problems in random (hyper-)graph theory. Initial results on perfect matchings in
random r-uniform hypergraphs were obtained by Schmidt and Shamir [19] - guaranteeing
a perfect matching for hypergraphs with expected degree ω(

√
n), with improvements by

Frieze and Janson [7] to ω(n
1
3 ) and further to ω

(
n1/(5+2/(r−1))) by Kim [14]. For clique

factors, even determining the special case of triangle factors proved hard, despite partial
results by Alon and Yuster [1], Ruciński [18] and Krivelevich [15]. Finally, both questions
were jointly resolved up to constant factors by Johansson, Kahn and Vu in their seminal
paper [11]. It had long been assumed that, as in the case r = 2, the main obstacle in finding
a perfect matching in Hr(n, π) were isolated vertices, that is, vertices not contained in any
hyperedge. In the clique factor setting, the obstacle corresponding to isolated vertices are
vertices not contained in any r-clique. Let

π0 = π0(r) =
log n(
n−1
r−1

) and p0 = p0(r) = π
1/(r2)
0 ;

1We say that a sequence of events (En)n>1 holds with high probability (whp) if P (En)→ 1 as n→∞.
2Here and in the following, we implicitly assume n ∈ rZ+ whenever necessary.
3Recall that a sequence p∗ = p∗(n) is called a sharp threshold for a graph property P, if for all fixed

ε > 0 we have G(n, p) /∈ P whp if p(n) < (1− ε)p∗(n), and G(n, p) ∈ P whp if p(n) > (1 + ε)p∗(n). For a
(weak) threshold, the conditions become p = o(p∗) and p∗ = o(p), respectively.
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then π0 and p0 are known to be sharp thresholds for the properties ‘minimum degree at
least 1’ in Hr(n, π) and ‘every vertex is covered by an r-clique’ in G(n, p), respectively
[4, 10]. Johansson, Kahn and Vu [11] showed that π0 and p0 are indeed (weak) thresholds
for the existence of a perfect matching in Hr(n, π) and for the existence of an r-clique
factor in G(n, p), respectively.

Recently, Kahn [12] proved that π0 is in fact a sharp threshold for the existence of a
perfect matching in Hr(n, π). Indeed, he was able to confirm the conjecture that isolated
vertices are essentially the only obstacle, and thereby answer Shamir’s question, in the
strongest possible sense:

Let h1, . . . ,hNr be a uniformly random order of the hyperedges in
(
V
r

)
, then the random

r-uniform hypergraph process (Hr
t )
Nr
t=0 is given by Hr

t = {h1, . . . ,ht}. Let

TH = min{t : Hr
t has no isolated vertices}

be the hyperedge cover hitting time, i.e., the time t where the last isolated vertex ‘disap-
pears’ by being included in a hyperedge. In the graph case r = 2, Bollobás and Thomason
[2] proved in 1985 that this hitting time whp coincides with the hitting time for a perfect
matching. Kahn [13] showed that this is indeed also the case when r > 3:

Theorem 1.3 ([13]). Let r > 3 and n ∈ rZ+, then whp Hr
TH

has a perfect matching.

Can we get a similarly strong answer to the clique factor question? For r = 3, the
question whether a triangle factor exists in the random graph process as soon as every
vertex is covered by a triangle was attributed to Erdős and Spencer in [3, §5.4]. This
question seems much harder than its Shamir counterpart because, unlike hyperedges in
the random hypergraph, cliques do not appear independently of each other. However, for
sharp thresholds it has indeed been possible to reduce the clique factor problem to the
perfect matching problem, using the following coupling result of Riordan (for r > 4) and
the first author (for r = 3):

Theorem 1.4 ([8, 17]). Let r > 3. There are constants ε(r), δ(r) > 0 such that, for any
p = p(n) 6 n−2/r+ε, letting π = p(

r
2)(1−n−δ), we may couple the random graph G = G(n, p)

with the random r-uniform hypergraph H = Hr(n, π) so that, whp, for every hyperedge in
H there is a copy of Kr in G on the same vertex set.4

Together with Kahn’s sharp threshold result [12], the following corollary is immediate.

Corollary 1.5. There is a sharp threshold for the existence of a Kr-factor at p0.

In the same spirit, we wish to transfer Kahn’s hitting time theorem, Theorem 1.3,
directly to the random graph process setting, showing its clique factor analogue. Such
a derivation of the factor result from its Shamir counterpart was believed to be out of
reach — Kahn remarks in [12] that ‘there seems little chance of anything analogous’ for

4In [8, 17], Theorem 1.4 was given with an unspecified o(1)-term in place of n−δ; the formulation above
is Remark 4 in [17] and in the case r = 3, an unnumbered remark near the end of [8].
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Theorem 1.3, and in [13] that the connection between the factor version and the Shamir
version of the result ‘seems unlikely to extend to’ Theorem 1.3. One important reason for
this is that the original coupling provides merely a one-way bound. While it guarantees a
copy of Kr in G = G(n, p) on the same vertex set for every h in H = Hr(n, π), we cannot,
as observed by Riordan [17], expect to find a corresponding hyperedge of H for every Kr

in G, since there we will find roughly n2r−2p2(
r
2)−1 pairs of Kr sharing two vertices, which

is much larger than the expected number n2r−2π2 of pairs of hyperedges of H sharing
two vertices. A second obstacle is that whenever we do have such a pair of overlapping
hyperedges in H, the corresponding cliques in G will not appear independently of each
other in the associated random graph process — for example the shared edge could be the
last to appear, and then those cliques emerge simultaneously in the random graph process.
And indeed, extra cliques and pairs of overlapping cliques do pose a challenge, but they
will not appear ‘near’ those candidate vertices which may be among the last vertices to be
covered by cliques.

Now, let (Gt)
N2
t=0 be the random graph process, which is the random r-uniform hyper-

graph process for r = 2. Denote the hitting time of an r-clique cover by

TG = min{t : every vertex in Gt is contained in at least one r-clique}.

Then, to apply Kahn’s hitting time result to the clique factor setting, we need to find a
copy of Hr

TH
within the cliques of GTG . That this can be achieved is our main result:

Theorem 1.6. Let r > 3. We may couple the random graph process (Gt)
N2
t=0 with the

random r-uniform hypergraph process (Hr
t )
Nr
t=0 so that, whp, for every hyperedge in Hr

TH

there is a clique in GTG on the same vertex set. In particular, whp GTG contains a Kr-
factor.

What is more, a simplification of the proof of Theorem 1.6 yields a corresponding result
forK(s)

r -factors. For this, let r > s > 3 andK(s)
r denote the complete s-uniform hypergraph

on r vertices. Let (Gt)
Ns
t=1 = (Hs

t )
Ns
t=1 and denote the hitting time of a K(s)

r -cover by TG.
Then:

Theorem 1.7. Let r > s > 3. We may couple the stopped random r-uniform hypergraph
process HTH and the stopped random s-uniform hypergraph process GTG so that, whp, for
every hyperedge in HTH there is copy of K(s)

r in GTG on the same vertex set. In particular,
whp GTG has a K(s)

r -factor.

2 Preliminaries
In the remainder, we fix r > 3 and suppress the dependence on r writing Ht instead of Hr

t ,
etc. Let M = Nr =

(
n
r

)
and N = N2 =

(
n
2

)
. By an r-uniform hypergraph H on the vertex

set V = [n], we mean a subset of
(
V
r

)
, the set of all r-subsets of V . That is, we will use

H as a set (of sets of vertices of size r) for convenient notation. For a hypergraph H on
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the vertex set V = [n] and v ∈ [n], we use d(v) to denote the degree of v in H. In a graph
G, an r-clique is a clique on r vertices. We denote by cl(G) the set of vertex sets from(
V
r

)
which span r-cliques in G (so cl(G) is an r-uniform hypergraph in the aforementioned

sense). Throughout the paper, we fix an arbitrary function g(n) satisfying

g(n) = o
(
log n/ log log n

)
and g(n) = ω(1). (1)

2.1 The standard coupling and the critical window

It will be useful to work with the following standard device which gives a convenient
coupling of the random hypergraphs H(n, π) for all π ∈ [0, 1] and the random hypergraph
process.

Definition 2.1 (Standard coupling). For every h ∈
(
V
r

)
, let Uh be an independent random

variable, uniform from [0, 1]. Let

Hπ = (V, {h : Uh 6 π}).

Then Hπ ∼ H(n, π). Almost surely all values Uh, h ∈
(
V
r

)
, are distinct, yielding an instance

of the random hypergraph process (Ht)
M
t=0, as we can add the hyperedges in ascending order

of Uh.

We will operate within the following critical window : Define π− and π+ by setting

π± =
log n± g(n)(

n−1
r−1

) , (2)

where g(n) is the function which was fixed globally in (1), and, using δ, ε from Theorem 1.4,
let

p± =
(
π±/(1− n−δ)

)1/(r2). (3)

For n large enough we have p+ 6 n−2/r+ε, so Theorem 1.4 applies with p = p+ and π = π+.
It is well-known that (π−, π+) is the ‘critical window’ for the disappearance of the

last isolated vertex in a random r-uniform hypergraph (see [4, Lemma 5.1(a)]), and so by
Theorem 1.3 for the appearance of a perfect matching. So if we couple as in Definition 2.1,
then whp we have

Gp− ⊂ GTG ⊂ Gp+ and Hπ− ⊂ HTH ⊂ Hπ+ . (4)

2.2 Proof overview

Define p+, π+ as in equations (2) and (3). Our starting point is the coupling ofG ∼ G(n, p+)
and H ∼ H(n, π+) given by Theorem 1.4. We review this coupling in §3. In §4, the heart of
the proof, we take the coupled G ∼ G(n, p+) and H ∼ H(n, π+) and proceed by carefully
coupling uniform orders of the edges of G and hyperedges of H. Since p+ and π+ are
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the upper ends of the respective critical windows (see §2.1), whp this couples (copies of)
the stopped graph process GTG and the stopped hypergraph process HTH . This coupling
almost does what we want: for all hyperedges h ∈ HTH , except those in a small exceptional
set E , there is an r-clique in GTG on the same vertex set. Moreover, we show that whp all
h ∈ E have a partner hyperedge which appears between time TH and time TH + bg(n)nc.
To prove Theorem 1.6, we are left to show that we can get rid of the hyperedges in E and
still have an instance of the stopped random hypergraph process. To this end, E can be
whp embedded into a binomial random subset R ⊂ HTH where each hyperedge h ∈ HTH

is included independently with a small probability. We proceed to show that if we remove
the hyperedges in R from the hypergraph process up to time TH , whp this essentially
does not change the hitting time TH , and in particular whp HTH \ R is still an instance
of the stopped random hypergraph process. Chaining the couplings together then proves
Theorem 1.6. The necessary modifications in the proof of Theorem 1.7 are detailed in [9].

3 Coupling of G(n, p+) and H(n, π+)

In §3.1 we briefly review Riordan’s coupling from Theorem 1.4 for r > 4.5 We let π = π+
from equation (2) and p = p+ from equation (3).

3.1 The coupling algorithm for r > 4

Order the M =
(
n
r

)
potential hyperedges in some arbitrary way as h1, . . . , hM , and for

1 6 j 6 M , let Aj be the event that there is an r-clique in G ∼ G(n, p) on the vertex set
of hj. We construct the coupling of G ∼ G(n, p) and H ∼ H(n, π) step by step; in step j
revealing whether or not hj ∈ H, as well as some information about Aj.
Coupling algorithm: For each j from 1 to M :

• Calculate πj, the conditional probability of Aj given all the information revealed so
far.

• If πj > π, toss a coin which lands heads with probability π/πj, independently of
everything else. If the coin lands heads, then test whether Aj holds (which it does
with probability exactly πj). Include the hyperedge hj in H if and only if the coin
lands heads and Aj holds. (Note that the probability of including hj is exactly
π/πj · πj = π.)

• If πj < π, then toss a coin which lands heads with probability π (independently of
everything else), and declare hj present in H if and only if the coin lands heads. If
this happens for any j, we say that the coupling has failed.

After steps j = 1, . . . ,M , we have decided all hyperedges of H, and revealed information
on the events A1, . . . , AM of G. Now choose G conditional on the revealed information on
the events Aj.

5For the modifications in the case r = 3 we refer the reader to [8].
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4 Process coupling
Building upon Theorem 1.4, we couple the random graph process with the random hy-
pergraph process. Roughly speaking, we may couple the random graph process and the
random hypergraph process so that there is almost a copy of HTH within the r-cliques of
GTG : for all hyperedges in HTH except those in a set E (the exceptional hyperedges), there
is an r-clique in GTG on the same vertex set. Moreover, the hyperedges in E all gain a
partner hyperedge shortly after time TH .

Proposition 4.1. We may couple the random graph process (Gt)
N
t=0 and the random hyper-

graph process (Ht)
M
t=0 so that whp the following holds. There is a set of hyperedges E ⊂ HTH

so that

a) HTH \ E ⊂ cl(GTG), and

b) for every h1 ∈ E there is a h2 ∈ HTH+bg(n)nc \HTH so that |h1 ∩ h2| = 2.

Now whp, we can embed the set E of ‘exceptional’ hyperedges from Proposition 4.1 into
a random set R which includes every h ∈ HTH independently with a small probability.

Proposition 4.2. We may couple the random r-uniform hypergraph process (Ht)
M
t=0 and

a set R ⊂
(
[n]
r

)
of hyperedges so that both of the following properties hold.

a) We have R ⊆ HTH , and (given only HTH ) each hyperedge h ∈ HTH is included in R
independently with probability πR = 10r4g(n)

n
.

b) Let F ⊂ HTH be the set of hyperedges in HTH with a partner hyperedge in HTH+bg(n)nc\
HTH . Then, whp, F ⊂ R.

As the final puzzle piece, we find that after removing every hyperedge from HTH inde-
pendently with a small probability, whp we still have an instance of the stopped random
hypergraph process.

Proposition 4.3. Let HTH be the stopped random hypergraph process, and let R ⊂ HTH

be a subset of hyperedges where we include every h ∈ HTH independently with probability
πR = 10r4g(n)

n
. We may couple HTH and R with another instance H ′T ′H of the stopped random

hypergraph process so that, whp, HTH \ R = H ′T ′H
.

Combining Propositions 4.1, 4.2 and 4.3 yields a chain of couplings that whp embeds
the stopped hypergraph process into the cliques of the stopped graph process, completing
the proof:

H ′T ′H
whp
= HTH \ R

whp
⊆ HTH \ F

whp
⊆ cl(GTH ).
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Abstract

J.-P. Roudneff conjectured in 1991 that every arrangement of n ≥ 2d + 1 ≥ 5
pseudohyperplanes in the real projective space Pd has at most

∑d−2
i=0

(
n−1
i

)
complete

cells (i.e., cells bounded by each hyperplane). The conjecture is true for d = 2, 3
and for arrangements arising from Lawrence oriented matroids. The main result of
this manuscript is to show the validity of Roudneff’s conjecture for d = 4. Moreover,
based on computational data we conjecture that the maximum number of complete
cells is only obtained by cyclic arrangements.
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1 Introduction
A projective arrangement of n pseudohyperplanes H(d, n) in the real projective space Pd is
a finite collection of mildly deformed linear hyperplanes with several combinatorial proper-
ties, see Section 2.1 for the definition in terms of oriented matroids. In particular, no point
belongs to every pseudohyperplane of H(d, n). Any arrangement H(d, n) decomposes Pd
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into a d-dimensional cell complex and any d-cell c of H(d, n) has at most n facets (that is,
(d− 1)-cells). We say that a d-cell c is a complete cell of H(d, n) if c has exactly n facets,
i.e., c is bounded by each pseudohyperplane of H(d, n).

The cyclic polytope of dimension d with n vertices, discovered by Carathéodory [3], is the
convex hull in Rd of n ≥ d + 1 ≥ 3 different points x(t1), . . . , x(tn) on the moment curve
x : R → Rd, t 7→ (t, t2, . . . , td). Cyclic polytopes play an important role in combinatorial
convex geometry due to their connection with certain extremal problems. See for example,
the upper bound theorem due to McMullen [10]. Cyclic arrangements are defined as the
dual of the cyclic polytopes. As for cyclic polytopes, cyclic arrangements also have extremal
properties, see Section 2.1 for the definition in terms of oriented matroids. For instance,
Shannon [14] introduced cyclic arrangements as examples of projective arrangements in
dimension d which minimize the number of cells with (d+ 1) facets.

Denote by Cd(n) the number of complete cells of the cyclic arrangement of dimension d

with n hyperplanes. Roudneff [13] proved that Cd(n) ≥
d−2∑
i=0

(
n−1
i

)
holds for d ≥ 2 and that

this bound is tight for all n ≥ 2d + 1. Moreover, he conjectured that in that case, cyclic
arrangements maximize the number of complete cells.

Conjecture 1.1 ([13, Conjecture 2.2]). Every arrangement of n ≥ 2d + 1 ≥ 5 pseudohy-

perplanes in Pd has at most
d−2∑
i=0

(
n−1
i

)
complete cells.

The conjecture is true for d = 2 (that is, any arrangement of n pseudolines in P2 contains
at most one complete cell), Ramírez Alfonsín [12] proved the case d = 3, and in [11] the
authors proved it for arrangements corresponding to Lawrence oriented matroids.
In [8] the exact number of complete cells of cyclic arrangements was calculated for any
positive integers d and n with n ≥ d+ 1, namely,

Cd(n) =

(
d

n− d

)
+

(
d− 1

n− d− 1

)
+

d−2∑
i=0

(
n− 1

i

)
.

Thus, in view of Roudneff’s conjecture, the following question was asked in [11].

Question 1.2. Is it true that every arrangement of n ≥ d+1 ≥ 3 pseudohyperplanes in Pd

has at most Cd(n) complete cells?

Notice that there is a unique arrangement of 3 (resp. 4) lines in P2 with C2(3) = 4 (resp.
C2(4) = 3) complete cells. Since Conjecture 1.1 is true for d = 2 and n ≥ 5, Question 1.2
is answered affirmatively for d = 2.
As the main result of this paper, we give an affirmative answer to Question 1.2 for d = 4
and therefore prove Roudneff’s conjecture for dimension 4, further supporting the general
conjecture. In addition, with a few simple observations, we answer Question 1.2 for d = 3
and further strengthen Roudneff’s conjecture.
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2 Oriented matroids
Let us give some basic notions and definitions in oriented matroid theory. We assume some
knowledge and standard notation of the theory of oriented matroids, for further reference
the reader can consult the textbook [2]. A signed set or signed vector X on ground
set E is a set X ⊆ E together with a partition (X+, X−) of X into two distinguished
subsets: X+, the set of positive elements of X, and X−, its set of negative elements. The
set X = X+ ∪ X− is the support of X. We denote by −X the sign-vector such that
−X+ = X− and −X− = X+. An oriented matroidM = (E, C) is a pair of a finite ground
set E and a collection of signed sets on E called circuits, satisfying the following axioms:

• ∅ /∈ C,

• if X ∈ C then −X ∈ C,

• if X, Y ∈ C and X ⊆ Y then X = ±Y ,

• if X, Y ∈ C, X 6= −Y , and e ∈ X+ ∩ Y −, then there is Z ∈ C, with e /∈ Z and
Z+ ⊆ X+ ∩ Y + and Z− ⊆ X− ∩ Y −.

We say that X ∈ C is a positive circuit if X− = ∅. We call the set of all reorientations of
M its reorientation class. We say thatM is acyclic if it does not contain positive circuits
(otherwise,M is called cyclic). A reorientation ofM on R ⊆ E is performed by changing
the signs of the elements in R in all the circuits ofM. It is easy to check that the new set
of signed circuits is also the set of circuits of an oriented matroid, usually denoted byMR.
A reorientation is acyclic ifMR is acyclic. Recall that oriented matroid on n elements is
uniform of rank r if the set of supports of its circuits consists of all (r+1)-element subsets
of E. Given a uniform oriented matroidM of rank r on n = |E| elements, we denote its
dual byM∗, which is another uniform oriented matroid of rank n− r on n elements.
A characterization of oriented matroids in terms of basis orientations (that we will not
make explicit here) was given by Lawrence [9]. Let r ≥ 1 be an integer and E = {1, . . . , n}
be a set. A mapping χ : Er → {−1, 0, 1} (where we will abbreviate it by {−, 0,+}) is a
basis orientation of an oriented matroid of rank r on E if and only if χ is a chirotope, that
is, a special alternating mapping not identically zero. It is known that χ : Er → {−,+} is
a chirotope if and only if χ is a basis orientation of a rank r uniform oriented matroid on E.
Moreover, if χ(B) = + for any ordered basis B = (b1, . . . , br) of M with b1 < . . . < br,
then the uniform matroidM is known to be the alternating oriented matroid of rank r on
n elements. In that case, the signs of each circuit alternate along the ordering of E.
Given two sign-vectors X, Y ∈ {+,−, 0}E, their separation is the set S(X, Y ) = {e ∈ E |
Xe ·Ye = −}, where Xe and Ye are the signs of the element e in X and Y , respectively. We
denote by X ⊥ Y and say that X and Y are orthogonal if the sets S(X, Y ) and S(X,−Y )
are either both empty or both non-empty. Maximal covectors of an oriented matroid M
are usually called topes. It is known that a sign-vector T ∈ {+,−}E is a tope ofM if and
only if T ⊥ X for all circuit X ∈ C (see [2, Section 1.2, page 14]). Moreover, T is a tope
ofM if and only if S(T,X) and S(T,−X) are both non-empty, for every circuit X ∈ C.
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2.1 Topological Representation Theorem

The combinatorial properties of arrangements of pseudohyperplanes can be studied in the
language of oriented matroids. The Folkman–Lawrence topological representation theo-
rem [7] states that the reorientation classes of oriented matroids on n elements and rank
r (without loops or parallel elements) are in one-to-one correspondence with the classes of
isomorphism of arrangements of n pseudospheres in Sr−1 (see [2, Theorem 1.4.1]). There is
a natural identification between pseudospheres and pseudohyperplanes as follows. Recall
that Pr−1 is the topological space obtained from Sd by identifying all pairs of antipodal
points. The double covering map π : Sr−1 → Pr−1, given by π(x) = {x,−x}, gives an
identification of centrally symmetric subsets of Sr−1 and general subsets of Pr−1. This
way centrally symmetric pseudospheres in Sr−1 correspond to pseudohyperplanes in Pr−1.
Hence, the topological representation theorem can also be stated in terms of pseudohyper-
planes in Pr−1, i.e., the reorientation classes of oriented matroids on n elements and rank
r (without loops or parallel elements) are in one-to-one correspondence with the classes of
isomorphism of arrangements of n pseudohyperplanes in Pr−1 (see [2, Exercise 5.8]).
An arrangement H(d, n) is called simple if every intersection of d pseudohyperplanes is a
unique distinct point. Simple arrangements correspond to uniform oriented matroids. The
d-cells of any arrangement H(d, n) are usually called topes since they are in one-to-one
correspondence with the topes of each of the oriented matroidsM of rank r = d+ 1 on n
elements of its corresponding reorientation class. It is known that a tope ofM (i.e, a d-cell
of its corresponding arrangement) corresponds to an acyclic reorientation ofM having as
interior elements precisely those pseudohyperplanes not bordering the tope. Moreover, a
tope T of M is a complete cell if reorienting any single element of T , the resulting sign-
vector is also a tope ofM. Cyclic arrangements of n hyperplanes in Pd are equivalent to
alternating oriented matroids of rank r = d + 1 on n elements, which hence have exactly
2Cr−1(n) complete cells. Summarizing, Question 1.2 (and hence Roudneff’s conjecture)
can be stated in the following form:

Every rank r oriented matroidM on n ≥ r+1 elements has at most 2Cr−1(n)
complete cells.

We summarize for later usage: Given a rank r oriented matroidM = (E, C), the following
three conditions hold.
(a) A tope ofM is a sign-vector T ∈ {+,−}E such that T ⊥ X for all circuit X ∈ C.
(b) A tope T ofM is a complete cell if reorienting any single element of T , the resulting

sign-vector is also a tope ofM.
(c) If the corresponding arrangement of n pseudohyperplanes in Pr−1 ofM is simple, then
M is uniform.

3 Previous results
We will use the following result due to Roudneff.
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Proposition 3.1 ([13]). To prove Conjecture 1.1 for dimension d, it suffices to verify it
for all simple arrangements of n = 2d+ 1 pseudohyperplanes in Pd.

From the proof of the above proposition, it can be seen that even for any arrangement H
with n ≤ 2d pseudohyperplanes in Pd, we may also perturb each hyperplane of H a bit in
order to obtain a simple arrangement H ′ with at least the same number of complete cells
as H (see Proposition 2.3 of [13]). This shows that also for Question 1.2, we can restrict
ourselves to simple arrangements.

Remark 3.2. To answer Question 1.2 for dimension d in the affirmative, it suffices to
verify it for simple arrangements of pseudohyperplanes in Pd.

Thus, by condition (c) and by Remark 3.2, it is sufficient to prove Question 1.2 for uniform
oriented matroids. The following observation will be useful in this work.

Remark 3.3. There is only one reorientation class of uniform rank r oriented matroids
on n ≤ r + 2 elements.

Proof. The number of reorientation classes of a uniform oriented matroidM of rank r on
n elements is equal to the number of reorientation classes of its dualM∗. Now, ifM has
rank r and n ≤ r+2 elements, thenM∗ has rank at most 2. Hence,M∗ and thereforeM
has only one reorientation class.

Thus, every acyclic uniform oriented matroid on at most r + 2 elements is in the reorien-
tation class of the alternating oriented matroid and hence, they all have the same number
of complete cells. As a consequence of Remarks 3.2 and 3.3, we can answer affirmatively
Question 1.2 for n ≤ r + 2. In particular, as for r = 4 (dimension d = 3) Conjecture 1.1 is
true for n ≥ 7, we obtain the following.

Corollary 3.4. Every arrangement of n ≥ 4 pseudohyperplanes in P3 has at most C3(n)
complete cells.

4 Main result
Given a uniform rank r oriented matroid M = (E, C) on n = |E| elements, we explain
the procedure to obtain the set of all complete cells of its corresponding arrangement of n
pseudohyperplanes in Pd via the signed bases ofM. We start with the signature of all the
bases ofM and then, we obtain all its signed circuits. After that, we get the set of topes
ofM and finally, we obtain the set of all complete cells ofM as follows:

Bases → Circuits: From the chirotope, we may obtain that χ(B) = −Xbi · Xbi+1
· χ(B′),

where X = {b1, ..., br+1} is the support of an ordered circuit of M and B = X − bi and
B′ = X − bi+1 are two bases ofM (see [2, Section 3.5]). Hence, given χ(B), for any basis
B ofM, we obtain the signed circuit X and sinceM is uniform, we can proceed to obtain
all the signed circuits ofM.
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Circuits → Topes: For any sign-vector T ∈ {+,−}n, we verify condition (a) to confirm
that T is a tope ofM, i.e., we check for all circuit X ∈ C ofM if S(T,X) and S(T,−X)
are both non-empty (see [2, Section 1.2, page 14]).

Topes → Complete cells: For any tope T , we verify condition (b) to confirm that T is a
complete cell of M. That is, we reorient any single element of T , check if the resulting
sign-vector is a tope ofM and verify this for each of the n entries of T .

Finschi and Fukuda [5, 6] enumerated the signed bases of all the reorientation classes of
uniform rank 5 oriented matroids on 8 and 9 elements. While the data for 8 elements
is available on the website [4], the data for 9 elements and also their source code for
the enumeration is available upon request from Lukas Finschi. We follow the procedure
explained above with a computer program (available at [1]) which gives us the number of
complete cells of each acyclic reorientation class. After about 26 CPU days of computing
time (i.e., few days with parallelization), we obtain the following.

Theorem 4.1. Each of the 135 reorientation classes of uniform rank 5 oriented matroids
on 8 elements has at most 2C4(8) complete cells. Moreover, the class of the alternating
oriented matroid is the only one with exactly 2C4(8) complete cells.

Theorem 4.2. Each of the 9276595 reorientation classes of uniform rank 5 oriented ma-
troids on 9 elements has at most 2C4(9) complete cells. Moreover, the class of the alter-
nating oriented matroid is the only one with exactly 2C4(9) complete cells.

We can now prove our main result:

Theorem 4.3. Every arrangement of n ≥ 5 pseudohyperplanes in P4 has at most C4(n)
complete cells.

Proof. By Proposition 3.2, it is sufficient to prove the theorem for simple arrangements,
that is, for uniform oriented matroids (see condition (c)). Thus, by Remark 3.3 and
Theorem 4.1, the result holds for n = 5, 6, 7 and 8. Finally, by Proposition 3.1 it suffices
to verify it for n = 9. Therefore, the result holds by Theorem 4.2.

Finally, we have used our computer program to verify that the cyclic arrangement is the
unique example which maximizes the number of complete cells for d = 2 and n ≤ 10,
for d = 3 and n ≤ 7, and for d = 4 and n ≤ 9. Based on our computational evidence,
we conclude this article with the following strengthening of Roudneff’s conjecture and
Question 1.2:

Conjecture 4.4. Every arrangement of n ≥ d+1 ≥ 3 pseudohyperplanes in Pd has at most
Cd(n) complete cells. Moreover, among all arrangements of n pseudohyperplanes in Pd the
cyclic arrangement is (up to isomorphism) the only one with Cd(n) complete cells.

Last but not least, as the proof of Proposition 3.1, it suffices to verify Conjecture 4.4 for
simple arrangements of pseudohyperplanes in Pd. However, we do not know whether the
setting can also be restricted to n ≤ 2d+ 1 without loss of generality.
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Abstract

Motivated by the Polynomial Freiman-Ruzsa (PFR) Conjecture, we develop a
theory of locality in sumsets, with several applications to John-type approximation
and stability of sets with small doubling. One highlight shows that if A ⊂ Z with
|A+A| ≤ (1− ε)2d|A| is non-degenerate then A is covered by O(2d) translates of a d-
dimensional generalised arithmetic progression (d-GAP) P with |P | ≤ Od,ε(|A|); thus
we obtain one of the polynomial bounds required by PFR, under the non-degeneracy
assumption that A is not efficiently covered by Od,ε(1) translates of a (d− 1)-GAP.

We also prove a stability result showing for any ε, α > 0 that if A ⊂ Z with
|A + A| ≤ (2 − ε)2d|A| is non-degenerate then some A′ ⊂ A with |A′| > (1 − α)|A|
is efficiently covered by either a (d + 1)-GAP or Oα(1) translates of a d-GAP. This
‘dimension-free’ bound for approximate covering makes for a surprising contrast with
exact covering, where the required number of translates not only grows with d, but
does so exponentially. Another highlight shows that if A ⊂ Z is non-degenerate with
|A+A| ≤ (2d+ `)|A| and ` ≤ 0.1 ·2d then A is covered by `+1 translates of a d-GAP
P with |P | ≤ Od(|A|); this is tight, in that ` + 1 cannot be replaced by any smaller
number.

The above results also hold for A ⊂ Rd, replacing GAPs by a suitable common
generalisation of GAPs and convex bodies, which we call generalised convex pro-
gressions. In this setting the non-degeneracy condition holds automatically, so we
obtain essentially optimal bounds with no additional assumption on A. Here we
show that if A ⊂ Rk satisfies |A+A2 | ≤ (1 + δ)|A| with δ ∈ (0, 1), then ∃A′ ⊂ A with
|A′| ≥ (1− δ)|A| so that | co(A′)| ≤ Ok,1−δ(|A|). This is a dimensionally independent
sharp stability result for the Brunn-Minkowski inequality for equal sets, which hints
towards a possible analogue for the Prékopa-Leindler inequality.
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These results are all deduced from a unifying theory, in which we introduce a
new intrinsic structural approximation of any set, which we call the ‘additive hull’,
and develop its theory via a refinement of Freiman’s theorem with additional separa-
tion properties. A further application that will be published separately is a proof of
Ruzsa’s Discrete Brunn-Minkowski Conjecture [vHKT23].

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-079

1 Introduction
A foundational result in Additive Combinatorics is Freiman’s Theorem [Fre59] that any
subset A of integers with bounded doubling is a dense subset of a generalised arithmetic
progression (GAP) P of bounded dimension (see the book of Tao and Vu [TV06] for def-
initions and background). This gives a satisfactory qualitative description of A: it can
be approximated by some P belonging to a simple class of sets with bounded doubling.
However, the doubling of P may be much larger than that of A, so the quest for a more
quantitative version of Freiman’s Theorem has been a major driving force in the devel-
opment of Additive Combinatorics. A little thought reveals that one must allow P to
come from a broader class of sets than just GAPs. One natural attempt is to approximate
A by sets X + P with |X| bounded, i.e. the union of a bounded number of translates
of P . One might hope to find a such an approximation with polynomial bounds, i.e. if
|A + A| ≤ eO(d)|A| then we could find such X,P with dim(P ) = O(d), |X| ≤ eO(d) and
|X + P | ≤ eO(d)|A|. However, an example of Lovett and Regev [LR17] shows that this
is not always possible. Improving the bounds in Freiman’s theorem has been the subject
of a rich body of research [Ruz94, Bil99, Cha02, GT06, San08, Sch11]. The best known
bounds, due to Sanders [San12], have dim(P ) and log(|X + P |/|A|) about O(d6).

The Polynomial Freiman-Ruzsa (PFR) Conjecture (see [Gre07]) attempts to approx-
imate by translates of a convex progression, i.e. a set P of the form φ(C ∩ Zk) for some
convex set C ⊂ Rk and linear map φ : Zk → Z, for which polynomial bounds may be true.
The conjecture states that if |A + A| ≤ eO(d)|A| then one can find such P with k = O(d)
and |P | ≤ eO(d)|A| such that A ⊂ X + P for some X with |X| ≤ eO(d). Below we will
describe three perspectives on the PFR Conjecture that provide a thematic overview of
our results; these are (1) John-type approximation, (2) Stability, (3) Locality. The third
theme of locality is our primary focus, i.e. most of the technical work goes into developing
the theory of locality, which is then used to deduce the results discussed within the first
two themes. Our results hold both for the discrete setting A ⊂ Z considered in PFR and
the continuous setting A ⊂ Rk. For now we will continue to focus on the discrete setting
(in some sense the hardest case; we achieve better bounds in the continuous setting).

Our first perspective interprets PFR as a John-type approximation. In general terms, a
John-type theorem says that any object in some class is approximated efficiently (i.e. up to
some constant factor) by some object from some simpler class. Some examples are John’s
Theorem approximating convex bodies by ellipsoids, Freiman’s Theorem approximating
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sets of small doubling by GAPs, and a theorem of Tao and Vu [TV08] approximating
convex progressions by GAPs.

Theme 1: John-type approximation. One question that we address is the existence
of John-type approximations P for sets of bounded doubling A. E.g. if A ⊂ Z is non-
degenerate with |A+A| ≤ (2d + `)|A| and ` ≤ 0.1 · 2d we show that A is covered by `+ 1
translates of a d-GAP P with |P | ≤ Od(|A|). Here `+ 1 translates is optimal (as shown by
adding ` scattered points to a d-GAP), so in the sense of John-type approximation we have
a precise characterisation of such sets A. We also show (see Theorem 1.5) that if A ⊂ Z
with |A + A| ≤ (1 − ε)2d|A| is non-degenerate then A is contained in O(2d) translates
of a d-dimensional convex progression P with |P | ≤ Od,ε(|A|); thus we obtain one of the
polynomial bounds required by PFR.

Our second perspective sees PFR as a stability statement. In general terms, if an object
in some class is close to maximising some function on the class, then it must be structurally
close to some extremal example. The possible meanings of ‘structurally close’ are nicely
expressed by terminology of Tao: we speak of 1%, 99% or 100% stability according to
whether we approximate some constant fraction (1%), all bar some constant fraction (99%),
or everything (100%). For sets of small doubling, stability results are only known when
the doubling is quite close to the minimum possible, such as the celebrated Freiman 3k−4
Theorem (see [Fre59]) and various results (described below) for ‘non-degenerate’ A in Rk

or Zk with |A+ A| ≤ (2k + δ)|A| for small δ. Ruzsa’s Covering Lemma (see e.g. [Ruz99])
converts any 1% stability theorem into a 100% stability theorem. However, this argument
is quantitatively weak, so we require an alternative approach for optimal bounds.

Theme 2: Stability. We approach 100% stability via 99% stability, i.e. we first seek a
structural description for almost all of A, and then use it to deduce the remaining structure.
This approach is well-known in Extremal Combinatorics (the ‘stability method’), but we are
not aware of applications to Freiman’s Theorem. Our 99% stability result (see Theorem 1.6)
shows for any ε, α > 0 that if A ⊂ Z with |A + A| ≤ (2 − ε)2d|A| is non-degenerate then
some A′ ⊂ A with |A′| > (1−α)|A| is efficiently covered by either a (d+1)-GAP or Oε,α(1)
translates of a d-GAP. This ‘dimension-free’ bound for approximate covering makes for a
surprising contrast with exact covering, where the required number of translates not only
grows with d, but does so exponentially.

Our third perspective on PFR sees it as describing the locality of A. We think of |X| as
the number of locations for A, taking the view that elements of the same convex progression
are close additively, even though they need not be close metrically. This perspective is
particularly clarifying for the continuous setting of A ⊂ Rk. Here the classical Brunn-
Minkowski inequality shows that1 |A+A| ≥ 2k|A|, with equality if and only if A is convex
up to a null set. There is a substantial literature on A ⊂ Rk with |A + A| ≤ (2k + δ)|A|
for small δ > 0. For such A, Christ [Chr12a] showed that the convex hull co(A) satisfies
| co(A)| ≤ (1 + ε(δ))|A|, where ε(δ)→ 0 as δ → 0. Improvements were obtained by Figalli
and Jerison [FJ15, FJ21], recently culminating in a sharp stability result with optimal

1For now we use | · | notation for both (discrete) cardinality and (continuous) measure, but for clarity
later we use | · | for measure and #(·) for cardinality.
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parameters by van Hintum, Spink and Tiba [vHST22]. Thus for small δ the locality of A
is simply its convex hull, but for larger δ the picture becomes more complicated.

Theme 3: Locality. A natural starting point is to consider A ⊂ Rk with |A + A| ≤
(2k+δ)|A| and ask how large δ > 0 may be for us to still efficiently cover A by a convex set.
This is clearly impossible for δ ≥ 1: consider a convex set and add one faraway point. Our
general theory shows that the threshold is exactly at 1, i.e. if δ < 1 then | co(A)| < Ok(|A|).
We have a simple proof for this case, which will be published separately in [vHK23b]. As δ
increases we can efficiently cover A by translates of a convex set; moreover, while δ < 0.1·2k
we can do so with δ+ 1 translates, which is optimal (similarly to the result in Z mentioned
above; both are subsumed in a more general picture). However, when δ reaches 2k, any
fixed number of translates of a convex set will not suffice, as A may be of the form X + P
where P is convex and X is an AP.

Generalised convex progressions. Hence, we introduce a common generalisation of con-
vex progressions and GAPs: a convex (k, d)-progression is a set P = φ(C ∩ (Rk × Zd)),
where C ⊂ Rk+d is convex and φ : Rk+d → Rk is a linear map. In Theorem 1.4 we consider
non-degenerate A ⊂ Rk with |A+A| ≤ (2k+d + `)|A| for d, ` ≥ 0 and find an efficient cov-
ering of A by X + P , where P is a convex (k, d)-progression and |X| is tightly controlled
in terms of `; in particular, for ` ≤ 0.1 · 2k+d we obtain the optimal bound |X| ≤ ` + 1.
Setting d = 0 recovers our results discussed above for A ⊂ Rk. We will also see that the
results in Z follow from those in R. Thus in our general setting we can still think of |X|
as measuring locality, provided that we think of elements of the same generalised convex
progression as being close additively, if not metrically.

In the next subsection we introduce notation that is used to formally develop the above
concepts and state our precise results during the remainder of this introduction. These
are organised by subsection according to our main theme of locality, covering the results
discussed above, and the following further results.

• For non-degenerate A ⊂ Rk with |A + A| ≤ (2k+d + δ)|A| where δ ∈ (0, 1) we
find a convex (k, d)-progression P with |P \ A| < Ok,d(δ|A|) (see Theorem 1.9).
Setting d = 0 recovers the previously mentioned sharp stability result of [vHST22]
for A ⊂ Rk, whereas setting k = 0 recovers a sharp stability result for non-degenerate
A ⊂ Zd by the same authors [vHST23a].

• We obtain a very precise structural description of sets A ⊂ R in the line with doubling
less than 4 (see Theorem 1.8).

1.1 Overview and notation

The following generalised notion of convex hull will play a crucial role throughout the
paper. For A ⊂ Rk, we write coRk,d

t (A) = X + P , where P is a proper convex (k, d)-
progression and #X ≤ t, choosing X and P so that A ⊂ X + P and |X + P | is minimal;
we fix an arbitrary choice if X + P is not unique. In some cases we will omit k, d if d = 0

and t if t = 1, e.g. co(X) should be understood as coRk,0
1 (X), where k is the dimension of

the ambient space for X, so that it coincides with the common notion of the convex hull.
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We also require the closely related notion gapRk,d
t (A), defined as a minimum volume set

X+P +Q containing A such that #X ≤ t, P is a proper d-GAP and Q is a parallelotope.
This is roughly equivalent to the variant scoRk,d

t (A) defined exactly as coRk,d
t (A) but impos-

ing the symmetry requirement P = −P . Indeed, | coRk,d
t (A)| ≤ | scoRk,d

t (A)| ≤ | gapRk,d
t (A)|

is clear, and we will show that | gapRk,d
t (A)| = Od,k(| scoRk,d

t (A)|). Most results in this paper
will be stated using gapRk,d

t , are equivalent to the corresponding statement using scoRk,d
t ,

and imply the corresponding statement using coRk,d
t . However, for some very precise state-

ments we require coRk,d
t .

To state our results in Z, let coZ,d
t , scoZ,d

t , and gapZ,d
t be the corresponding functions for

subsets of Z, replacing ‘convex (k, d)-progression’ by ‘convex d-progression’. To be precise,
coZ,d
t (A) = X + P where P is a convex d-progression and #X ≤ t, choosing X and P

so that A ⊂ X + P and #(X + P ) minimal. Analogously define scoZ,d
t (A) and gapZ,d

t (A)
with the additional requirement that P is origin symmetric and a generalised arithmetic
progression, respectively. Intuitively, throughout the paper we think of k as ‘continuous
dimension’ and d as ‘discrete dimension’. To stress this connection we write cok,dt for coRk,d

t

and co0,d
t for coZ,d

t .
As further illustrations of this notation we can restate Freiman’s Theorem and PFR as

follows.

Freiman’s Theorem. If A ⊂ Z with #(A+ A) ≤ K#A,

then #
(

co
0,OK(1)
OK(1) (A)

)
≤ OK(#A).

PFR. If A ⊂ Z with #(A+ A) ≤ eO(d)#A,

then #
(

co
0,O(d)

eO(d) (A)
)
≤ eO(d)#A.

Many of our theorems include a non-degeneracy condition which should be interpreted
as follows

#
(

gap0,d−1
Od,ξ(1)

(A)
)
≥ Ωd,ξ(#A) ⇐⇒ ∀d, ξ,∃C, c : #

(
gap0,d−1

c (A)
)
≥ C#A, (1)

i.e. there is no collection of few (c depending only on d, and ξ) translates of a d − 1
dimensional generalized arithmetic progression covering A efficiently (exceeding the size of
A by at most a factor C depending only on d and ξ).

We will state our results in the following subsections according to the theme of locality,
i.e. with respect to the bounds on the parameter t in cok,dt (A). A rough summary of their
contents is as follows:

• A big part of the set is in one place.

• The entire set is in few places.

• Almost all of the set is in a constant number of places.
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• Sets in the line with doubling less than 4 are almost convex.

• A sharp doubling condition for almost convexity.

The theory of sumsets has been developed in several groups. Particular attention has
been given to the continuous setting of Rk (e.g. [FMP09, FMP10, Chr12a, FJ15, FJ17,
FJ21, vHST23c, vHST22]) and to the discrete setting of Z (e.g. [Fre59, Ruz94, Bil99,
Cha02, GT06, San08, Sch11]). In the context of this paper, the setting does not make
much difference to our results, so although we state some results below for Z, for the
proofs we will generally prefer to work in Rk. This is justified as (a) the proofs are the
same modulo the theory of the additive hull, and (b) the results in Z follow from the results
in R via the following proposition.

Proposition 1.1. For any A ⊂ Z and d, t ∈ N there is ε = ε(A, d, t) > 0 so that B :=

A+ [−ε, ε] ⊂ R has
∣∣∣gap1,d

t (B)
∣∣∣ = Θd,t

(
ε#
(

gap0,d
t (A)

))
.

1.2 A big part of the set is in one place

We start with the continuous setting of Rk, where we obtain a clean unified formulation of
the 1% stability phenomenon to be discussed in this subsection (a big part in one place) and
as δ → 0 the 99% stability phenomenon (for which we will describe sharper results below).
Combining 1% stability with Ruzsa covering one obtains 100% stability (for which we will
also describe sharper results below). Previous stability results for the Brunn-Minkowski
inequality only applied for much smaller δ; in particular, we are not aware of any previous
results of this kind where δ does not decrease with the dimension.

Theorem 1.2. Let A ⊂ Rk with
∣∣A+A

2

∣∣ ≤ (1 + δ)|A|, where δ ∈ (0, 1). Then there exists
A′ ⊂ A with |A′| ≥ (1−min{δ, δ2(1 +O(δ))})|A| and | co(A′)| ≤ O1−δ,k(|A|).

Since the size of A′ is also independent of the dimension, this result is closely related
to the stability question of the Prékopa-Leindler inequality for equal functions, which can
be seen as a dimensionally independent version of Brunn-Minkowski. We expand on this
connection and formulate a conjectured extension of Theorem 1.2 in [vHK23a, Section
11.1].

Now we consider the integer setting, where the Freiman-Bilu theorem [Bil99] shows
that for sets with small doubling a large part of the set is contained in a small GAP of low
dimension. A quantitative version of Green and Tao [GT06] shows that for A ⊂ Z with
#(A+ A) ≤ 2d(2− ε)#A there exists some A′ ⊂ A with #

(
gap0,d(A′)

)
≤ #A and

#A′ ≥ exp
(
−O(8dd3)

)
εO(2d)#A.

With the following result we establish a bound on #A′ that is optimal up to lower order
terms, at the cost of a non-degeneracy assumption and relaxing the bound on # gap0,d(A′)
in the spirit of our John-type theme. We emphasise that our bound on #A′ does not
depend on the dimension.
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Theorem 1.3. Fix β > 0. Suppose A ⊂ Z with #(A + A) ≤ 2d(1 + δ)#A, where δ ∈
(0, 1). If #

(
gap0,d−1

Od,δ,β(1)
(A)
)
≥ Ωd,δ,β(#A) then there exists A′ ⊂ A with #

(
gap0,d(A′)

)
≤

Oδ,d(#A) and
# (A \ A′)

#A
≤ min

{
(1 + β)δ, δ2 + 60δ3

}
.

The above results are sharp up to lower order terms both as δ → 0 for large k and
as δ → 1. For δ → 0, consider the union of two homothetic convex sets of volumes δ2
and 1 − δ2; for δ → 1 consider an arithmetic progression of 1

1−δ equal convex sets. The
second example suggests a k + 1 dimensional convex structure, which we indeed establish
in Section 1.4.

1.3 The entire set is in few places

Now we consider the 100% stability problem: what is the maximum ‘locality’ for given
doubling? Our fundamental example is a GAP together with some scattered points, i.e.
A = P ∪ S ⊂ Z, where P is a proper d-dimensional GAP and #S = `. Then #(A+A) ≤
(2d + `)#A and A has locality `+ 1.

The following result shows for non-degenerate A that this example is exactly sharp for
a large range of ` and asymptotically sharp when 2d − ` � 2d/2. We remark that even
the much weaker bound of O(2d) for the locality is already sufficient to cover A by X + P
with doubling O(22d), i.e. our John-type approximation only loses a square in the doubling,
whereas the PFR setting allows any polynomial loss.

Theorem 1.4. Let ` ∈ (0, 2d) and A ⊂ Z with #(A+A) ≤ (2d+`)#A and #
(

gapd−1Od(1)
(A)
)
≥

Ωd(#A). Then #
(

gap0,d
`′ (A)

)
≤ Od,`(#A), where

`′ ≤


`+ 1 for ` ∈ N if ` ≤ 0.1 · 2d, or if ` ≤ 0.315 · 2d and d ≥ 13,

`
(

1 +O
(

3

√
2d

(2d−`)2

))
if 0.1 · 2d ≤ ` ≤

(
1− 1√

2d

)
2d,

(1 + o(1))d+1
2ε

where ε = 2d−`
2d

and o(1)→ 0 as ε→ 0.

The final bound in Theorem 1.4 gives an asymptotically sharp result for the limiting case
ε = 2d−`

2d
→ 0, i.e. as the doubling approaches 2d+1. Here the above fundamental example

breaks down and a new example takes over, which can be thought of as a cone over a GAP;
intuitively, this describes the ‘most d-dimensional’ (d+ 1)-dimensional construction.

The above results are very sharp for non-degenerate sets, but to make further progress
towards PFR we need to weaken the non-degeneracy condition. Our next result takes a
step in this direction, but its applicability is limited by the double-exponential dependence
on d′.

Theorem 1.5. Let A ⊂ Z with #(A + A) < 2d#A and d′ < d. If #
(

gap0,d−d′
Od(1)

(A)
)
≥

Ωd(#A) then
#
(

gap0,d
2d exp exp(O(d′))

(A)
)

= Od(#A).
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1.4 Almost all of the set is in a constant number of places

Now we consider 99% stability. Here we find that the number of locations can be bounded
by a constant independently of the doubling. This is a remarkable contrast with the 100%
stability problem, for which we needed an exponential number of locations to cover the
set unless it has close to the minimum possible doubling. Our fundamental example had
many scattered points but essentially all of the mass of the set in one location, which
hints that one should be able to do much better if one can discard a small part of the set.
Furthermore, the second example that takes over as the doubling approaches 2d+1 is highly
structured so that co0,d+1(A) is small. The following shows that any non-degenerate set is
approximately described by one of these two configurations: it is concentrated in a single
(d+ 1)-progression or few d-progressions, where ‘few’ depends only on the approximation
accuracy, not on d.

Theorem 1.6. For any α, ε > 0 and A ⊂ Z with #(A+A) ≤ 2d(2− ε)#A there is A′ ⊂ A
with #A′ ≥ (1− α)#A and

min
{

#
(

gap0,d−1
Od(1)

(A)
)
,#
(

gap0,d
O(α−2)(A

′)
)
,#
(

gap0,d+1
1 (A′)

)}
≤ Od,ε,α(#A).

Hence, we can always find arithmetic structure in an absolute constant fraction of the
set.

Corollary 1.7. Suppose A ⊂ Z with # (A+ A) ≤ 2d(2 − ε)#A and # gap0,d−1
Od(1)

(A) >

Ωd,ε(#A). Then there is A′ ⊂ A with #A′ ≥ 1
50000

#A and #
(
gap0,d+1(A′)

)
≤ Od,ε(#A

′).

1.5 Linear stability results

We additionally prove the following results. For more details and background refer to
[vHK23a].

We prove the following extension of Freiman’s 3k−4 theorem, characterizing sets A ⊂ R
with |A + A| < 4|A|. Let apt(A) be a minimum size set containing A that is an AP of t
intervals whose lengths are in arithmetic progression.

Theorem 1.8. There is an absolute constant C > 0 such that the following holds. Suppose
A ⊂ R with |A+A| < 4|A| and | co(A)| ≥ C|A|. Let t be minimal so that | cot(A)| < 2|A|,
and let δ := |A+A|

|A| − (4 − 2/t). Then | co1,1(A) \ A| ≤ max{150, 4t2}δ|A|. Moreover, if
δ ≤ (2t)−2 then | apt(A) \ A| ≤ 100tδ|A|.

We extend the main results from [vHST22, vHST23a] to establish the optimal bound
on the doubling for which a set needs to be approximately convex. An independent proof
of the corollary is published separately in [vHK23b].

Theorem 1.9. For any d ∈ N, γ, ε > 0, δ ∈ (0, 1−ε), if A ⊂ Z with #(A+A) ≤ (2d+δ)#A

and #
(

gap0,d−1
Od,γ,ε(1)

(A)
)

= Ωd(#A) then #(co0,d(A) \ A)/#(A) ≤ Od(γ + δ).

Corollary 1.10. If A ⊂ Rk satisfies |A + A| = (2k + δ)|A| with δ < 1 then |co(A) \ A| ≤
Ok(δ)|A|.
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1 Introduction and the statement of the main result
This work connects the notions of fractional isomorphism for graphs and for graphons.
The former was introduced by Tinhofer in 1986 [7], and subsequently several important
equivalent characterizations were added by Ramana, Scheinerman, and Ullman [6], by
Dvořák [2] and by Dell, Grohe, and Rattan [1]. We recall these characterizations. Of
these, (FGI-2) and (FGI-3) play an important role in our contribution to the corresponding
theory for graphons. The remaining two are included only to illustrate the mathematical
beauty of the theory, which has important applications in designing fast algorithms for
fractional isomorphism testing (which is often used as a proxy to isomorphism testing).

Suppose that G and H are two graphs on the same vertex set V .

(FGI-1) Characterization via bistochastic matrices. G and H are fractionally isomorphic if
and only if there is a bistochastic matrix S such that for the adjacency matrices AG
and AH of the respective graphs we have SAG = AHS.

(FGI-2) Characterization via counting trees. For two graphs F and J , let hom(F, J) be
the number of homomorphisms of F in J . The graphs G and H are fractionally
isomorphic if and only if hom(T,G) = hom(T,H) for every tree T .

(FGI-3) Characterization via equitable partitions. Let V (F ) = Y1 t . . . t Y` be a partition of
the vertex set of a graph F into nonempty sets. We say that E = (Y1, . . . , Y`) is an
equitable partition if there are numbers (di,j)i,j∈[`] such that for every i, j ∈ [`] and
every v ∈ Yi we have

di,j = degF (v, Yj) . (1)

We call the pair (|Yi|)i∈[`] and (di,j)i,j∈[`] the parameters of E . The graphs G and H
are fractionally isomorphic if and only if there are equitable partitions EG of G and
EH of H that have the same parameters.

(FGI-4) Characterization via iterated degree sequences. For every vertex v ∈ V first define
s1,G(v) := degG(v) and then inductively define multisets s`+1,G(v) := {s`,G(u) : u ∈
NG(v)}. The `-th iteration of the degree sequence of G is the (multiset) collection
S`,G = {s`,G(v) : v ∈ V }. We can make analogous definitions for H. The graphs G
and H are fractionally isomorphic if and only if S`,G = S`,H for every ` ∈ N.

Let us now move to graphons. The basic theory of graphons and their role as limits
of sequences of dense graphs is by now well-understood. We refer to [5] for the basics and
borrow notation from there. Unless stated otherwise, the ground space for graphons is
the square of a standard Borel space (Ω,B) equipped with a Borel probability measure
π. Grebík and Rocha [4] developed a theory of fractional isomorphism for graphons. In
particular, they showed that all the above characterizations of fractional graph isomor-
phism have graphon counterparts and are indeed equivalent. To formulate some of these
counterparts, one needs to develop nontrivial analytic machinery. Here, we do that only
for (FGI-2) and (FGI-3), which we require.
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Figure 1: Graphons U and W from (FGI’-3).

(FGI’-2) Two graphons U and W are fractionally isomorphic if and only if t(T, U) = t(T,W )
for every tree T . Here, t(·, ·) is the usual homomorphism density function.

(FGI’-3) A naive counterpart to (FGI-3) would involve partitions Ω = Y1t . . .tY` into sets of
positive measure. This approach, however, does not work. Consider Ω = [0, 1) with
the Lebesgue measure π and two graphons U and W defined by U(x, y) = (x+ y)/2
and W (x, y) = 2((x + y) mod 0.5); see Figure 1. It is easy to check that U and W
are fractionally isomorphic in the sense of (FGI’-2). (As a matter of fact, U and W
satisfy an even stronger condition called weak isomorphism.) But the requirement
from (FGI-3) that all the vertices within one cell have the same degree dictates that
the minimum (and only) equitable partition for U be {x}x∈[0,1) with uncountably
many singleton cells. InW , we can pair up x and x+ 1

2
to get the minimum equitable

partition
{
x, x+ 1

2

}
x∈[0, 1

2
)
. This shows that one has to work with sigma-algebras

instead of finite partitions into sets of positive measure. Here, we briefly recall the
construction, referring to [3, 4] for details. We say that a sigma-algebra[∗] C ⊂ B
is U-invariant if for every f ∈ L2(Ω, C) and for the function TUf defined by the
kernel operator TU as (TUf)(x) =

∫
y
U(x, y)f(y) we have TUf ∈ L2(Ω, C). With

this definition it can be shown that there is a unique minimum U -invariant sigma-
algebra, denoted by C(U). Let us then consider the quotient space Ω/C(U), the
Borel probability measure π/C(U) on Ω/C(U) and a measurable surjection qU : Ω→
Ω/C(U) such that π/C(U) is the pushforward of π via qU . With these notions, we
can naturally transfer the conditional expectation E (U | C(U)× C(U)) to the domain
(Ω/C(U))2 by requiring that for the resulting graphon U/C : (Ω/C(U))2 → [0, 1] we
have E (U | C(U)× C(U)) (x, y) = U/C(qU(x), qU(y)) for all x, y ∈ Ω. We can repeat
the same construction for another graphon W . The graphons U and W are then
fractionally isomorphic if there is a measure preserving bijection b : Ω/C(U) →
Ω/C(W ) so that U/C(U)(x, y) = (W/C(W ))(b(x), b(y)) for every x, y ∈ Ω/C(U).
To summarize in nontechnical terms, the initial naive approach where the notion of
grouping comes from a partition Ω = Y1 t . . . t Y` has to be replaced by “grouping”
according to sigma-algebra C(U) and conditional expectation E (U | C(U)× C(U))
serves as the refined version of the numbers di,j from (FGI-3).

[∗]an additional technical condition is needed in the actual definition
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We can start connecting the notions of fractional isomorphism for graphs and for
graphons. The direction “finite graphs⇒graphons” was already observed in [4].

Proposition 1. Suppose that G1, G2, . . . and H1, H2, . . . are sequences of graphs which
converge in cut distance to graphons U and W respectively and for which Gi and Hi are
fractionally isomorphic for each i ∈ N. Then U and W are fractionally isomorphic.

Since the proof in [4] is not very explicit (‘follows from the fact that fractional isomor-
phism of graphons is an equivalence relation closed in the cut distance’), we give further
details here.

Proof. Let T be an arbitrary tree on, say, k vertices. By (FGI-2) we have hom(T,Gi) =
hom(T,Hi) for each i ∈ N. Since Gi and Hi are of the same order, we have equality of
homomorphism densities, that is, hom(T,Gi)

v(Gi)k
= hom(T,Hi)

v(Hi)k
. Convergence in the cut distance

implies convergence of all homomorphism densities, so in particular we have

t(T, U) = lim
i→∞

hom(T,Gi)

v(Gi)k
= lim

i→∞

hom(T,Hi)

v(Hi)k
= t(T,W ) .

The fact that U and W are fractionally isomorphic now follows from (FGI’-2).

Let us look at the reverse direction “graphons⇒finite graphs”. It is not true in general
that if U and W are fractionally isomorphic graphons and G1, G2, . . . and H1, H2, . . . are
sequences of graphs converging in cut distance to U and W respectively, then Gi and Hi

are fractionally isomorphic for each i ∈ N. Indeed, Gi and Hi might have different orders,
which would automatically make them not fractionally isomorphic. Even if Gi and Hi had
the same order, a single-edge edit of one of them would preserve convergence in cut distance
but make them not fractionally isomorphic. Hence, a sensible question in this direction
needs to have an existential quantification for the sequences instead of a universal one.
Indeed, this was the main open question of [4].

Question 2 (Question 3.2 in [4]). Suppose that U and W are fractionally isomorphic
graphons. Do there exist sequences {Gi}i∈N and {Hi}n∈N of graphs which converge in cut
distance to U and W respectively and for which Gi and Hi are fractionally isomorphic for
each i ∈ N?

The main result of our work is a positive answer to Question 2. In fact, we prove a
slightly stronger statement in which we simultaneously approximate an arbitrary (even
infinite) family of mutually fractionally isomorphic graphons.

Theorem 3. Suppose that U is a family of mutually fractionally isomorphic graphons.
Then for each ε > 0 there exists n0 ∈ N such that for each n ≥ n0 there exists a family
{HU}U∈U of mutually fractionally isomorphic graphs on vertex set [n] with the property
that for each U ∈ U the cut distance between U and HU is at most ε.
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It is easy to check that for each d ∈ [0, 1] the family Ud of all d-regular graphons[†] is
a family of mutually fractionally isomorphic graphons. Our proof of Theorem 3 gives the
following corollary for d-regular graphons.

Theorem 4. Suppose that d ∈ [0, 1] and Ud is the family of all d-regular graphons. Then
for every ε > 0 there exists n0 ∈ N such that for each n ≥ n0 there exists D ∈ N and a
family {HU}U∈Ud of D-regular graphs on vertex set [n] such that for each U ∈ Ud the cut
distance between U and HU is at most ε.

2 Sketch of proof of Theorem 3
While we explained in (FGI’-3) that an infinitesimal approach using sigma-algebras is
needed, we begin the following proof overview under the assumption that for a graphon
U ∈ U the sigma-algebra C(U) is generated by a finite partition Q = {Qi}i∈[M ] of Ω sets
of positive measure; we shall return to the general case at the end of this exposition.

2.1 Desired graph profile from the graphon profile

The U -invariance of C(U) implies that for all i, j ∈ [M ] and x ∈ Qi we have a counterpart
to (1), namely ∫

z∈Qj

U(x, z) = di,jπ(Qj) (2)

where di,j := 1
π(Qi)π(Qj)

·
∫
y∈Qi

∫
z∈Qj

U(z, y). The fact that each graphon U ′ ∈ U is frac-
tionally isomorphic to U then means that there is a partition Q′ = {Q′i}i∈[M ] of Ω with
π(Q′i) = π(Qi) such that quantities d′i,j defined in analogy with di,j satisfy d′i,j = di,j.
So, to prove the theorem in this simplified setting, it is enough to approximate (for a
given ε > 0 and sufficiently large n) U in cut distance by an n-vertex graph HU with an
equitable partition (in the sense of (FGI-3)) whose parameters depend solely on the vec-
tor r = (π(Qi))i∈[M ] and the matrix D = (di,j)i,j∈[M ]. Indeed, repeating the construction
detailed below for any other U ′ ∈ U yields a graph HU ′ that has an equitable partition
with the same parameters. Hence, it follows by (FGI-3) that HU ′ and HU are fractionally
isomorphic.

Our construction of HU has two main steps, as detailed in the following two subsections.

2.2 Approximating by G(n, U)

First, we use the inhomogeneous random graph model G(n, U) (see [5, Section 10.1])
to generate H∗U . Let the points x1, . . . , xn ∈ Ω sampled in the procedure represent the
respective vertices 1, . . . , n of V (H∗U). For i ∈ [M ] define X∗i := {` ∈ V (H∗U) : x` ∈ Qi}.
By the ‘Second sampling lemma’ (see [5, Lemma 10.15]) H∗U is close to U in cut distance

[†]A graphon W is d-regular, if for each x ∈ Ω we have
∫
y
W (x, y) = d.
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Figure 2: An example of the fine-tuning of the degree sequence. The figure focuses on the
degrees within X2 and from X1 to X2. The original graph H∗U is shown in black. The parts
added on the way to constructing HU are shown in red. Theorems of Erdős–Gallai and of
Gale–Ryser are used for the red parts.

with high probability. Further, basic concentration results tell us that with high probability,
for each i, j ∈ [M ] and each ` ∈ X∗i we have

|X∗i | ≈ rin and (3)
degH∗U (`,X∗j ) ≈ di,jrjn. (4)

2.3 Fine-tuning the degree sequence

We shall modify H∗U in several steps by adding o(n) vertices to each set Xi and o(n2) edges
inside each set Xi and inside each bipartite pair (Xi, Xj), with the aim to achieve after
these modifications that

|Xi| = Ni ≈ rin and (5)
degHU

(`,Xj) = Di,j ≈ di,jrjn (6)

for some numbers (Ni)i∈[M ] and (Di,j)i,j∈[M ] which depend only on r, D and n. Hence,
we fulfil the task described in Section 2.1. We apply the classical theorem of Erdős and
Gallai on graphic sequences and its bipartite counterpart due to Gale and Ryser. These
theorems allow us to construct graphs within the sets Xi\X∗i and in the pairs (Xi\X∗i , Xj)
(including the case i = j) with precisely controlled degree sequences to achieve a state in
which each graph HU [Xi] is regular and each graph HU [Xi, Xj] is biregular as required
by (6). An illustration is given in Figure 2.

2.4 From finite partitions to sigma-algebras

As explained in (FGI’-3), U/C(U) is defined in terms of a suitable sigma-algebra and does
not usually correspond to a finite partition. Here, Szemerédi’s regularity lemma comes to
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the rescue. Indeed, it is well-known that if {Q̃i}i∈[M ] is a δ-regular Szemerédi partition for
a graphon Γ, then in particular we have an approximate version of (2) for most vertices
x ∈ Q̃i.[‡] We shall take δ � ε.

So, given a graphon U , generate H∗U ∼ G(n, U) as in Section 2.2. Since we apply
Szemerédi’s regularity lemma merely to handle degrees, and since we want its application
to work in the same way for all graphons in the class U , we shall apply it to the graphon
Γ := U/C(U). Let Ω/C(U) = Q̃1 t . . . t Q̃M be a δ-regular Szemerédi partition for Γ.
Define Q1, . . . , QM by Qi := q−1U (Q̃i). Now, Ω = Q1 t . . . tQM is in general not a regular
Szemerédi partition.[§] However, it can still be proved that an approximate version of (2)
holds for most vertices x ∈ Qi with respect to the graphon U . This allows us to define
again X∗i := {` ∈ V (H∗U) : x` ∈ Qi} and then fine-tune the sequence in a spirit similar to
that described in Section 2.3.

2.5 Proving Theorem 4

If U is d-regular then Ω/C(U) = {a} consists of a single atom and U/C(U)(a, a) = d. So,
M = 1 and Q1 = Ω. In particular, the construction above guarantees that the graph
HU = HU [X1] is regular, as needed.

[‡]In this overview, we neglect the issue that a Szemerédi partition may involve some irregular pairs.
Also, we neglect that the usual regularity lemma does not control behaviour inside clusters whereas we
shall need a counterpart to (2) even for i = j.

[§]This is perhaps best illustrated with an example. Let Ω = A1 t A2, α1, α2 be two distinct numbers
and U be such that for i = 1, 2 and for every x ∈ Ai we have∫

y∈Ai

U(x, y) = αi and
∫
y∈A3−i

U(x, y) = 0 . (7)

Indeed, in this example Ω/C(U) = {a1, a2} consists of two atoms and we have U/C(U)(ai, ai) = αi

and U/C(U)(ai, a3−i) = 0. Obviously, the only possible Szemerédi regularization for U/C(U) has M = 2,
Q̃1 = {a1} and Q̃2 = {a2}. But the pullbacks {Qi := q−1U (Q̃i) = Ai}i∈[2] clearly need not form a Szemerédi
regularization for U , since the restriction (7) leaves a lot of space for wildly structured graphons.
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Abstract

We introduce a broad class of stochastic processes on permutations which we
call flip processes. A single step in these processes is given by a local change on a
randomly chosen fixed-sized tuple of the domain. We use the theory of permutons
to describe the typical evolution of any such flip process π0, π1, π2, . . . started from
any initial permutation π0 ∈ Sym(n). More specifically, we construct trajectories
Φ : P × [0,∞) → P in the space of permutons with the property that if π0 is close
to a permuton γ then for any T > 0 with high probability πTn is close to ΦTγ. This
view allows to study various questions inspired by dynamical systems.
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1 Introduction
The theory of permutations offers many exciting structural, extremal and enumerative
questions. For example, research centered around the Stanley–Wilf conjecture asks for the
number of permutations of a given order avoiding a fixed pattern. What all these problems
have in common is that they study static permutations. Following the success of the theory
of dense graph limits, Hoppen, Kohayakawa, Moreira, Ráth, and Sampaio [4] developed a
theory of permutation limits. The corresponding limit objects are called permutons. The
theory of permutation limits allowed new results or streamlined proofs in the above areas
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(see e.g. [5, 3]), as well systematic treatment of many properties permutations coming from
various random models.

There is another — dynamic — line of research of permutations. Much of this line of
research is motivated by data structures, and by analysis of sorting algorithms in particular.
In the dynamic setting, one studies evolution of sequences π0, π1, π2, . . . of permutations
(typically of the same order).

The main contribution of our work is a framework for capturing typical evolutions for a
natural class of randomized local algorithms, which we call flip processes, using the theory
of permutons.

2 Main concepts and results

2.1 Necessary notation

In order to state our results, we need to recall basics of the theory of permutons. All
measure below on [0, 1]2 are tacitly assumed to be Borel. We write λ and λ2 for the
Lebesgue measure on R and on R2, respectively.

A permuton γ is a measure on [0, 1]2 with uniform marginals, that is, for each Borel set
Z ⊂ [0, 1] we have that γ([0, 1]×Z) = γ(Z × [0, 1]) is the Lebesgue measure of Z. Permu-
tons are an extension of permutations through the concept of permutation representation.
Suppose that π ∈ Sym(n) is a permutation of order n. The permuton representation Γπ of
π is a measure defined

Γπ (X) := n · λ2
(
X ∩

n⋃
i=1

[ i−1
n
, i
n
]× [π(i)−1

n
, π(i)

n
]

)

for each X ⊂ [0, 1]2. Then Γπ is indeed a permuton as the fact that each i ∈ [n] appears
exactly once in the domain and exactly once in the range corresponds the uniform marginals
on the x-axis and the y-axis, respectively.

We write P for the set of all permutons. Given two permutons α and β we define their
rectangular distance by

d�(α, β) := sup
0≤x1≤x2≤1,0≤y1≤y2≤1

{|α([x1, x2]× [y1, y2])− β([x1, x2]× [y1, y2])|} . (1)

Three permutons which will appear in the text below are the two-dimensional Lebesgue
measure λ2, the diagonal permuton D, defined by D(Z) = λ{x ∈ [0, 1] : (x, x) ∈ Z} for
Z ⊂ [0, 1]2 Borel, and the antidiagonal permuton A, defined by A(Z) = λ{x ∈ [0, 1] :
(x, 1− x) ∈ Z}.

2.2 Flip processes and permuton trajectories

To motivate our fairly broad class of flip processes, we start with a particular example, a
specific ordering procedure. Suppose that π0 is a permutation of order n ≥ 3. Then in
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Figure 2.1: Five steps of the ordering process of order 3. The different colours indicate
firstly the random choice of the elements and in the subsequent figure the corresponding
reordering.

steps ` = 1, 2, . . . we take a uniform triple of distinct elements of [n], say i1 < i2 < i3. We
take π` to be π`−1, except at positions i1, i2, and i3 and then we shuffle the values π`−1(i1),
π`−1(i2), and π`−1(i3) so that they are in the increasing order. We call this process the
ordering process of order 3. An example is given in Figure 2.1.

Let us now proceed with a general definition. If π ∈ Sym(n) and A ∈
(
[n]
k

)
then

subpermutation of π restricted by A π�A is a permutation on [k] such that for each i, j ∈ [k]
we have that π�A(i) < π�A(j) if and only if for the i-th smallest element iA of A and for
the j-th smallest element jA of A we have π(iA) < π(jB). Next, we introduce a notion of
transplanting a subpermutation ψ ∈ Sym(k) into π on A. This is a permutation π̃ ∈ Sym(n)
such for each i ∈ [n] \ A we have π̃(i) = π(i) and π�A = ψ.

So, the above ordering process can be defined as repeated transplantations of the iden-
tity permutation id3 on randomly selected triples. General flip processes allow the trans-
planted subpermutation to depend on the sampled restricted subpermutation (and this
choice can be a randomized one).

Let k ∈ N. A rule is a stochastic matrix R ∈ [0, 1]Sym(k)×Sym(k). Given an initial
permutation π0 ∈ Sym(n) (where n ≥ k) the flip process with rule R works as follows. In
each step ` = 1, 2, . . ., pick a uniformly random k-tuple A ∈

(
[n]
k

)
. Then pick a permutation

ψ ∈ Sym(k) according to the probability distribution given by R on row π`−1�A and
transplant it into π`−1 on A. The resulting permutation is π`. To summarize, a flip process
with a given rule is a discrete time-homogeneous Markov process π0, π1, π2, . . ..

Suppose that we fix a flip process with a rule R. The main result of our project
states that there is a notion of ‘trajectories’, which are given as a two-variable function
Φ : P × [0,∞) → P (in which we write the second coordinate in the superscript, Φαt for
α ∈ P and t ∈ [0,∞)) which predicts typical behaviour of the flip process R started from
any permutation after linearly many steps (with respect to its order), up to a small error
in the rectangular distance.

Theorem 1. For every k ∈ N and for every permutation flip process R of order k, there
exists a function Φ : P × [0,∞) → P with the following property. For every T > 0,
every n ∈ N and every π0 ∈ Sym(n) we have with probability 1− on(1) for the flip process
π0, π1, . . . with rule R that max

{
d�(Γπi ,Φ

i
n Γπ0) : i ∈ (0, Tn] ∩ N

}
= on(1).

That is, Theorem 1 establishes a correspondence between an analytic deterministic
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object and a discrete stochastic evolution.
Further, we can prove that the trajectories satisfy the following metric conditions for

any α, β ∈ P and s, t ∈ [0,∞):

exp (−Θ(t)) d� (α, β) ≤ d�
(
Φtα,Φtβ

)
≤ exp (Θ(t)) d� (α, β) and , (2)

d�
(
Φsα,Φtα

)
≤ O(|s− t|) . (3)

The upper bound in (2) implies that the evolution of the trajectory depends in a continuous
fashion on the initial condition, and (3) says that it also depends in a continuous fashion
on time. The lower bound in (2) in particular says that two different trajectories do not
ever form a confluence (unless one is a subtrajectory of the other).

2.3 Flip processes as dynamical systems on P

Theorem 1 gives a potential of a comprehensive theory of permutation flip processes, rich-
ness of which reflects both the combinatorial and the dynamical systems facet of the area.
We present several notions that we study. Due to space constraints we state only briefly
and informally some of our results accompanying these notions as well as several open
questions.

The first is a concept of destination. Suppose that R is a flip process and Φ : P ×
[0,∞)→ P are its trajectories. If γ is a permuton for which the limit (in the rectangular
distance) limt→∞Φtγ exists, then we call it the destination of γ, and write dest (γ). For
example, it can be shown that the destination of any permuton in the above ordering
process of order 3 is the diagonal permuton D. For most natural flip processes it appears
that each permuton has a destination but we are also able to construct a flip process and
an initial permuton γ for which limt→∞Φtγ does not exist. More specifically, we are able to
construct a flip process and argue that it contains a periodic trajectory, that is, a permuton
γ and time T0 so that Φtγ = γ for and only for times t that are multiples of T0. It would
be interesting to find other wild types of trajectories. For example, does there exist a flip
process and an initial permuton α whose trajectory oscillates between the diagonal and
the antidiagonal permuton, that is lim inft→∞ d�(Φtα,D) = lim inft→∞ d�(Φtα,A) = 0?

Destinations are connected with the notion of fixed points. For a flip process whose
trajectories are Φ : P × [0,∞) → P, we call a permuton γ ∈ P a fixed point if Φtγ = γ
for all t ≥ 0. It can be shown that if γ is a destination then it is also a fixed point (and
obviously, if it is a fixed point then it is also its own destination). Is it true that every flip
process has at least one fixed point?

Next, we explain the concept of origins. Suppose that t > 0, and α and β are permutons
such that β = Φtα. In that case we write α = Φ−tβ. Let age(β) be the supremum of times
t ≥ 0 for which Φ−tβ exists as a permuton. It can be shown that if age(β) <∞ then there
exists a permuton, denoted by orig (β), for which Φage(β)(orig (β)) = β. We call orig (β)
the origin of β. Another feature of interest is characterizing graphons with positive age.
Indeed, the age of some permutons can be 0 as the example of the antidiagonal permuton
A in the ordering process of any order k ≥ 2 shows. On the positive side, we can show
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that if a permuton is absolutely continuous with respect to the Lebesgue measure and its
Radon–Nikodym derivative is bounded then it is of positive age.

Of course, all the results and questions above would become more tractable if we could,
for a any given flip process and any given initial graphon α and any time t ≥ 0, explicitly
compute the permuton Φtα. This task however involves solving a difficult system of dif-
ferential equations and we were able to carry it out only for flip processes of order 2. Last,
let us mention the question of the uniqueness of the rule. That is, suppose that we have
rules R and Q whose respective trajectories are Φ and Ψ. If Φ = Ψ, does it follow that
R = Q?

Related work: Graph flip processes

Our work is similar to, and was in fact inspired by, the theory of flip processes for graphs,
recently developed in [2]. Let us summarize that project. We write Hk for the family
of graphs on vertex set [k]. A rule R of a flip process of order k is a stochastic matrix
R ∈ [0, 1]Hk×Hk . For an initial graph G0 of order n ≥ k, the flip process with rule R is
a discrete time process (G`)

∞
`=0 of graphs on the vertex set [n] defined as follows. We get

graph G`+1 by sampling an ordered tuple v = (v1, · · · , vk) of distinct vertices and sample
a graph J from distribution RG`[v],∗. We replace G`[v] by J . The main result of [2] is that
there exists trajectories Φ·W : [0,+∞) → W0 with properties analogous to (2) and (3)
such that if T > 0 is a constant and G0 is an initial graph of large order n then with high
probability for each i ∈ N with i ≤ Tn2 the graphon representation Wi of Gi is close to
the trajectory started at the graphon representation W0 of G0 at time i

n2 in the cut norm,

that is, max
{∥∥∥Wi − Φ

i
n2W0

∥∥∥
�

: i ∈ (0, Tn2] ∩ N
}

= o(1).
There are substantial similarities between the proofs of the current permutation project

and [2] in the overall strategy. In particular, the crucial construction of the trajectories is
also based on an idea of a velocity operator (see Section 4). However, there are differences
in technical execution of this overall strategy, which are mostly given by combinatorial
differences between the cut norm distance for graphons and the rectangular distance for
permutons, and of the underlying Banach spaces.1 Also, families of natural and interesting
flip processes seem to be quite different in both cases.2

3 Specific classes of flip processes
We give examples of several classes of flip processes. The purpose of this list is to show
richness of scenarios that can be captured by flip processes and to hint to features that can
be studied in the future. Many of these processes are counterparts to graph flip processes
studied in [1].

1In the graphon case the Banach space of two-variable L∞-functions, and in the permuton case the
Banach space of signed measures as we describe in Section 4.

2Interesting graph flip processes are studied in [1].
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The ordering flip process of order k is given by a rule in which Rψ,idk = 1 and Rψ,ρ = 0
for ρ 6= idk. All trajectories of this flip process converge to the identity permuton. While
this is not the only process with this property, intuitively the speed of convergence to the
identity permuton (which can be defined analogously to [2, Section 5.12]) is the fastest
among all order-k flip processes. The ignorant flip process is a process in which the output
distribution Rψ,∗ does not depend on the input permutation ψ. An example of an ignorant
process is the ordering process of any order. In [1, Section 4] ‘ignorant graph processes’
which have an analogous definition are studied. In the graph case, the trajectories can
be explicitly described (see [1, Proposition 4.2]), however in the permutation setting this
seems to be much more complicated. The diagonal reversing flip process of order k is a
process designed to swap the order of the permutation in a particular, slow way. It outputs
anti-diagonal for input being diagonal and in other cases does not change the permutation.
For k = 2, it is a fatalistic flip process and the trajectories converge to the anti-diagonal
permuton. For k > 2 the behaviour is more interesting. In the complementing flip process
of order k, each input permutation is replaced by its reversal, that is Rψ,ψ = 1 where for
each ψ ∈ Sym(k), ψ is defined by ψ(i) := k+ 1−ψ(i). All the trajectories converge to the
Lebesgue measure λ2.

4 Proof of Theorem 1
We sketch the proof of Theorem 1, deferring other results announced in Section 2.3 for the
full version of the paper. That is, for a flip process R of order k, we first need to construct
the trajectories Φ : P × [0,∞) → P, and then we need to prove that a flip process
started with π0 stays with high probability within a thin sausage around (ΦtΓπ0)t≥0. Not
suprisingly, our construction is tailored with respect to the latter property. More precisely,
we work in the Banach space M of finite signed Borel measures on [0, 1]2 whose marginals
are arbitrary multiples of the 1-dimensional Lebesgue measure, equipped with the distance
d�. We come up with a velocity operator ∇ : M → M whose defining formula (5) is
explained below. We then require that for α ∈ P and t ≥ 0 we have the following Banach-
space valued equation

d

dt
Φtα = ∇Φtα (differential form), or equivalently Φtα = α +

∫ t

0

∇Φτα dτ (integral form).

(4)
Using certain favorable properties of (4) it can be shown using the theory of Banach-space
valued differential equations that it has a unique solution on the entire interval [0,∞).

We now turn to cooking up the defining formula for ∇ . Recall that in Wormald’s
method of differential equation [6], one cooks up real-valued functions whose derivatives
are idealizations of expected changes of tracked combinatorial parameters. Our idea is the
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same, except our derivatives are M-valued. That is, for α ∈M we set

∇ (α)(Z) =
∑

ω∈Sym(k)

∑
i∈[k]

−t(ω, Z, i;α) +
∑

ω̃∈Sym(k)

Rω,ω̃ · t(ω  ω̃, Z, i;α)

 , (5)

for each Borel Z ⊂ [0, 1]2. Let us explain the motivation behind the quantities t(ω, Z, i;α)
and t(ω  ω̃, Z, i;α), which we do under the assumption that α is a permuton.3 The
number t(ω, Z, i;α) is the probability that when sampling4 k points from α, we get a
permutation ω and further the i-th leftmost point falls in Z. Likewise, t(ω  ω̃, Z, i;α) is
the probability that when sampling k points from α, we get a permutation ω and further,
after swapping the y-coordinates of the sampled points from ω to ω̃, the i-th leftmost point
falls in Z. The corresponding formula (valid again for general α ∈ M) for t(ω, Z, i;α) is
(writing α⊗k for the k-th power of α)

t(ω, Z, i;α) =k! · α⊗k
({

(x1, y1, . . . , xk, yk) ∈ [0, 1]2k : x1 < . . . < xk and (xi, yi) ∈ Z and

for all `, j ∈ [k] we have y` < yj if and only if ω(`) < ω(j)
})

,

and a similar but more complicated formula can be written for t(ω  ω̃, Z, i;α).
Having defined the trajectories Φ, we need to prove that a flip process started with a

permutation π0 stays within a thin sausage around (ΦtΓπ0)t≥0. Actually, we will only prove
this for t small. Indeed, if we can prove that with high probability πtn is close to ΦtΓπ0 ,
then we can repeat this argument also starting with permutation π̂0 := πtn and get that
π̂tn = π2tn is close to ΦtΓπ̂0 ≈ Φ2tΓπ0 , and more generally, that for any constant ` ∈ N,
with high probability π`tn is close to Φ`tΓπ0 , as is needed. (Times between (` − 1)tn and
`tn can be dealt with easily as well.)

So, for t > 0 small we use Taylor series approximation of order 1, that is ΦtΓπ0 ≈
Γπ0 + t · ∇ Γπ0 . Recalling that our distance is given by (1), we hence need to prove that
with high probability for each 0 ≤ x1 ≤ x2 ≤ 1, 0 ≤ y1 ≤ y2 ≤ 1 the quantity

|{i ∈ [n] ∩ [x1n, x2n] : πtn(i) ∈ [y1n, y2n]}| − |{i ∈ [n] ∩ [x1n, x2n] : π0(i) ∈ [y1n, y2n]}|

is approximately equal to n · t · ∇ Γπ0([x1, x2]× [x2, y2]). This can be proved using concen-
tration inequalities, and making use of the fact that t(ω, Z, i;α) and t(ω  ω̃, Z, i;α) were
devised exactly to capture rates of deletions or insertions of points from a permutation in
a single step from particular locations.
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Abstract

The fascinating question of the maximum value of twin-width on planar graphs
is nowadays not far from a final resolution; there is a lower bound of 7 coming from
a construction by Král’ and Lamaison [arXiv, September 2022], and an upper bound
of 8 by Hliněný and Jedelský [arXiv, October 2022]. The upper bound (currently
best) of 8, however, is rather complicated and involved. We give a short and simple
self-contained proof that the twin-width of planar graphs is at most 11.
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1 Introduction
The structural parameter twin-width was introduced in 2020 by Bonnet, Kim, Thomassé
and Watrigant [2]. We consider it only for simple graphs (instead of general binary rela-
tional structures).

A trigraph is a simple graph G in which some edges are marked as red, and with
respect to the red edges only, we naturally speak about red neighbours and red degree
in G. However, when speaking about edges, neighbours and/or subgraphs without further
specification, we count both ordinary and red edges together as one edge set. The edges
of G which are not red are sometimes called (and depicted) black for distinction. For a
pair of (possibly not adjacent) vertices x1, x2 ∈ V (G), we define a contraction of the pair
x1, x2 as the operation creating a trigraph G′ which is the same as G except that x1, x2 are
replaced with a new vertex x0 (said to stem from x1, x2) such that:
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• the (full) neighbourhood of x0 in G′ (i.e., including the red neighbours), denoted by
NG′(x0), equals the union of the neighbourhoods NG(x1) of x1 and NG(x2) of x2 in
G except x1, x2 themselves, that is, NG′(x0) = (NG(x1) ∪NG(x2)) \ {x1, x2}, and
• the red neighbours of x0, denoted here by N r

G′(x0), inherit all red neighbours of x1
and of x2 and add those in NG(x1)∆NG(x2), that is, N r

G′(x0) =
(
N r
G(x1) ∪N r

G(x2) ∪
(NG(x1)∆NG(x2))

)
\ {x1, x2}, where ∆ denotes the symmetric set difference.

A contraction sequence of a trigraph G is a sequence of successive contractions turning G
into a single vertex, and its width d is the maximum red degree of any vertex in any trigraph
of the sequence. We also then say that it is a d-contraction sequence of G. The twin-width
of a trigraph G is the minimum width over all possible contraction sequences of G. In
other words, a graph has twin-width at most d, iff it admits a d-contraction sequence.

After the first implicit (and astronomical) upper bounds on the twin-width of planar
graphs, e.g. [2], we have seen a stream of improving explicit bounds [1,3,4,6], culminating
with the current best upper bound of 8 by Hliněný and Jedelský [5]. This is complemented
with a nearly matching lower bound of 7 by Král’ and Lamaison [7], but the right maximum
value (7 or 8?) is still an open question.

It comes without surprise that the gradually improving upper bounds have required
stronger and more involved arguments, and the best ones are not easy to read for non-
experts. In this paper, we take the opposite route; we give a slightly worse bound with a
self-contained proof which is as short and simple as possible with the current knowledge:

Theorem 1. The twin-width of any simple planar graph is at most 11.

Due to page limits, some full proofs are left for the preprint version arXiv:2302.08938.

2 Layered Skeletal Trigraphs
We start with the key concept of our proof – of a “splendid layered skeletal trigraph”.

We use standard terminology of graph theory, and assume every graph to be simple
(without loops and multiple edges). A BFS tree of a graph G is a spanning tree defined
by a run of the breadth-first-search algorithm on G.

For a (tri)graph G, an ordered partition L = (L0, L1, . . .) of V (G) is called a layering
of G if, for every edge {v, w} of G with v ∈ Li and w ∈ Lj, we have |i − j| ≤ 1. For
example, every BFS tree T ⊆ G with the root r naturally defines a layering; L0 = {r},
and Li for i > 0 consisting of all vertices of G at graph distance i from r.

If T ⊆ G is a rooted tree (e.g., a BFS tree), a path P ⊆ G is called T -vertical if P ⊆ T
is a subpath of some leaf-to-root path of T .

Definition 2 (Skeletal trigraph). Let H be a trigraph and S ⊆ H a 2-connected planar
subgraph such that all edges of H induced by V (S) are black (note; including the edges
not in E(S)). Fix a plane embedding of S, and call S a plane skeleton of H. Further,
consider a face assignment of H in S in which every connected component H0 of H−V (S)

https://arxiv.org/abs/2302.08938
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is assigned to some face φ of S, such that all neighbours of H0 in V (S) belong to φ. Denote
by Uφ the union of the vertex sets of all components assigned to φ in this assignment.

If H and S satisfy the previous conditions for some face assignment, we call (H,S) a
skeletal trigraph, and if L is a layering of H, then (H,S,L) is a layered skeletal trigraph.

Definition 3 (Splendid layered skeletal trigraph). Consider a layered skeletal trigraph
(H,S,L) as in Definition 2, and a face φ of S. We say that φ is empty if Uφ = ∅ (i.e., if
no connected component of H − V (S) is assigned to φ), that φ is reduced if |Uφ ∩ Li| ≤ 1
holds for every layer Li ∈ L, and that φ is rich if |Uφ ∩ Li| ≤ 3 holds for every Li ∈ L.

A layered skeletal trigraph (H,S,L) is splendid if either S = ∅ and |V (H) ∩ Li| ≤ 4
holds for all Li ∈ L, or S 6= ∅ and the following conditions are satisfied:

a) At most one face of the plane skeleton S is rich, and all other faces of S are empty or
reduced. Every empty face of S is a triangle.

b) There exists a BFS tree T ⊆ S of the skeleton S such that:
• The layering defined by T in S is equal to the restriction of L to V (S).

• For every non-empty face φ of S, bounded by a cycle C ⊆ S, there exists an edge
e ∈ E(C) such that C − e is the union of two T -vertical paths intersecting in one
vertex u ∈ V (C). Note that such u must be unique, and we call u the sink of φ.

c) For every non-empty face φ of S, and u the sink of φ; if u ∈ Li ∈ L, then all vertices of
Uφ ∪ V (C − u) belong to Li+1 ∪ Li+2 ∪ . . ., and there is a black edge in H (but no red
edge) from u to each vertex of Uφ ∩ Li+1.

d) Assume φ is a rich face of S bounded by C. For every i such that Li ∈ L, every vertex
v in X := (Uφ ∪ V (C)) ∩ Li has in H at most 3 red edges into other vertices of X and
at most 4 red edges into Uφ ∩ (Li−1 ∪ Li+1) (note; no V (C) in the latter expression).
Moreover, if |Uφ ∩ Li+1| > 1, then v ∈ X has at most 2 red edges into Uφ ∩ Li−1.

Definition 3 is illustrated, with comments, in Figure 1.
The core of the paper is in the following two claims which follow directly from Defini-

tion 3. While the first one is easy and its proof is skipped here, a proof of the second one
is sketched in the next section.

Lemma 4.* Every splendid layered skeletal trigraph has maximum red degree at most 11.

Lemma 5. Every splendid layered skeletal trigraph admits an 11-contraction sequence.

We now show how the claim implies our main result.

Proof of Theorem 1. Given a planar graph G, we fix any plane embedding of G. We
construct a plane triangulation G+ from G by adding new vertices to every face of G and
connecting them to vertices of this face. Then G+ is 2-connected. Choosing an arbitrary
BFS tree of G+, we take the layering L = (L0, L1, . . .) of G+ naturally defined by T . Then,
trivially, (G+, G+,L) is a splendid layered skeletal trigraph, and hence G+ admits an 11-
contraction sequence by Lemma 5. Restricting this sequence only to the contractions of
pairs from V (G) we, again trivially, obtain an 11-contraction sequence of G.
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rootL0 :

u1=u2

L1 :

L2 :
u3

L3 :

L4 :

L5 : u4

L6 :

L7 :

L8 :

L9 :

φ3

φ1 φ2

φ4r e0

Figure 1: A picture of a splendid layered skeletal trigraph (H,S,L), in which the skeleton
S is depicted with black vertices and thick black edges such that the associated BFS tree
T ⊆ S is drawn with thick solid edges and the edges of E(S)\E(T ) are thick dashed. T has
its root at the top and its (ten) BFS layers are organized horizontally in the picture. There
are four bounded non-empty faces in S, denoted by φ1, φ2, φ3, φ4 (with corresponding sinks
u1, u2, u3, u4), and emphasized with gray shade. The unbounded face of S is also non-
empty, but it is only sketched in the picture. There is one rich face in (H,S), namely
φ3, and it contains a red vertex r (emphasized with a circle around) that achieves the
maximum red degree 11 allowed by Definition 3.

3 Proof of Lemma 5, a Sketch
Our proof starts with an auxiliary claim whose straightforward proof is skipped here.

Lemma 6.* Let G be a 2-connected plane graph, and T ⊆ G a BFS tree of G. Assume T
that has at least 3 leaves, and that for every facial cycle C of G, we have |E(C)\E(T )| = 1
or C is a triangle. Then there exists an edge e ∈ E(G) \ E(T ) such that, for the unique
cycle De ⊆ T + e, one of the two faces of De contains (in its strict interior) precisely one
leaf of T and not the root of T .

For a proof of Lemma 5, consider a splendid layered skeletal trigraph (H,S,L). For
start, the maximum red degree of H is at most 11 by Lemma 4. For the rest of a sought
11-contraction sequence of H, we proceed by induction on |V (H)|+ |V (S)|.
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If the skeleton is empty S = ∅, then we pick the highest index i such that V (H)∩Li 6= ∅
and straightforwardly contract from layer i down by induction. If S 6= ∅, all faces of S are
reduced (or empty), and the BFS tree T ⊆ S from Definition 3.b has at most 2 leaves, we
get that T consists of at most two T -vertical paths, and that S has at most two non-empty
faces by Definition 3. b. Since the two faces are reduced, every layer of L contains at most
2 + 2 = 4 vertices. So, (H,S ′ = ∅,L) is also a splendid layered skeletal trigraph (note; no
contraction happend) and we continue as before again by induction.

For all other cases, with a nonempty skeleton S 6= ∅, we branch as follows.

Case 1. The skeleton S has all faces empty. Then S = H since S is a plane triangulation
by Definition 3.a. Considering the BFS tree T ⊆ S from Definition 3.b, we apply
Lemma 6 and get e and cycle De ⊆ T + e ⊆ H. Let Q be the maximal T -vertical
path starting in x and not hitting De. We set S ′ := S−V (Q), using that the layered
skeletal trigraph (H,S ′,L) is splendid again, and we finish by induction.

Case 2. The skeleton S has a face φ which is neither empty nor reduced. Then φ is a rich
face, and let j be the largest index such that |Uφ ∩ Lj| > 1 for Lj ∈ L. We contract
any two vertices of Uφ ∩Lj in H, creating a layered skeletal trigraph (H ′, S,L′). For
an illustration, see the face φ = φ3 in Figure 1 in which the trigraph resulted by a
contraction of two vertices from Uφ3 ∩ L6 into the emphasized vertex r. We show
that (H ′, S,L′) conforms to Definition 3, and then apply induction.

Case 3. The skeleton S has all faces reduced (and some non-empty). As in Case 1, we
apply Lemma 6 and get e and cycle De ⊆ T + e ⊆ S, and the path Q ⊆ S in the
interior of De. The interior of De contains at most two non-empty faces φ1 and φ2

of S. The considered case can be illustrated in Figure 1 (ignoring for now that the
face φ3 is not reduced) with the edge e = e0. In general, there can be more than
one empty faces of the skeleton S enclosed by De0 . We again set S ′ := S − V (Q)
and consider the layered skeletal trigraph (H,S ′,L) with the (new) non-empty face
φ bounded by De, which can be shown rich. Consequently, (H,S ′,L) conforms to
Definition 3, and we again finish by induction with it.

The whole proof, modulo straightforwad details regarding Definition 3, is now done.

4 Conclusion
We have provided a short self-contained proof of Theorem 1. While the proved bound is
not the best currently possible, the proof given here is way simpler than those in [4, 5].
While sacrificing a bit of simplicity of the given proof, we can also give a better upper
bound of 9 (thus matching [4]), but we are so far not sure whether a similarly simplified
proof can be given for the upper bound of 8 as in [5].
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Abstract

A long-standing question of the mutual relation between the stack and queue
numbers of a graph, explicitly emphasized by Dujmović and Wood in 2005, was “half-
answered” by Dujmović, Eppstein, Hickingbotham, Morin and Wood in 2022; they
proved the existence of a graph family with the queue number at most 4 but un-
bounded stack number. We give an alternative very short, and still elementary, proof
of the same fact.
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1 Introduction
The graph parameters called stack and queue numbers relate to linear layouts (i.e, lin-
ear vertex orderings, usually of additional “nice” properties) of graphs, and have found
numerous applications in theoretical computer science since then. The parameters were
formally introduced by Heath, Leighton, and Rosenberg in [6,7], and their implicit question
of whether the stack number of a graph is bounded in terms of its queue number, or vice
versa, was subsequently emphasized by Dujmović and Wood in [3]. Quite recently, in 2022,
Dujmović, Eppstein, Hickingbotham, Morin and Wood gave in [2] a negative answer to one
half of the question; they proved the existence of a graph family with the queue number
at most 4 but unbounded stack number (while it remains an open problem whether there
exists a family of bounded stack number and unbounded queue number).

We give the basic definitions. Consider a graph G and a strict linear order ≺ on its
vertex set V (G). Two edges xx′, yy′ ∈ E(G) with x ≺ x′ and y ≺ y′ are said to ≺-cross if
∗Faculty of Informatics, Masaryk University, Brno, Czech republic. E-mail: hlineny@fi.muni.cz
†Faculty of Informatics, Masaryk University, Brno, Czech republic. E-mail: adamstraka@mail.muni.cz
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x ≺ y ≺ x′ ≺ y′ or y ≺ x ≺ y′ ≺ x′, and to ≺-nest if x ≺ y ≺ y′ ≺ x′ or y ≺ x ≺ x′ ≺ y′.
See Figure 1. The stack number sn(G) (queue number qn(G)) of a graph G is the minimum
integer k such that there exist a linear order ≺ of V (G) and a colouring of the edges of
G by k colours such that no two edges of the same colour ≺-cross (≺-nest, resp.). The
corresponding order ≺ together with the colouring is called a k-stack (k-queue) layout of G.

a) ≺: x x′y y′ b) ≺: x x′y y′

Figure 1: Edges xx′ and yy′ that (a) ≺-cross, and (b) ≺-nest.

In fact, a notion equal (modulo a negligible technical detail) to the stack number
was known long before as the book thickness (or page number), see Persinger [8] and
Atneosen [1].

To state the main result of [2], we define the following special graph Hn: the vertex set
is V (Hn) = {1, . . . , n}2, and uv ∈ E(Hn) where u = [a, b] ∈ V (Hn) and v = [c, d] ∈ V (Hn),
if and only if |a − c| + |b − d| = 1 or a − c = b − d ∈ {−1, 1}. Note that Hn is the plane
dual of the hexagonal (“honeycomb”) grid, and see an illustration in Figure 2.

a) b) c)

Figure 2: (a) The star S5, (b) the graph H3, and (c) their Cartesian product S5�H3. The
four edge colours illustrate a queue layout for S5�H3.

Recall that Sn is the star with n leaves, and that G1�G2 denotes the Cartesian product
of two graphs G1 and G2. Dujmović et al. [2] showed that, for all integers a, n > 0 and
the Cartesian product G = Sa�Hn, we have qn(G) ≤ 4. In fact, they noted that every Hn

admits a so-called strict 3-queue layout, which “adds up” with a trivial 1-queue layout of
Sa over Cartesian product by Wood [12]. Their main result reads:

Theorem 1 (Dujmović et al. [2]). For every integer s, and for a, n > 0 which are suffi-
ciently large with respect to s, the Cartesian product G := Sa�Hn is of stack number at
least s.

Our contribution is to give a very short simplified proof of Theorem 1 (based in parts
on the ideas from [2], but also eliminating some rather long fragments of the former proof).



Stack and Queue Numbers of Graphs Revisited 603

2 Proof of Theorem 1
We will use some classical results, the first two of which are truly folklore.

Proposition 2 (Ramsey [9]). For all integers r, s > 0 there exists R = R(r, s) such that
for any assignment of two colours read and blue to the edges of the complete graph KR,
there is a red clique on r vertices or a blue clique on s vertices in it.

Proposition 3 (Erdős–Szekeres [4]). For given integers r, s > 0, any sequence of distinct
elements of a linearly ordered set of length more than r·s contains an increasing subsequence
of length s+ 1 or a decreasing subsequence of length r + 1.

Proposition 4 (Gale [5]). Consider a dual hexagonal grid Hn as above. For any assign-
ment of two colours to the vertices of Hn, there exists a monochromatic path on n vertices.

Consider for the rest any fixed stack layout of the graph G of Theorem 1, with the linear
order ≺ on the vertex set V (G). Recall that V (G) = {(u, p) : u ∈ V (Sa), p ∈ V (Hn)}.

Lemma 5. Let L be the set of leaves of Sa, and let b = a−m where m = 2n
2−1. There is

a subsequence (u1, . . . , ub) in the set L of length b such that for each p ∈ V (Hn), either
(u1, p) ≺ (u2, p) ≺ . . . ≺ (ub, p), or (u1, p) � (u2, p) � . . . � (ub, p).

Proof. Let V (Hn) = {p1, . . . , pn2} be the vertices of Hn. Start with the permutation
σ1 = (ui[1,1], . . . , ui[1,a1=a]) of L such that (ui[1,1], p1) ≺ . . . ≺ (ui[1,a1], p1). By Proposition 3,
for each j ∈ {2, . . . , n2}, the sequence σj−1 contains a subsequence σj = (ui[j,1], . . . , ui[j,aj ])
such that aj ≥

√
aj−1, and (ui[j,1], pj) ≺ . . . ≺ (ui[j,aj ], pj) or (ui[j,1], pj) � . . . � (ui[j,aj ], pj).

By simple calculus, we get an2 ≥ am1 = b which is the desired outcome.

Let Sb ⊆ Sa be the (specific) substar of Sa defined by the subset of leaves {u1, . . . , ub}
(of Lemma 5). Colour every vertex p ∈ V (Hn) red if (u1, p) ≺ . . . ≺ (ub, p), and colour p
blue otherwise. From this and Proposition 4, we immediately obtain:

Corollary 6. There is a subgraph Q ⊆ Hn, being a path on n vertices, such that, without
loss of generality, (u1, q) ≺ . . . ≺ (ub, q) holds for every vertex q ∈ V (Q).

Define X ⊆ G to be the subgraph induced on the vertex set V (Sb) × V (Q), i.e.,
X = Sb�Q, and denote by R the set of paths Ri ⊆ X induced on {ui} × V (Q) for
i = 1, . . . , b. We extend ≺ to a partial order on R as follows; for Ri, Rj ∈ R, we have
Ri ≺ Rj, if and only if u ≺ w for all u ∈ V (Ri) and w ∈ V (Rj). We say that Ri and Rj are
≺-separated if Ri ≺ Rj or Ri � Rj, and that Ri and Rj are ≺-crossing if there exist edges
e ∈ E(Ri) and f ∈ E(Rj) such that e, f ≺-cross. The following is simple but crucial:

Lemma 7. Every two distinct paths Ri, Rj ∈ R are either ≺-crossing, or ≺-separated.

Proof. Assume the contrary; up to symmetry meaning that all edges of Ri are nested in
some edge e2 = {(uj, q), (uj, q′)} ∈ E(Rj). Then, in particular, e1 = {(ui, q), (ui, q′)} ∈
E(Ri) is nested in e2, and so (uj, q) ≺ (ui, q) and (uj, q

′) � (ui, q
′). This contradicts

Corollary 6.
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Corollary 8. For all integers c, d and n, and for b = |R| sufficiently large with respect
to c, d, we have that R contains at least c pairwise ≺-separated or d pairwise ≺-crossing
paths.

Proof. Imagine a pair of paths {Ri, Rj} ⊆ R coloured red if Ri, Rj are ≺-crossing, and
blue if they are ≺-separated. With respect to Lemma 7, we apply Proposition 2 with b ≥
R(c, d).

We finish as follows.

Proof of Theorem 1. Respecting the above definition of the set of paths R in G, we branch
into the two cases determined by Corollary 8.

Case I. There are c pairwise ≺-separated paths in R.
Without loss of generality, let these paths be R1 ≺ . . . ≺ Rc. For the root t of Sb,
label the n vertices of the set {t} × V (Q) ⊆ V (X) by t1 ≺ . . . ≺ tn. There are two
subcases.

• Rbc/2c ≺ tdn/2e. For each i = 1, . . . ,min(bc/2c, dn/2e), pick an edge of X from
tdn/2e+i−1 to V (Ri) (which exist since Ri hits every copy of Sb in X by the
definition). We have got min(bc/2c, dn/2e) edges in X that pairwise ≺-cross, as
in Figure 3.

R1 R2

. . .
Rbc/2c

tdn/2e tdn/2e+1

. . .
tdn/2e+bc/2c−1 tn

Figure 3: Case I, where Rbc/2c ≺ tdn/2e and dn/2e > bc/2c.

• tdn/2e ≺ Rbc/2c+1 (note that tdn/2e may be “≺-nested” in Rbc/2c). This is sym-
metric to the previous, and we get min(dc/2e, dn/2e) pairwise ≺-crossing edges
in X between vertices of Rbc/2c+1, . . . , Rc and s1, . . . , sdn/2e.

Case II. There are d pairwise ≺-crossing paths in R.
Pick any path R0 out of these d paths. In Z :=

⋃
R∈R,R 6=R0

E(R) there are at least
d− 1 edges which ≺-cross some edge of R0, and so at least (d− 1)/n of them cross
the same edge e ∈ E(R0). Having e = u1u2, u1 ≺ u2, and f = v1v2 ∈ E(X) such
that e and f ≺-cross, we say that v1 is the inside vertex of f if u1 ≺ v1 ≺ u2, and
then v2 is the outside vertex. By the pigeonhole principle, there is a set Z ′ ⊆ Z of
d′ = |Z ′| ≥ (d − 1)/n2 edges ≺-crossing e such that their inside vertices belong to
the same copy of Sb in X.
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The outside vertices of the edges of Z ′ belong to at most two other copies of Sb

in X (determined by a neighbourhood in the path Q), and each is before of after e
in ≺. By the pigeonhole principle again, and without loss of generality, there is a
set Z ′′ ⊆ Z ′ of size |Z ′′| ≥ 1

2
· 1
2
d′ = d′/4, such that also the outside vertices of the

edges of Z ′′ belong to the same copy of Sb in X, and they all lie after e in ≺. See
Figure 4. Moreover, by Corollary 6 (the ordering claimed therein), the edges in Z ′′
must pairwise ≺-cross.

u1 u2

e

t1

Z ′′

t2

Figure 4: Case II, with emphasized edge e, blue parwise-crossing edges of Z ′′, and t1, t2
being two copies of the root of Sb.

To finish the proof, we set n = 2s and a = R(2s, 4n2s+1)m where m = 2n
2−1. Then in

Lemma 5 we get b = R(2s, 4n2s+1), and in Corollary 8 we have c = 2s and d = 4n2s+1.
In Case I, we then obtain at least min(bc/2c, dn/2e) = s edges of X ⊆ G that pairwise
≺-cross. In Case II, it is at least d′/4 = (d− 1)/(4n2) = s such pairwise ≺-crossing edges,
too. Edges that pairwise ≺-cross obviously must receive distinct colours. A valid stack
layout based on ≺ hence needs at least s colours, and since ≺ has been arbitrary for the
graph G, we finally conclude that sn(G) ≥ s.

3 Conclusion
We have provided a short elementary proof of Theorem 1. Although the original proof in [2]
is not very long or difficult, by carefully rearranging the arguments we have succeeded in
eliminating some technical steps of the proof in [2] and, in particular, resolved the case
of pairwise crossing paths in a direct short way. Briefly explaining, our proof skips initial
technical parts of [2] preceding the use of Proposition 3 (Erdős–Szekeres) and readily
applies Proposition 3 and Proposition 4 in a way similar to [2], and then it concludes by
Proposition 2 (Ramsey) in which both outcomes straightforwardly lead to a large set of
pairwise crossing edges, thus avoiding other technical steps needed in [2] mainly at the end
of the arguments.

The presented proof is based on the Bachelor’s thesis of the second author [10,11].
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Abstract
The existence of H-subdivisions within a graph G has deep connections with

topological, structural and extremal properties of G. One prominent example of
such a connection, due to Bollobás and Thomason and independently Komlós and
Szemerédi, asserts that the average degree of G being d ensures a KΩ(

√
d)-subdivision

in G. Although this square-root bound is the best possible, various results showed
that much larger clique subdivisions can be found in a graph for many natural classes.
We investigate the connection between crux, a notion capturing the essential order of
a graph, and the existence of large clique subdivisions.

Our main result gives an asymptotically optimal bound on the size of a largest
clique subdivision in a generic graph G, which is determined by both its average
degree and its crux size. As corollaries, we obtain

• a characterisation of extremal graphs for which the square-root bound above is
tight: they are essentially a disjoint union of graphs each of which has the crux
size linear in d;

• a unifying approach to find a clique subdivision of almost optimal size in graphs
which do not contain a fixed bipartite graph as a subgraph;
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• and that the clique subdivision size in random graphs G(n, p) witnesses a dicho-
tomy: when p = ω(n−1/2), the barrier is the space, while when p = o(n−1/2),
the bottleneck is the density.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-084

1 Introduction
For a graph H, a subdivision of H (or an H-subdivision) is a graph obtained by replacing
each edge of H by internally vertex-disjoint paths. Studies on the existence of certain
subdivisions in a given graph G provide deep understandings on various aspects of G.
For example, the cornerstone theorem of Kuratowski [12] in 1930 completely characterises
planar graphs by proving that graphs are planar if and only if they do not contain a
subdivision of eitherK5, the complete graph on five vertices, orK3,3, the complete bipartite
graph with three vertices in each class.

What conditions on graphs G guarantee an H-subdivision in them? A fundamental
result of Mader [14] in 1967 states that a large enough average degree always provides a
desired subdivision. Namely, for every t ∈ N, there exists a smallest integer f(t) such that
every graph G with average degree at least f(t) contains a subdivision of Kt. He further
conjectured that f(t) = O(t2). This conjecture was verified in the 90s by Bollobás and
Thomason [3] and independently by Komlós and Szemerédi [10]. In fact, f(t) = Θ(t2);
the lower bound was observed by Jung [8] in 1970: consider the n-vertex graph which is
a disjoint union of n/5t2 copies of K t2

10
, t

2

10

. A clique subdivision must be embedded in a
connected graph; this example, though may have arbitrary large order n, is essentially the
same as one copy of K t2

10
, t

2

10

, which does not contain a Kt-subdivision. Indeed, at least(
t/2
2

)
many edges are subdivided in any Kt-subdivision in K t2

10
, t

2

10

, which would require
around t2/8 > t2/10 vertices on one side. In other words, apart from the obvious “degree
constraint” from the average degree, there is also some “space constraint” forbidding a
Kt-subdivision.

From the extremal example above, it is then natural to wonder ifG does not structurally
look like K t2

10
, t

2

10

, can we find a larger clique subdivision? Indeed, Mader [15] conjectured
that every C4-free graph with average degree d contains a subdivision of KΩ(d) and recently
it was resolved by Liu and Montgomery [13]. Furthermore, they proved that for every
t ≥ s ≥ 2, there exists a constant c = c(s, t) such that if G is Ks,t-free and has average
degree d, then G has a subdivision of a clique of order cds/2(s−1).

Note that a C4-free graph with average degree at least d must have at least Ω(d2)
vertices as the maximum number of edges of an n-vertex C4-free graph is O(n3/2), hence
providing enough space to put a KΩ(d)-subdivision with O(d2)-vertices. Similarly, the
number ds/2(s−1) also matches with the conjectured extremal number of Ks,t. Thus, all
theseH-free conditions relax the “space constraints”. Hence, this suggests that ‘the essential
order’ of the graph G, rather than structural F -freeness, is an important factor for the size
of the largest clique subdivision. Indeed, Liu and Montgomery [13] conjectured that every
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graph G with its ‘essential order’ n and average degree d contains a Kt subdivision with
t = Ω(min{d, n

logn
}).

Such a notion of ‘essential order’, called crux, was recently introduced by Haslegrave,
Hu, Kim, Liu, Luan and Wang [5]. We write d(G) for the average degree of G.

Definition 1.1 (Crux). Let α > 0 and G be a graph. A subgraph H ⊆ G is an α-crux if
d(H) ≥ α · d(G). Let cα(G) be the order of a smallest α-crux in G, that is:

cα(G) = min{n : ∃H ⊆ G s.t. |H| = n, d(H) ≥ αd(G)}.

We will write simply c(G) when α = 1/100; the choice of 1/100 here is not special and
can be replaced with any small number. Roughly speaking, the crux of a graph is large
when the edges are relatively uniformly distributed.

Our main result reads as follows. It implies in particular that the space constraints,
measured by the crux size, is a deciding factor for the size of largest clique subdivision in
a graph.

Theorem 1.2. There exists an absolute constant β > 0 such that the following is true.
Let G be a graph with d(G) = d. Then G contains a Kβt/(log log t)6-subdivision where

t = min
{
d,

√
c(G)

log c(G)

}
.

Theorem 1.2 asymptotically confirms a conjecture of Liu and Montgomery [13]. The
bound above is optimal up to the multiplicative (log log t)6 factor: the d-blowup of a d-
vertex O(1)-regular expander satisfies c(G) = Θ(d2) and the largest clique subdivision has
order d/

√
log d (see [13] for more details).

2 Applications

2.1 Characterisation of extremal graphs

The first consequence of our main result is a structural characterisation of extremal graphs
G having the smallest possible clique subdivision size Θ(

√
d(G)), showing that the only

obstruction to get a larger than usual clique subdivision is a small crux. In other words,
if c(G) = ω(d), then one can embed a Kt-subdivision with t = ω(

√
d). Theorem 1.2 does

not imply this result but along the way of proving it, we obtain this.

Theorem 2.1. Given a graph G with average degree d, if the largest clique subdivision has
order Θ(

√
d), then its crux size is linear in d, i.e. c(G) = O(d).

Theorem 2.1 implies that the extremal graphs are essentially disjoint union of dense
small graphs whose crux size is linear in their average degrees. This can be viewed as
an analogous result of Myers [16] who studied the extremal graphs for embedding clique
minors.
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2.2 Graphs without a fixed bipartite graph

The next application provides a lowerbound on the largest clique subdivision size, which
is optimal up to a polylog-factor, in a graph without a fixed copy of bipartite graph H.
This generalises the result of Liu and Montgomery [13] on Ks,t-free graphs. We would
like to remark that the proof of Liu and Montgomery makes heavy use of the structure of
the forbidden graph Ks,t, hence their argument does not extend to general H-free graphs.
Below, we write x = Ω̃(y) if there exists positive constants a, b such that x ≥ ay log−b y.

Corollary 2.2. Let H be a bipartite graph with extremal number ex(n,H) = O(n1+τ ) for
some 0 < τ < 1 and let G be an H-free graph with average degree d. Then G contains a
Kt-subdivision where

t =

{
Ω̃(d

1
2τ ) if τ > 1/2

Ω̃(d) if τ ≤ 1/2.

Proof. Let α = 1/100, and F be a smallest α-crux of G of order c(G). As F is H-free,
e(F ) ≤ O(|F |1+τ ), hence

c(G) = |F | = Ω(d(F )1/τ ) = Ω(d(G)1/τ ).

Therefore, Theorem 1.2 implies that G has a clique subdivision of size Ω̃(min{d, c(G)
1
2}) =

Ω̃(min{d, d 1
2τ }).

The bound above is best possible up to the polylogarithmic factor if ex(n,H) =
Θ(n1+τ ). To see this, let G be an n-vertex bipartite H-free graph G with Θ(n1+τ ) edges. If
G has a Kt-subdivision, then at least t/2 core vertices are in the same part of a bipartition
of G. For any two of them, a path connecting them uses at least one vertex of the other
part of G so

(
t/2
2

)
≤ n and therefore t = O(

√
n) = O(d1/2τ ).

2.3 Dichotomy on Erdős-Rényi random graphs

The last application delas with the subdivisions in Erdős-Rényi random graphs. While the
size of the largest Kt-minor in a random graph is widely studied (for example [2, 11, 4]),
the only known results for clique subdivision is when p is a constant. More precisely, when
p ∈ (0, 1) is a constant, Bollobás and Catlin [1] proved in 1981 that the largest clique
subdivision of G(n, p) is (

√
2/(1− p) + o(1))

√
n with high probability (w.h.p.).

We determine the size of the largest clique subdivision upto polylog-factor when p =
ω( logn

n
). We remark that when p = o( logn

n
), the clique subdivision is typically extremely

small in G(n, p): only logarithmic in n.

Corollary 2.3. Suppose p = ω( logn
n

) and p = 1 − Ω(1). Then w.h.p., the largest t that
G = G(n, p) has a Kt-subdivision is given by

t = Θ̃(min{np,
√
n}).
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The proof is obtained by showing c(G) = Ω(n) for a binomial ramdom graph using
the standard concentration inequalities. Corollary 2.3 implies an interesting dichotomy on
clique subdivision size in G(n, p) above and below the density 1/

√
n: when p = ω(n−1/2),

then it is limited solely by the space constraints, while when p = o(n−1/2), the degree
constraint is the bottleneck.

3 Outline of the proof
In this section, we sketch the proof of our main theorem. For the detail version of the
proof, see the online vertsion of our preprint [7].

3.1 Sublinear expander

A main tool we use in this paper is the sublinear expander notion introduced by Komlós
and Szemerédi [9, 10]. Let N i

G(X) be the set of vertices which is distance exactly i from
X. In particular, N0

G(X) = X. We write NG(X) to denote N1
G(X) and we write Bi

G(X) =⋃
j≤iN

i
G(X). For given ε, k, we define ρ(x) = ρ(x, ε, k) as

ρ(x) =

{
0 if x < k

5
ε

log2(15x/k)
if x ≥ k

5

Note that ρ(x) is a decreasing function and xρ(x) is a increasing function for x ≥ k
2
. Komlós

and Szemerédi introduced the notion of (ε, k)-expander, which is a graph in which every
set of appropriate size has not too small external neighbourhood. Haslegrave, Kim and Liu
[6] slightly generalised this notion to a robust version. Roughly speaking, a graph G is a
robust-expander if every set of appropriate size has not too small external neighbourhood
even after deleting a small number of vertices and edges. For an edge set F ⊆ E(G), we
write G \ F to denote the graph with the vertex set V (G) and the edge set E(G) \ F .

Definition 3.1 ([6]). For ε > 0, k > 0, a graph G is (ε, k)-robust-expander if for every
subset X ⊆ V (G) of size k

2
≤ |X| ≤ |V (G)|

2
and an edge set F ⊆ E(G) with |F | ≤

d(G)ρ(|X|)|X|, we have |NG−F (X)| ≥ ρ(|X|)|X|.

This notion of sublinear expander is very useful in the following three aspects.

• Every graph contains a robust-expander subgraph with almost the same average
degree.

• This provides a short connection between any two large sets while avoiding a relatively
small set of vertices and edges.

• No metter which small set of vertices we delete, the remaining graph still has large
average degree.

These three aspects are captured in the following three results.
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Theorem 3.2. [6, 9, 10] If ε > 0 is sufficiently small (independent from k) so that∫∞
1
ρ(x, ε, k)/xdx < 1

8
, then every graph G contains an (ε, k)-robust-expander H with

d(H) ≥ d(G)/2 and δ(H) ≥ d(H)/2 as a subgraph.

Lemma 3.3. [6, 10] Let G be an n-vertex (ε, k)-robust-expander. Then for any two vertex
sets X1, X2 of size at least x ≥ k

2
, and a vertex set W of size at most xρ(x)

4
, there exists a

path between X1 and X2 in G−W of length at most 2
ε

log3(15n
k

).

Lemma 3.4. Suppose 0 < 1
n
� ε < 1 and k < n

10
. Let G be an n-vertex (ε, k)-robust-

expander. Then for every W ⊆ V (G) with |W | ≤ 1
20
ρ(n, ε, k) · n, we have d(G −W ) ≥

1
20
ρ(n, ε, k) · d(G).

3.2 Outlines of the main steps

Assume that G and t are as in Theorem 1.2 and let s = βt/(log log t)6 for some small
enough constant β > 0. Using Lemma 3.2, we can assume that our graph is an expander
with an appropriate choice of ε and k. Our proof bacisally use the structures introduced
in [13]. We find Ω(s) rooted trees with many branches and leaves (called units and webs)
and build short vertex-disjoint paths between them to form a desired clique subdivision.
On the other hand, directly mimicking such an argument does not provide a subdivision
of the desired size. We need to find a clique subdivision of the size which almost matches
the smaller bounds of the degree constraint d and the space constraint

√
c(G)/ log c(G).

If the bound from the degree constraint is stronger (i.e., d is smaller than
√
c(G)/ log c(G)),

the main goal is to collect many vertices of degree at least t. If the bound from the space
constraint is stronger (i.e.,

√
n/ log n is much smaller than d), the main difficulty is to find

short paths connecting the vertices. As we want to build Ω(s2) vertex disjoint paths in G
to form a Ks-subdivision, we need to be able to find Ω(s2) paths of average length at most
O(n/s2) = log n(log log n)O(1). However, Lemma 3.3 only guarantees a much longer path of
length O(log3(n/k)). To obtain paths of desired length, we may take k to be n/(log n)O(1),
but such a choice of k does not allow us to obtain expansions of small sets, introducing
another difficulty. Another issue from this approach is that we don’t have any controls on
the order of (ε, k)-expander we take. The order of such an expander puts additional space
constraints for finding a desired subdivision as well as affect the length of paths we obtain
from Lemma 3.3.

To overcome the above difficulties, we consider several cases and use (ε, k)-expander in
each case with different choices of k. Let d = d(G). By iteratively applying Theorem 3.2,
we obtain the following graphs

G ⊇ G1 ⊇ G2 ⊇ H

where G1 is an (ε, εd)-expander, G2 is an (ε, d2)-expander, and H is an (ε, c(G)/100)-
expander such that each graph has minimum degree at least d/16. Let n1 = |G1|, n2 = |G2|,
and nH = |H|. We now consider the following four cases depending on the values of t, n1, n2,
and nH .
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Case 1: d ≤ exp(log1/6 n1) :d ≤ exp(log1/6 n1) :d ≤ exp(log1/6 n1) : In this case, we can adapt a theorem in [13] to obtain a
desired KΩ(d)-subdivision.
Case 2: t ≤ min{

√
n1

(logn1)O(1) ,
d

(log d)O(1)} :t ≤ min{
√
n1

(logn1)O(1) ,
d

(log d)O(1)} :t ≤ min{
√
n1

(logn1)O(1) ,
d

(log d)O(1)} : In this case, as t is quite smaller than both d

and
√
n1/ log n1, the degree constraint and the space constraint within G1 are not strong

obstacles to obtain a desired KΩ(t)-subdivision. Hence, by utilizing the properties of the
expanders, we can construct many units and webs and connect them with short paths to
obtain a desired KΩ(t)-subdivision.
Case 3: d ≤

√
n2

(logn2)O(1) :d ≤
√
n2

(logn2)O(1) :d ≤
√
n2

(logn2)O(1) : In this case, the space constraint within G2 is much weaker than
the degree constraint, so our main concern is to collect Ω(t) vertices of degree at least
d(log n2)O(1). Although Lemma 3.4 provides a set of large degree vertices, it only gives
vertices of degree d/(log n2)O(1), which is smaller than what we need. Considering two
cases where the edge distribution of G2 is close to uniform and skewed, a careful analysis
provides a desired set of vertices of large degree in both cases.
Case 4: The remaining cases: In the remaining case, we will find a desired Ks-
subdivision in H. Note that as we are not in case 1–3, we obtain the ineqaulity

nH
(log c(G))O(1)

≤ c(G) ≤ nH .

As H is (ε, c(G)/100)-expander, this ensures that ρ(x, ε, c(G)/100) = (log log c(G))O(1)

for every c(G) ≤ x ≤ nH . With this extra assumption on our hand, Lemma 3.4 now
provides a set of Ω(t/(log log t)O(1)) vertices of degree Ω(t/(log log t)O(1)), which matches
the bound from the degree constraint. Moreover, Lemma 3.3 also yields a path of length
(log log c(G))O(1) between two large sets of size at least c(G)/100. Note that the definition
of crux ensures some expansion of all vertex set smaller than c(G)/100. By utilizing
this, we can show that the O(log c(G))-th ball BO(log c(G))

H (v) of a well-chosen vertex v has
size at least c(G)/100. This together with Lemma 3.3 provides a desired path of length
(log log c(G))O(1) between two balls BO(log c(G))

H (v) and BO(log c(G))
H (u) of well-chosen vertices

u and v. Combining these ideas with further technical analysis, we obtain the desired
Ks-subdivison. We omit further details.
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Abstract
The Cops and Robber game on geodesic spaces is a pursuit-evasion game with

discrete steps which captures the behavior of the game played on graphs, as well as
that of continuous pursuit-evasion games. One of the outstanding open problems
about the game on graphs is to determine which graphs embeddable in a surface
of genus g have largest cop number. It is known that the cop number of genus g
graphs is O(g) and that there are examples whose cop number is Ω̃(

√
g ). The same

phenomenon occurs when the game is played on geodesic surfaces.
In this paper we obtain a surprising result when the game is played on a surface

with constant curvature. It is shown that two cops have a strategy to come arbitrarily
close to the robber, independently of the genus. For special hyperbolic surfaces we
also give upper bounds on the number of cops needed to catch the robber. Our results
generalize to higher-dimensional hyperbolic manifolds.
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1 Introduction
The Cops and Robber game is a pursuit-evasion game. The game is commonly played on
graphs [1, 5, 6, 7, 9, 12, 16, 19], and as a new variant on geodesic spaces [15, 21, 22]. The
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players in the Cops and Robber game are the robber r and k cops c1, . . . , ck. On graphs the
players occupy vertices while on geodesic spaces the players occupy points in space. The
game is played in rounds. The robber chooses initial positions for the players r0, c01, . . . , c0k
and in each round of the game the players can move to a new position1. Each round of
the game has two turns, the first one for the robber and the second one for the cops. In
particular, each of the cops can make a step at the cops’ turn. When the game is played
on a graph, the players are allowed to move to an adjacent vertex at their turn. When the
game is played on a geodesic space X, the robber chooses an agility function τ : N→ R+

at the beginning of the game such that
∑

n≥1 τ(n) = ∞. In the n-th round, each player
makes a step of length at most τ(n) (at their turn). The position of the robber r after
round n is denoted as rn, and the position of the cop ci as cni . In the following we give
the robber the pronoun he, him, while the cops have the pronoun she, her. We say the
cops catch the robber if at some point in the game the cop ci occupies the same position
as the robber r. If the robber is not caught, we say the robber escapes. The cop number
c(G) of a graph G is the minimum number of cops that can catch the robber (regardless
of the robber’s strategy and initial positions). For a geodesic space X we denote by c0(X)
the cop catch number, which is the minimum number of cops that can catch the robber.
Further, if the game is played on a geodesic space, we say that the cops win the game if

inf
n,i
d(cni , r

n) = 0. (1)

If the cops do not win the game, we say that the robber wins the game, which means that
he can stay at distance at least ε away from the cops, for some ε > 0. For a geodesic space
we denote by c(X) the cop win number, that is the minimum number of cops that can win
the game.

One of the first results about cop numbers given by Aigner and Fromme states that
planar graphs have cop number at most 3 [1]. For graphs embeddable in a surface of genus
g it is known that the cop number is at most linear in g and recent progress was made
on improving the linear factor [8, 11, 24]. It is an outstanding open problem to determine
which graphs embeddable in a surface of genus g have largest cop number. There are
graphs of genus g with cop number at least g

1
2
−o(1), one such example are binomial random

graphs Gn,p with p = 2 logn
n

[5, 20]. The gap between the upper and lower bound is large
and it is conjectured that the lower bound gives the right order of the cop number.

Conjecture 1 ([20, 22]). Let S be a a graph of genus g. Then c(S) = O(
√
g).

Similarly, the cop win number for a surface of genus g is at most linear in g [21]. It was
shown that for graphs of cop number at least 3 there exists a surface S of genus g with
c(S) ≥ c(G) [21]. Therefore there are compact surfaces of genus g with cop win number at
least g

1
2
−o(1). The following conjecture is a tough conjecture since it implies Conjecture 1.

Conjecture 2 ([22]). Let S be a geodesic surface of genus g. Then c(S) = O(
√
g).

1The rules of the Cops and Robber game on graphs we define here are slightly different to standard
rules, but they do not affect the outcome of the game on connected graphs.
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Surprisingly, the upper bound from Conjecture 2 can be significantly improved for
surfaces of genus g which are hyperbolic, that means they have constant curvature −1.
Since our results extend to higher-dimensional hyperbolic manifolds, we state the more
general version.

Theorem 3. If M is a compact hyperbolic manifold, then c(M) = 2.

An important tool for determining upper bounds for cop numbers is the Isometric Path
Lemma, which we use to establish Theorem 3 and to show the cop catch number for special
surfaces of genus g ≥ 2 is at most 6.

Lemma 4 ([1, 22]). Let I be an isometric path starting at A and ending at B. Then one
cop c can guard I after spending time equal to the length of I on the path to adjust himself.

The Cops and Robber game on geodesic spaces is tightly related to continuous and
discrete pursuit-evasion games on metric spaces. In continuous pursuit-evasion games the
players make decisions at every point in the time interval [0,∞). For example, Besicovitch
showed that in the Lion and Man game as introduced by Rado (see Littlewood’s Miscel-
lany [18]), the man can escape the lion when the game is played on a disk. Croft studied a
variation of this game with multiple pursuers on higher dimensional balls [10] and Satimov
and Kushkarov studied the game on the sphere [23].

The Discrete Lion and Man game is the Cops and Robber game where the agility
function is constant, i.e. τ ≡ K for some constant K. It was shown that in the Discrete
Lion and Man game the lion can catch the man on a disk, more generally, the lion can
catch the man on any compact CAT(0)-space [4, 26]. While the Cops and Robber game is
a discrete pursuit-evasion game, it captures the properties of the continuous game, in the
sense that in the Cops and Robber game one cop cannot catch the robber when the game
is played on a disk [15].

2 Proof Sketch of Theorem 3
We denote byHn the n-dimensional hyperbolic space. By the Killing-Hopf Theorem [13, 17]
any hyperbolic manifold arises from a tessellation of hyperbolic space, for an example see
Figure 2. More precisely, any hyperbolic manifold is isometric to Hn/Γ where Γ is a group
of isometries of Hn acting freely and properly discontinuously. In order to show Theorem 3,
we play the game in the covering space Hn of the manifold. It was shown that if C is the
covering space of a geodesic spaceX that locally preserves distances, then c(X) ≤ c(C) [15].
We will use the idea of the theorem in this proof. In order to simplify our exposition, we
provide a sketch of the proof for Theorem 3 only for 2-dimensional manifolds which are
surfaces. Let s = sys(S) be the systolic girth of the hyperbolic surface S, which is the
length of the smallest non-contractible curve.

To show that c(S) > 1 we play the game with one cop c and the robber r. The
robber chooses the agility function τ ≡ s

8
and initial positions such that d(c0, r0) > s

8
. If

d(ck, rk) ≥ 3s
8
, then the robber does not move and rk+1 = rk. If d(ck, rk) < 3s

8
, the robber
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moves in the direction opposite to the cop’s position, i.e. the shortest paths from rk to
ck and rk to rk+1 meet at rk at angle π. To argue that such a position exists with the
additional assumption that d(rk+1, ck) = d(rk, ck) + s

8
, the Gauss-Bonnet Theorem can be

applied, for details we refer to the full version of the paper [14]. In both cases the robber
can stay at distance at least s

8
to the cop, which proves the lower bound.

We sketch the proof strategy for the upper bound. Let D = diam(S), which is the
largest distance between two points in S. The rounds are grouped into blocks, that is, we
consider integers representing time steps 1 = t0 < t1 < t2 < . . . such that

∑ti+1−1
k=ti

τ(k) ≥
30D. For each time step k we choose a representation Ck

i , R
k of cki , rk in the covering space

H2. By definition of distance on a hyperbolic surface, dH2(Ck
i , R

k) ≥ dH2(cki , r
k) (i = 1, 2).

We show that the cops have a strategy such that infk dH2(Ck
i , R

k) = 0. At each time step ti,
the cop c2 chooses a new representation Cti

2 of its position cti2 in the covering space, which
means d(Cti−1

2 , Cti
2 ) is possibly greater than τ(ti) but we maintain that d(cti−12 , cti2 ) ≤ τ(ti).

In between the time steps ti, ti+1 we choose the representation of the cops and the robber
such that they are coherent with the agility function, which means dH2(Rk−1, Rk) ≤ τ(k)
and d(Ck−1

i , Ck
i ) ≤ τ(k) for ti < k < ti−1. Let Rti , Cti

1 be a copy of the robber’s and cop’s
position in the covering space, such that their distance in the covering space is the same
as in the surface. We consider the geodesic g0 through Rti , Cti

1 . The choice of the position
Cti

2 for cop c2 is such that it is close to the geodesic g0 but sufficiently far from Rti , which
we make more precise in the following.

Let P be the point on g0 at distance 10D to Rti that is further away from Cti
1 . Note that

there is a copy Cti
2 of cti2 in the covering space which is at distance at most D = diam(S)

from P . We consider h = og0(C
ti
2 ), the orthogonal geodesic to g0 through Cti

2 .

Claim 1. h ∩ g0 is at distance between 9D and 11D from Rti and at distance at most D
from Cti

2 .

The strategy of cop c2 is to chase the orthogonal projection of Rk on h. Note that by
Claim 1 the distance from Rti to h is at least 9D. Let B,B′ be points on h at distance
8D from B0 := g0 ∩ h, see Figure 1(a). The cop c2 can guard the path from B to B′ on
h, since his distance to B0 is at most D, so his distance to B,B′ is at most 9D, which is
at least the distance from Rti to B,B′. Let gk = oh(C

k
1 ) be the orthogonal geodesic to h

through Ck
1 , see Figure 1(b).

Suppose Rk, Rk+1 are contained in the triangle defined by B, h ∩ gk and Ck
1 . Then we

move cop c1 towards B such that:

The robber’s position Rk+1 and B are on the same side of gk+1. (2)

The (k + 1)-st position Ck+1
1 of cop c1 is

(a) the point between Ck
1 and B s.t. d(Ck+1

1 , Ck
1 ) = τ(k+ 1) if this step does not violate

(2),

(b) otherwise, the closest point to Rk+1 on the geodesic oh(Rk+1) (the orthogonal geodesic
to h through Rk+1) which satisfies d(Ck+1

1 , Ck
1 ) = τ(k + 1).
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(a)

Cti
1

Cti
2

h

B

B′

Rti

g0

(b)

Ck
1

B

Rk

gk

h

Ck
2

Figure 1: Figure (a) is a schematic drawing of the robber’s and the cops’ position at time
step ti (1 ≤ i). Figure (b) is a schematic drawing of the robber’s and the cops’ position at
time step ti < k < ti+1.

The strategy is similar if the robber moves towards B′. If the robber crosses Ck
1B or Ck

1B
′

for some ti < k < ti+1, then the cops’ strategy for the steps ti + 1, . . . , ti+1− 1 is simply to
walk towards the robber. At step ti+1 the strategies reset.

Claim 2. Either the robber gets caught by the cops or he crosses Ct
1B or Ct

1B
′ for some

t with ti < t < ti+1. Further, for each ε > 0 there exists some δ = δ(ε), such that if
d(Rti , Cti

1 ) ≥ ε, then

d(Rt, Ct
1)− d(Rti , Cti

1 ) ≥ δε.

Claim 2 shows that the cop c1 comes eventually ε-close to the robber, which means
d(Rk, Ck

1 ) < ε for some k. This is enough to show that the cops can win the game on S.
For the proofs of Claims 1 and 2 we refer the reader to the full version of the paper [14].

3 Catching the Robber
We define by P (k, θ) the regular k-gon in the Poincaré disk D centred at O = (0, 0) with
angle θ at the vertices. We denote its vertices by v1, . . . , vk in counter-clockwise direction
and let ai be the (oriented) edge from vi to vi+1 and a−1i be the reversed edge from vi+1 to
vi (we consider the indices modulo k). We are going to consider three standard hyperbolic
surfaces for g ≥ 2, where one of them is non-orientable.

• Let S(g) be the orientable surface obtained from P
(

4g, 2π
4g

)
by identifying the (ori-

ented) edges a4i−3 with a−14i−1 and a4i−2 with a−14i for i = 1, . . . , g. The surface S(2) is
depicted in Figure 2.

• Let S ′(g) be the orientable surface obtained from P
(

4g + 2, 2π
2g+1

)
by identifying

opposite (oriented) edges ai, a−1i+2g+1 for i = 1, . . . , 2g.
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• Let N(g) be the non-orientable surface obtained from P
(

2g, 2π
2g

)
by identifying the

(oriented) edge a2i with a2i+1 for i = 1, . . . , g.

a1

a2

a5

a6

(a)

a1a−1
1

a2

a−1
2

a5 a−1
5

a6

a−1
6

v1

v3 v2

v4

v8

v6 v7

v5

(b)

Figure 2: The surface S(g) as a standard geometric model for the double torus with its
fundamental domain P

(
4g, 2π

4g

)
in the Poincaré disk D.

Lemma 5. Suppose the robber is contained in a bounded convex polygon in the Poincaré
disk D where n cops guard the boundary of the polygon. Then these n cops can catch the
robber.

We can deduce the following theorem from Lemma 5.

Theorem 6. If g ≥ 2, then (a) c0(S(g)) ≤ 5, (b) c0(S ′(g)) ≤ 6 and (c) c0(N(g)) ≤ 4.

Proof. We will give the proof only for (a), the proof for the other surfaces is similar. Let
O be the midpoint of the fundamental polygon P

(
4g, 2π

4g

)
. We will play the game in the

covering space and choose the player’s positions such that they are in P
(

4g, 2π
4g

)
. We will

first use the cops c1, c2, c3 to guard isometric paths. We start by moving cop c1 to the
isometric path Ov1, cop c2 to the isometric path Ov5 and cop c3 to the isometric path Ov9.
By Lemma 4 we can assume that after a finite amount of time the cops guard the respective
isometric paths. Now if the robber is in one of the triangles Ovjvj+1 for some 1 ≤ j ≤ 4,
then the robber’s moves are restricted to the specified triangles since a1 = a−13 and a2 = a−14 .
Similarly if the robber is contained in one of the triangles Ovjvj+1 for some 5 ≤ j ≤ 8 his
moves are restricted to these triangles. If the robber is outside Ovjvj+1 for some 1 ≤ j ≤ 8,
we move cop c2 to the isometric path Ov13 and wait until he is guarding it. If the robber is
in one of the triangles Ovjvj+1 for 9 ≤ j ≤ 12, his moves are restricted to these triangles.
If the robber is not contained in one of these triangles we keep going for i = 3, 4, . . . in the
same way, moving the cop currently guarding Ov1+4i to guard Ov1+4(i+2) unless i+2 = g, in
which case the robber is contained in one of Ov4g−3v4g−2, Ov4g−2v4g−1, Ov4g−1v4g or Ov4gv1,
cop c1 guards Ov1 and one of c2 or c3 guards Ov4g−3.
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We assume without loss of generality that cop c1 guards Ov1, cop c2 guards Ov5 and
the robber is in one of the triangles Ovjvj+1 for some 1 ≤ j ≤ 8. Cop c3, c4, c5 will guard
Ov2, Ov3, Ov4, respectively. Now the robber is captured in either R1 = Ov1v2 ∪ Ov3v4 or
R2 = Ov2v3 ∪ Ov4v5. The regions R1 and R2 can be embedded in the covering space D
such that they form a quadrilateral which is guarded by four of the cops. By Lemma 5 we
can now catch the robber.
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Abstract

The Erdős-Sós conjecture states that the maximum number of edges in an n-vertex
graph without a given k-vertex tree is at most npk´2q

2 . Despite significant interest,
the conjecture remains unsolved. Recently, Caro, Patkós, and Tuza considered this
problem for host graphs that are connected. Settling a problem posed by them, for a
k-vertex tree T , we construct n-vertex connected graphs that are T -free with at least
p1{4´ okp1qqnk edges, showing that the additional connectivity condition can reduce
the maximum size by at most a factor of 2. Furthermore, we show that this is optimal:
there is a family of k-vertex brooms T such that the maximum size of an n-vertex
connected T -free graph is at most p1{4` okp1qqnk.
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1 Introduction
In extremal graph theory, a central focus is determining the extremal number of various
graphs. The extremal number, denoted by expn, F q, is the maximum number of edges in
an n-vertex graph that does not contain a graph F as a subgraph, not necessarily induced.
While the asymptotic behavior of this function has been determined for all non-bipartite
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graphs by Erdős, Stone, and Simonovits [6, 10], the behavior for bipartite graphs remains
open with significant interest from the community.

The Erdős-Gallai theorem [9], established in 1959, studied the k-vertex path Pk, stating
that expn, Pkq ď

npk´2q
2

, and the maximum value is achieved by YKk´1, the disjoint union
of Kk´1 when k ´ 1

ˇ

ˇn. Once the extremal number of the path is determined, extending the
question to a tree is a natural next step. In 1962, Erdős and Sós [7] conjectured that for
any k-vertex tree, its extremal number is at most npk´2q

2
, and again the disjoint union of

Kk´1 serves as an example for tightness.
Motivated by the fact that the conjectured maximizer YKk´1 is not connected, a natural

variant is to consider host graphs that are connected, see e.g [15, 4]. Formally, the connected
extremal number excpn, F q is the maximum number of edges in an n-vertex connected graph
without a subgraph isomorphic to F . While the additional connectivity condition does not
affect the asymptotics of the extremal number when the forbidden graph is non-bipartite
or 2-edge-connected, Caro, Patkós, and Tuza [4] investigated what effect it has for trees.
Notice that, in contrast with the classical extremal number, its connected relative is not
even a monotone function of n. Indeed, for paths, it is known that for every k ě 10,
excpk, Pkq “

`

k´2
2

˘

` 2 ă
`

k´1
2

˘

“ excpk ´ 1, Pkq.
Such connected variant for trees was in fact studied before and could date back to the

work of Kopylov [19] in 1977, in which he resolved the problem for paths, showing that for
n ě k ě 4,

excpn, Pkq “ max

"ˆ

k ´ 2

2

˙

` pn´ pk ´ 2qq,

Z

k ´ 2

2

^

pn´

R

k

2

V

q `

ˆ

P

k
2

T

2

˙*

. (1)

Later, Balister, Győri, Lehel, Schelp [1] characterized extremal graphs for every n. There are
also recent developments towards the stability version of this theorem by Füredi, Kostochka,
Luo, Verstraëte [13, 14].

By Erdős-Gallai theorem and Kopylov’s result (1), we see that the asymptotic of the
maximum number of edges in an n-vertex Pk-free graph does not change by an additional
connectivity constraint as n Ñ 8 and k Ñ 8. Caro, Patkós, and Tuza [4] studied how
much smaller excpn, T q can be for a k-vertex tree T , compared to npk´2q

2
. Formally, they

defined

γk :“ inf
!

lim sup
nÑ8

excpn, Tkq
npk´2q

2

: Tk is a k-vertex tree
)

and γ :“ lim
kÑ8

γk. (2)

It is not hard to see that this limit exists. From above, Caro, Patkós, and Tuza [4] found a
family of trees whose connected extremal number is asymptotically smaller, yielding γ ď 2

3
.

From below, for every tree, they gave constructions showing that γ ě 1
3
. They asked where

the truth lies between 1
3
and 2

3
.

Our main result settles this problem.

Theorem 1.1. Let γ be as defined in (2), we have γ “ 1
2
.
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To obtain the lower bound γ ě 1
2
, we provide several families of different constructions

depending on the ‘center of mass’ of the forbidden tree (see Section 2.1), realizing the
following.

Theorem 1.2. For any k-vertex tree Tk, we have

excpn, Tkq ě

ˆ

1

4
´ okp1q

˙

kn.

On the other hand, we determine the exact connected extremal number of brooms with
k vertices and diameter d, denoted by Bpk, dq, for large enough n. In particular, Bpk, dq is
the graph obtained from a path of d` 1 vertices by blowing up a leaf to an independent
set of size k ´ d. The following theorem is stated using graphs Gn,¨,¨ and Fn,¨,¨, which are
defined in Sections 2.2 and 3.1. Some of these graphs (so-called edge blow-up of stars) have
been studied before, see e.g. [5, 8, 27]. As the path is also a broom, the result below can be
viewed as an extension of Kopylov’s result (1).

Theorem 1.3. For every integer k and d such that k ě d` 2 ě 8, and n ě kdk we have

excpn,Bpk, dqq “

$

’

’

’

’

’

&

’

’

’

’

’

%

epGn,d,t d´1
2 uq if d ě k`5

2
,

maxtepGn,d,t d´1
2 uq, epFn, k`2

2
,1qu if d=k`2

2
or k`4

2
,

maxtepGn,d,t d´1
2 uq, epFn,d,2q, epFn,d,3qu if d “ k`3

2
,

Y

pk´dqn
2

]

if d ď k`1
2
.

As a corollary, we get the matching upper bound γ ď 1
2
as excpn,Bpk,

P

k
2

T

qq “
`

1
4
` okp1q

˘

kn.

2 Overview of the proof of Theorem 1.2
In this section, we first introduce a key concept: the barycenter of a tree. We then provide
three special graphs Gn, k´c

2
, k´c

4
, Sn,x and Pn,x, each of which has p1

4
´ okp1qqkn edges, where

c is a constant. By considering the degree of the barycenter vertex of the tree Tk, we can
find a Tk-free graph G such that G is isomorphic to one of Gn, k´c

2
, k´c

4
, Sn,x and Pn,x for some

x.

2.1 The Barycenter of a tree

For any tree T on k vertices, we call a vertex v of T a barycenter if v belongs to a largest
connected component of T ´ e for every edge e in T , that is, the vertex v belongs to the
component of size at least rk

2
s in the graph obtained from T by removing an edge e.

Proposition 2.1. Every tree has either a unique barycenter, or there are exactly two
barycenters in the tree joined by an edge.
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2.2 Constructions of various classes of graphs

The family Gn,¨,¨. We first define the family of extremal graphs for (1). Recall ‘Y’
denotes the disjoint union of graphs, ‘`’ denotes the join of the graphs, and Kt denotes
an independent set of size t. For n ě k ě 2s let Gn,k,s :“

`

Kk´2s YKn´k`s

˘

` Ks, see
Figure 2.1. Note that for every n and k, there exists a constant a such that k ă a ă 2k and
the only extremal graphs achieving equality in (1) are Gn,k´1,1 for n ď a and Gn,k´1,t k´2

2 u

for n ě a. Clearly, epGn, k´c
2

, k´c
4
q “ p1

4
´ okp1qqkn.

The families Sn,x and Pn,x. Let x be an integer such that k
2
ă x ă k or x “

X

k´2
2

\

. For
the sake of simplicity of the write-up, we denote

ax :“

#

Y

2x2

k

]

´ 2 if k
2
ă x ă k, and

x if x “
X

k´2
2

\

.

Kk´2s Ks Kn´k`s
¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨

Kx Kx Kx Kx

P PPax´x`2 Pax´x`2 Pax´x`2 Pax´x`2

w w0 w1

¨ ¨ ¨ ¨ ¨ ¨

Figure 2.1: The graph Gn,k,s on the left, the graph Sn,x in the middle and the graph Pn,x on
the right.

Let Sn,x be a graph consisting of
Y

n´1
ax

]

vertex disjoint Kx with pendant paths of length

ax ´ x, a path of n ´ 1 ´ ax

Y

n´1
ax

]

vertices and a vertex w adjacent with an endpoint of
each of these paths.

Let Pn,x be a graph consisting of
Y

n
ax`1

]

vertex disjoint Kx with pendant paths of length

ax ´ x` 1 with the terminal leaf wi (i ě 1), a path of n´ pax ` 1q
Y

n
ax`1

]

vertices with a
terminal leaf w0, such that w0w1 . . . wt n

ax`1u is a path.
It is easy to see that epSn,xq “ p

1
4
´ okp1qqkn and epPn,xq “ p

1
4
´ okp1qqkn.

Now we give the overview of the proof of Theorem 1.2: Let v be a barycenter of the
tree Tk, which exists by Proposition 2.1. Let x1 “

X

k´2
2

\

and x2 “
Y

k?
2

]

. We split the proof
into three cases: dpvq “ 2, dpvq ě 4 and dpvq “ 3. For the cases dpvq “ 2 and dpvq ě 4, we
show that Sn,x1 and Pn,x1 are Tk-free, respectively. For the case dpvq “ 3, we show that
either Tk can not be embedded in Sn,x2 or Pn,x2 , or Tk contains two vertex disjoint sub-trees
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S1 and S2, each of which is isomorphic to a spider1 with the central vertex of degree at
most three and vpS1q ` vpS2q ě

k´c
2

for some constant c and thus Tk can not embedding in
Gn,2pt k´c

4 u´5q,t k´c
4 u´5. In these three cases, we can always get the desired lower bound.

3 Overview of the proof of Theorem 1.3
In this section, we first construct some edge blow-up of stars Fn,d,¨ in Section 3.1, which
epFn,d,¨q achieves the lower bound of excpn,Bpk, dqq. To prove the upper bound of excpn,Bpk, dqq
we need some theorems, see Section 3.2.

3.1 The family Fn,¨,¨

For n ą d ě 2, let Fn,d,1 be the n-vertex connected graph such that every maximal 2-
connected block is a clique of size d´ 1 except at most one clique of size n´

X

n´1
d´2

\

pd´ 2q,
all sharing a common vertex. Thus if n´ 1 “ pd´ 2qp1 ` q1 for non-negative integers p1
and q1 such that 0 ď q1 ă d´ 2 then

epFn,d,1q “ p1

ˆ

d´ 1

2

˙

`

ˆ

q1 ` 1

2

˙

“
pd´ 1qpn´ 1q

2
´
q1pd´ 2´ q1q

2
.

Let Fn,d,2 be the n-vertex connected graph such that every maximal 2-connected block
is a clique with one of size d ´ 1, the rest of size d ´ 2 except at most one clique of size
n ´ 1 ´

X

n´2
d´3

\

pd ´ 3q, all sharing a common vertex. Thus if n ´ 2 “ pd ´ 3qp2 ` q2 for
integers p2 and q2 such that p2 ě 1 and 0 ď q2 ă d´ 3 then

epFn,d,2q “ p2

ˆ

d´ 2

2

˙

` d´ 2`

ˆ

q2 ` 1

2

˙

“
pd´ 2qn

2
´
q2pd´ 3´ q2q

2
.

For an even integer d, let n ´ 1 “ pd ´ 3qp3 ` q3 for integers p3 and q3 such that
0 ď q3 ă d´ 3. If p3 ě q3, let Fn,d,3 be the n-vertex connected graph such that it contains
p3 maximal 2-connected blocks G1, . . . , Gp3 all sharing a common vertex v with p3 ´ q3 of
them being the cliques of size d´ 2. The rest of the maximal 2-connected blocks Gi are the
cliques of size d´ 1 without a perfect matching of Gi ´ v. We have

epFn,d,3q “
pd´ 2qpn´ 1q

2
.

If p3 ă q3, let Fn,d,3 be the n-vertex connected graph such that it contains p3 ` 1 maximal
2-connected blocks G1, . . . , Gp3`1 all sharing a common vertex v with p3 of them being the
cliques of size d´ 1 without a perfect matching of Gi ´ v and the remaining one is a clique
of size q3 ´ p3 ` 1. We have

epFn,d,3q “ p3
pd´ 2q2

2
`

ˆ

q3 ´ p3 ` 1

2

˙

“
pd´ 2qpn´ 1q

2
´
pq3 ´ p3qpd´ 3´ pq3 ´ p3qq

2
.

1Spider is a tree with all vertices of degree at most two, except one vertex of any degree, referred to as
the central vertex of the spider.
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3.2 Other tools

Let Cěk denote the class of cycles of length at least k. For a class of graphs F , the Turán
number of F is the maximum number of edges in a graph not containing a subgraph F for
all F P F , denoted by expn,Fq.

Woodall [25] and independently Kopylov [19] improved Erdős-Gallai theorem [9] for
long cycles and obtained the following exact result for every n, see also [12].

Theorem 3.1 (Woodall [25], Kopylov [19]). Let n “ ppk´ 2q ` q ` 1, where 0 ď q ă k´ 2
and k ě 3, p ě 1,

expn, Cěkq “ p

ˆ

k ´ 1

2

˙

`

ˆ

q ` 1

2

˙

“
pk ´ 1qpn´ 1q

2
´
qpk ´ 2´ qq

2
.

Theorem 3.2 (Kopylov [19], Woodall [25], Fan, Lv and Wang [11]). Suppose n ě k ě 5,
then every 2-connected n-vertex Cěk-free graph contains at most

max

"ˆ

k ´ 2

2

˙

` 2pn´ pk ´ 2qq,

Z

k ´ 1

2

^ˆ

n´

R

k ` 1

2

V˙

`

ˆ

P

k`1
2

T

2

˙*

edges.

The extremal graphs are Gn,k,2 and Gn,k,t k´1
2 u.

Now we give a overview of the proof of Theorem 1.3: For the lower bound of excpn,Bpk, dqq,
we consider the following Bpk, dq-free graphs: Gn,d,t d´1

2 u, an almost pk ´ dq-regular graph,

Fn, k`2
2

,1 if d “ k`2
2

or k`4
2
, Fn,d,2 and Fn,d,3 if d “ k`3

2
.

For the matching upper bound, let G be an n-vertex connected Bpk, dq-free graph with
n ě kdk and let v be a vertex of G such that dpvq “ ∆pGq. We divide the proof into three
cases depending on the value of ∆pGq. If ∆pGq ď k ´ d then we easily get the desired
upper bound

Y

pk´dqn
2

]

. If k ´ d ` 1 ď ∆pGq ď k ´ 2, then there exists a path of at least
dk vertices starting at v by considering a breadth-first search tree from the vertex v, and
then by pigeonhole principle we will find a copy of Bpk, dq in G resulting in a contradiction.
For the last case ∆pGq ě k ´ 1, if G is 2-connected then we get the desired upper bound
by Theorem 3.2; otherwise, we assume G is not 2-connected and its maximal 2-connected
blocks are G1, G2, . . . , Gs. By Theorem 3.1, the circumference of G is either d´ 2 or d´ 1
or we have the desired upper bound. And by Theorem 3.2, each epGiq is bounded for i P rss.
By using the properties of G (the circumference and Bpk, dq-free), we can get the desired
upper bound.

4 Concluding remarks
For the Turán problem, we determine the maximum effect the additional connectivity
condition could have over all trees. An interesting future direction of research would be to
identify appropriate parameters (if exist) of a tree that determine the asymptotic behavior
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of its connected extremal number. The constructions in Sections 2 and 3 could be useful
for this problem.

The reader interested in the problems and extensions related to Erdős-Sós conjecture we
refer to the following papers [2, 22, 17, 20, 21, 23, 26, 3], extensions for Berge hypergraphs
see [16, 18], extensions for colored graphs see [24].

Caro, Patkós, Tuza [4] asked whether the connected extremal number becomes monotone
eventually. In particular, for every graph F , there exists a constant NF , such that for every
n ě NF , excpn, F q ď excpn` 1, F q. We observe that this is true when F contains a cycle.

Proposition 4.1. For every graph F containing a cycle, there exists a constant NF such
that for every n ą NF we have excpn, F q ă excpn` 1, F q.
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1 Introduction
Given positive integers r, s, n, the Ramsey number Rr(s, n) denotes the smallest N such
that every r-uniform hypergraph on N vertices contains either a clique of size s, or an
independent set of size n. For convenience, we write Rr(n) instead of Rr(n, n). In the
case of graphs, that is r = 2, classical results of Erdős and Szekeres [15] and Erdős [12]
tell us that R2(n) = 2Θ(n), and in case s is fixed and n is sufficiently large, we have
R2(s, n) = nΘ(s). However, in case r ≥ 3, the Ramsey numbers are less understood. Erdős
and Rado [11] and Erdős, Hajnal and Rado [14] show that

twr−1(Ω(n2)) < Rr(n) < twr(O(n)).

Also, in the asymmetric case, we have Rr(s, n) = twr−1(nΘr,s(1)) for s ≥ r + 2 [14, 18],
and R3(4, n) = 2n

Θ(1) [10]. Here, twk(x) is the tower function defined as tw1(x) := x and
twk(x) := 2twk−1(x). Hence, there is an almost exponential gap between the lower and upper
bound for Rr(n) in case r ≥ 3, and it is a major open problem to close this gap. Note that,
however, the rough order of the asymmetric Ramsey number Rr(s, n) is more understood,
at least up to the height of the required tower. See [7] for recent developments.

Yet the situation changes if we restrict our attention to hypergraphs that arise from
geometric considerations. To this end, an r-uniform hypergraphH is semi-algebraic of com-
plexity (d,D,m) if the following holds. There is an enumeration v1, . . . , vN of the vertices of
H, an assignment vi 7→ pi with pi ∈ Rd for i ∈ [N ], andm polynomials f1, . . . , fm : (Rd)r 7→
R of (total) degree at most D such that for 1 ≤ i1 < · · · < ir ≤ N , whether {vi1 , . . . , vir}
is an edge of H depends only on the sign-pattern of (f1(pi1 , . . . , pir), . . . , fm(pi1 , . . . , pir)).
More precisely, there is a function Φ : {+,−, 0}m 7→ {True,False} such that {vi1 , . . . , vir}
is an edge if and only if

Φ(sign(f1(pi1 , . . . , pir)), . . . , sign(fm(pi1 , . . . , pir))) = True.

Semi-algebraic graphs and hypergraphs of bounded complexity provide a general model to
study certain geometric structures, such as intersection and incidence graphs of geometric
objects, order types of point configurations, convex subsets of the plane, and so on. The
semi-algebraic Ramsey number Rt

r(s, n) denotes the smallest N such that any r-uniform
semi-algebraic hypergraph of complexity t on N vertices contains either a clique of size
s or an independent set of size n. Alon, Pach, Pinchasi, Radoičić and Sharir [1] proved
that Rt

2(n) = nΘ(1), which was extended by Conlon, Fox, Pach, Sudakov and Suk [6] to
Rt
r(n) = twr−1(nO(1)) for general r. In [6] and [9], matching lower bounds are provided in

case the parameters d,D,m are sufficiently large with respect to r. Specifically, for every
r ≥ 2, there exists t such that Rt

r(n) = twr−1(nΘ(1)). Here and later, the constants hidden
by the O(.),Ω(.),Θ(.) notation might depend on r, t and s, unless specified otherwise.

1.1 Asymmetric Ramsey numbers

In contrast, asymmetric semi-algebraic Ramsey numbers appear to be more mysterious in
case r ≥ 3. For uniformity r = 3, in the special subcase d = 1, it was established in [6]
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that Rt
3(s, n) < 2(logn)O(1) . Furthermore, if d ≥ 2, a result of Suk [19] shows that

Rt
3(s, n) < 22(log n)1/2+o(1)

= 2n
o(1)

.

However, the best known lower bound constructions provide only polynomial growth, which
leads to the natural conjecture that Rt

3(s, n) = nO(1), formulated in both [6] and [19]. Our
first main result refutes this conjecture.

Theorem 1.1. There exists t = (d,D,m) such that

Rt
3(4, n) > n(logn)1/3−o(1)

.

1.2 Semi-linear hypergraphs

As discussed above, if d,D,m are sufficiently large with respect to r, then Rd,D,m
r (n) =

twr−1(nΩ(1)). In the constructions provided by both [6] and [9], the parameters d and D
grow with r. In particular, [9] shows that one can take d = r − 3 for r ≥ 4. Further-
more, the Veronese mapping1 implies that every r-uniform semi-algebraic hypergraph of
complexity (d,D,m) is also of complexity (d′, r,m) for some d′ depending only on d and
D. However, this raises the question whether the upper bound Rd,D,m

r (n) < twr−1(nO(1))
can be significantly improved if we assume that d or D are small compared to r. In sup-
port of this, Bukh and Matoušek [4] showed that if d = 1, that is, when the vertices of
the hypergraph correspond to points on the real line, then any r-uniform semi-algebraic
hypergraph of complexity (1, D,m) containing no clique or independent set of size n has at
most 22O(n) vertices (in [4], the constant hidden by the O(.) notation might depend on the
defining polynomials, but a careful inspection of their proof yields that it can be bounded
only by a function of D,m and r as well). Also, this bound is the best possible if D and m
are sufficiently large. In this paper, we consider what happens if we bound the parameter
D instead, that is, the degrees of the defining polynomials.

A semi-algebraic hypergraph of complexity (d,D,m) is semi-linear, if D = 1, that
is, all defining polynomials are linear functions2 The study of semi-linear hypergraphs
was initiated by Basit, Chernikov, Starchenko, Tao and Tran [3], who considered these
hypergraphs in the setting of Zarankiewicz’s problem. There are many extensively studied
families of graphs that are semi-linear of bounded complexity, for example intersection
graphs of axis-parallel boxes in Rd, circle graphs, and shift graphs. Motivated by the
large literature (e.g. [2, 5, 8, 13, 17]) concerned with the Ramsey properties of such
families, Tomon [22] studied the Ramsey properties of semi-linear graphs and showed that
Rd,1,m

2 (s, n) ≤ n1+o(1) holds for every fixed s, d andm. This already shows a behavior unique
to semi-linearity, as a construction of Suk and Tomon [20] shows that Rd,2,m

2 (3, n) = Ω(n4/3)

1A Veronese mapping sends (x1, . . . , xd) ∈ Rd to some point whose coordinates are monomials of
x1, . . . , xd. E.g. (x1, x2, x3) 7→ (x2

1x2, x
2
2x

2
3, x1x2x3, x

3
3).

2To clarify, e.g. (x1, x2) 7→ 2x1 + 3x2 + 5 is a linear function, but (x1, x2) 7→ x1x2 + 3x1 + 3 is not
linear, it is only multi-linear.
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for some d and m. Tomon [22] also proposed the problem of determining the Ramsey
numbers of r-uniform semi-linear hypergraphs for r ≥ 3. Our second main result settles
this problem.

Theorem 1.2. For every triple of positive integers r, d,m, there exists c = c(r,m) > 0
such that

Rd,1,m
r (n) ≤ 2cn

4r2m2

.

Let us highlight that the bound in Theorem 1.2 does not depend on the dimension d,
only on the uniformity r and the number of polynomials m. From below, in case r ≥ 3, the
semi-linear Ramsey number grows at least exponentially, showing that Theorem 1.2 is sharp
up to the value of c and the exponent 4r2m2. Indeed, let H be the 3-uniform hypergraph
on vertex set {1, . . . , N} in which for x < y < z, {x, y, z} is an edge if x+ z < 2y. Then H
is semi-linear of complexity (1, 1, 1), and it is easy to show that ω(H), α(H) ≤ dlog2Ne+1.
Thus, R1,1,1

3 (n) ≥ 2Ω(n). We show that even faster growth can be achieved by examining
certain more convoluted constructions of higher uniformity.

Theorem 1.3. For every r ≥ 4, there exists a constant c > 0 such that

R1,1,1
r (n) ≥ 2cn

br/2c−1

.

2 A lower bound for Rt
3(4, n)

In this section, we outline the construction for Theorem 1.1, which builds on a variant of
the famous stepping-up lemma of Erdős and Hajnal (see [16]).

Given distinct α, β ∈ {0, 1}N , let δ(α, β) := min{i : α(i) 6= β(i)}. Let ≺ be the
lexicographical order over {0, 1}N , i.e. α ≺ β ⇔ α(δ(α, β)) < β(δ(α, β)). An important
property of δ(·, ·) is that for any α1 ≺ · · · ≺ α`, there is a unique i which achieves the
minimum of δ(αi, αi+1).

Now we define our notion of the step-up.

Definition 1. The step-up of a graph G is the 3-uniform hypergraph H on vertex set
{0, 1}N defined as follows. For α, β, γ ∈ {0, 1}N with α ≺ β ≺ γ, we have {α, β, γ} ∈ E(H)
if and only if δ(α, β) < δ(β, γ) and {δ(α, β), δ(β, γ)} ∈ E(G).

The next lemma relates the clique and independence numbers of both graphs.

Lemma 2.1. ω(H) ≤ ω(G) + 1 and α(H) ≤ Nα(G) + 1.

By a construction of Suk and Tomon [20], there exists a semi-algebraic graph G
on Θ(m4/3) vertices with ω(G) = 2 and α(G) ≤ 2m for all m ∈ N. The methods
in [6, 9] show that the step-up of G, denoted by H, remains semi-algebraic. Pick m

such that n = Θ((m4/3)2m), i.e. m = Ω(log n/ log log n). Then, |V (H)| = 2Θ(m4/3) =

nΩ((logn)1/3−o(1)), ω(H) = 3, α(H) ≤ |V (G)|2m + 1 < n. This finishes the proof.
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3 Semi-linear hypergraphs

In this section, we outline the proof of Theorem 1.2, i.e. Rd,1,m
r (n) ≤ 2O(n4r2m2

). Let H be
an r-uniform semi-linear hypergraph on vertex set [N ] of complexity (d, 1,m). We observe
that H is the Boolean combination of 2m semi-linear hypergraphs H1, . . . , H2m, where
Hi is defined by a matrix Pi ∈ Rr×N as follows: for 1 ≤ q1 < · · · < qr ≤ N , we have
{q1, . . . , qr} ∈ H if and only if

∑r
i=1 P (i, qi) < 0. Therefore, our goal is to find C ⊆ [N ] of

size (logN)Ωr,m(1) such that for each i ∈ [2m], C is either a clique or an independent set in
Hi. We will find such a C by trimming and transforming our matrices in several steps.

For δ ∈ R, the shift of a sequence x1, . . . , xN by δ is the sequence x1 + δ, . . . , xN + δ.
Given ∆ > 1 and τ ∈ {−,+}×{↘,↗}, a sequence x1, . . . , xN is called (∆, τ)-exponential if
for all i ∈ [N−1], we have 0 < xi < xi+1/∆ in the case τ = (+,↗); 0 < xi+1 < xi/∆ in the
case τ = (+,↘); 0 < (−xi) < (−xi+1/∆) in the case τ = (−,↗); 0 < (−xi+1) < (−xi/∆)
in the case τ = (−,↘). Also, say that a sequence is ∆-exponential if it is (∆, τ)-exponential
for some τ ∈ {−,+} × {↘,↗}.

Lemma 3.1. For every q there exists c = c(q) > 0 such that the following holds. Let
M ∈ Rq×N be a matrix such that no row contains repeated elements. Then M contains a
q ×N ′ sized submatrix for N ′ = c(logN)1/q such that every row of M is 2q-exponential.

Applying Lemma 3.1 to the concatenation of the matrices P` for ` ∈ [2m], we find a
subset I ⊂ [N ] of size N ′ = c(logN)1/2mr (say I ′ = [N ′]) such that for each `, the submatrix
P ′` of P` induced by columns in I is 2r-exponential. Let H ′ be the subgraph of H induced
by I, and H ′i be the subgraph of H ′i induced by I. It is easy to see that every H ′` is defined
by P ′`, and that H ′ is a Boolean combination of H ′1, . . . , H ′2m. Theorem 1.2 is then an easy
consequence of the following key lemma, which guarantees C ⊂ I of size (N ′)Ωr,m(1) such
that for all i ∈ [2m], C is either a clique or an independent set in H ′i.

Lemma 3.2. For every r and k, there exists c = c(r, k) > 0 such that the following holds.
Let P1, . . . , Pk be r × N matrices where all rows are 2r-exponential. Then there exists
C ⊂ [N ] such that |C| ≥ cN

1
rk−k+1 and C is a clique or an independent set in Hi for every

i ∈ [k].

The proof of this lemma builds on the following observation. Using that each row of
P` is (2r)-exponential, whether {q1, . . . , qr} is an edge of H` depends (essentially) on the
maximum of H`(1, q1), . . . , H`(r, qr). Further details are omitted.
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1 Introduction
A strong form of Petersen’s Perfect Matching Theorem [15] states that each edge of a
bridgeless cubic graph G is contained in a perfect matching. The minimum number of
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every bridgeless cubic graph G. After more than 50 years, this conjecture remains widely
open. In fact, very little is known unless the graph in question has a very specific structure,
see for example [1, 4, 5, 9]).

In this paper we investigate perfect-matching covers of bridgeless cubic graphs that are
close to 3-edge-colourable cubic graphs. If a cubic graph G can be 3-edge-coloured, then
obviously π(G) = 3, and π(G) ≥ 4 otherwise. If G cannot be 3-edge-coloured, then any set
{M1,M2,M3} of three perfect matchings of G leaves some edges uncovered. The minimum
number of uncovered edges is the colouring defect of G, denoted by df(G). This concept
was introduced and extensively studied by Steffen et al. in [8, 17]. Together with oddness,
resistance, perfect matching index, and other similar invariants it serves as one of measures
of uncolourability of cubic graphs [2].

Steffen [17] showed that the colouring defect of every non-3-edge-colourable cubic graph
(henceforth just defect, for short) is at least 3. Cubic graphs with defect 3 thus constitute
a class of cubic graphs that is in a certain sense closest to 3-edge-colourable graphs. The
purpose of this paper is to show that Berge’s conjecture holds for this class of cubic graphs
and to characterise the extremal graphs where five perfect matchings are actually necessary.
Our main result reads as follows.

Theorem 1.1. Every bridgeless cubic graph G of defect 3 can have its edges covered with
at most five perfect matchings; that is, 4 ≤ π(G) ≤ 5. If G is 3-connected, then π(G) = 5
if and only if G arises from the Petersen graph by inflating any number of vertices of a
fixed vertex-star (possibly zero) by quasi-bipartite cubic graphs in a correct way.

For cubic graphs with defect 3 this result significantly improves the result of Steffen
[17, Theorem 2.14] which states that every cyclically 4-edge-connected cubic graph with
defect 3 or 4 satisfies Berge’s conjecture.

2 Auxiliary results
The proof of Theorem 1.1 will be executed in several steps and will use a number of tools.
One of key ingredients, applied several times and at various stages of the proof, is the
following theorem which explores 6-edge-cuts in cubic graphs. Given a subgraph H of a
graph G, let δG(H) denote the edge-cut comprising all edges with exactly one end in H.

Theorem 2.1. Let G be a bridgeless cubic graph and let H ⊆ G be a subgraph with
|δG(H)| = 6. Then H has a perfect matching, or else H contains an independent set S of
trivalent vertices such that

(i) the number of components of H − S equals |S|+ 2, and

(ii) every component L of H − S has |δG(L)| = 3.

A bridgeless cubic graph Q will be called quasi-bipartite if it contains an independent
set of vertices U such that the graph obtained by the contraction of each component of
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Q − U to a vertex is a cubic bipartite graph where U is one of the partite sets. Roughly
speaking, a quasi-bipartite cubic graph arises from a bipartite cubic graph by inflating
certain vertices in one of the partite sets to larger subgraphs, while preserving the edges
between the partite sets. The previous theorem thus implies that if we add two new vertices
u and v to H and create a cubic graph H+ from H by attaching the edges of δG(H) to u
and v, then H+ becomes a quasi-bipartite with the independent set U = S ∪ {u, v}.

The second auxiliary result is also related to bipartite graphs. A cubic graph G is said
to be almost bipartite if it is bridgeless, not bipartite, and contains two edges e and f
such that G − {e, f} is a bipartite graph. The edges e and f are the surplus edges of G.
Observe that if a cubic graph G is almost bipartite, then it has a component such that e
connects vertices within one partite set and f connects vertices within the other partite
set. Moreover, it can be shown that G has a perfect matching that contains both surplus
edges. As a consequence, we obtain the following.

Theorem 2.2. Every almost bipartite cubic graph is 3-edge-colourable.

The bipartite index of a graph G is defined to be the smallest number of edges that
must be deleted in order to make the graph bipartite. The previous theorem implies that
every bridgeless cubic graph with bipartite index at most 2 is 3-edge-colourable. On the
other hand, there exist infinitely many snarks whose bipartite index equals 3, for example
the Isaacs flower snarks [6]. In this sense, Theorem 2.2 is best possible.

3 Berge covers for cubic graphs of defect 3
A Berge cover of a cubic graph G is a collection of five perfect matchings that cover all
the edges of G. To find such a cover for a graph of defect 3 we employ a structure created
by three perfect matchings. For a bridgeless cubic graph G we define an optimal 3-array
of perfect matchings to be any set M = {M1,M2,M3} of three perfect matchings such
that the number of edges not covered by M1 ∪M2 ∪M3 equals the defect of G. The core
of M is the subgraph of G induced by the set of all edges that are not simply covered
by M. It is not difficult to see that if df(G) = 3, then the core of M is a chordless
hexagon which alternates the uncovered edges with the doubly covered ones [17]. If G
is the Petersen graph, then any hexagon can be taken as the core of a suitable optimal
3-array. In particular, the defect of the Petersen graph equals 3.

To prove the first statement of Theorem 1.1 we show that every optimal 3-array M
for a cubic graph G with df(G) = 3 extends to a Berge cover. The key step towards the
proof is the next lemma. At the crucial moment of its proof we apply Theorem 2.1 to the
6-edge-cut δG(W ) where W is a suitable path of length 3 lying in the core ofM.

Lemma 3.1. Let G be a bridgeless cubic graph of defect 3 and letM be an optimal 3-array
of perfect matchings of G. Then G has a fourth perfect matching which covers at least two
of the three edges left uncovered byM.

With the help of Lemme 3.1 we can prove the following.
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Theorem 3.2. Every bridgeless cubic graph with defect 3 has a Berge cover.

Proof. Assume that df(G) = 3, and letM be an arbitrary optimal array for G. Let M4 be
a perfect matching guaranteed by Lemma 3.1, which covers at least two of the uncovered
edges. Since G has perfect matching that covers any preassigned edge, we can take a
perfect matching M5 that covers the third uncovered edge. Clearly, M∪ {M4,M5} is a
Berge cover of G.

4 Cyclically 4-edge-connected graphs
Our main result restricted to cyclically 4-edge-connected graphs reads as follows.

Theorem 4.1. Let G be a cyclically 4-edge-connected cubic graph with defect 3. Then
π(G) = 4, unless G is the Petersen graph.

Proof (sketch). We prove that if π(G) ≥ 5, then G is the Petersen graph. Take an optimal
3-array M for G whose core is a 6-cycle C = (v0v1 . . . v5), and set H = G − V (C). If H
had a perfect matching, we could extend it to a perfect matching M4 of the entire G in
such a way thatM∪ {M4} covers all the edges of G, implying that π(G) = 4. Therefore
H has no perfect matching, and we can apply Theorem 2.1 to the edge-cut δG(H). Let
S ⊆ V (H) be the independent set of trivalent vertices stated in Theorem 2.1. Then each
component of H − S is a single vertex, because G is 4-edge-connected. It follows that H
is bipartite, and therefore 3-edge-colourable.

We now investigate the 6-tuples of colours on δG(H) induced by 3-edge-colourings of H,
ordered cyclically around C. It is easy to see that all three colours must always occur,
otherwise the missing colour could be extended to a perfect matching M4 of G, yielding a
contradiction as before. There remain 15 colouring types for δG(H) of which 7 are excluded
because they would enable a 3-edge-colouring of G.

For i ∈ {0, . . . , 5} let ui be the neighbour of vi lying in H. We claim that ui = uj
whenever j ≡ i+3 (mod 6). If ui = uj, then indeed j ≡ i+3 (mod 6), otherwise G would
have a triangle or a quadrilateral intersecting C. The former possibility cannot occur due
to cyclic connectivity. In the latter case, the quadrilateral would share two edges with C,
in which caseM could be modified to a 3-edge-colouring of G, a contradiction. Suppose
that there exist vertices ui and uj such that ui 6= uj and j ≡ i + 3 (mod 6), say u2 6= u5.
Create a cubic graph H] from H as follows: add two new vertices s and t, connect them
between themselves and to {u0, u1, u3, u4}, and finally join u2 to u5. This can be done in
such a way that no 3-edge-colouring of H extends to H], implying that H] is not 3-edge-
colourable. However, H] is almost bipartite, which contradicts Theorem 2.2. Therefore
u0 = u3, u1 = u4, and u2 = u5. It follows that δG(C ∪ {u0, u1, u2}) is a 3-edge-cut, which
must be trivial due to cyclic connectivity. Hence G has 6 + 3 + 1 vertices, and this means
that G is the Petersen graph.
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5 General case of Theorem 1.1
To move away from cyclically 4-edge-connected graphs we modify the classical method of
snark reduction to cubic graphs of defect 3. By a snark we mean a 2-connected cubic graph
that admits no 3-edge-colouring. A snark is nontrivial if it is cyclically 4-edge-connected
with girth at least 5. It is well known that every snark can be transformed to a nontrivial
snark by a sequence of certain simple reductions (like contracting a triangle). Performing
a reduction of a snark G means to identify an edge-cut R in G whose removal leaves a
component H which is not 3-edge-colourable. By adding a small number of vertices or
edges it is possible to extend H to a snark G′, a reduction of G along R.

A reduction of a snark G with defect 3 to a nontrivial snark G′ of defect 3 may not
always be possible. Such a situation occurs, for example, when G contains an essential
triangle, one whose contraction produces a snark with defect greater than 3. It can be
shown that the increase of defect by contracting an essential triangle can be arbitrarily
large. Nevertheless, a snark with defect 3 can have at most one essential triangle, and if
so, then it is the only obstruction to reduction.

Theorem 5.1. Every snark G with df(G) = 3 admits a reduction to a snark G′ with
df(G′) = 3 such that either G′ is nontrivial or G′ arises from a nontrivial snark K with
df(K) ≥ 4 by inflating a vertex to a triangle; the triangle is essential in both G and G′.

The proof of this theorem is quite involved and requires a careful analysis of Fano flows
associated with 3-arrays (for the definition of a Fano flow see [7]).

Reductions can be conveniently handled with the help of two well-known operations.
Let G and H be cubic graphs with distinguished edges e and f , respectively. We define a
2-sum G⊕2H to be a cubic graph obtained by deleting e and f and connecting the 2-valent
vertices of G to those of H. If instead of distinguished edges we have distinguished vertices
u and v of G and H, respectively, we can similarly define a 3-sum G ⊕3 H. Note that
G⊕3 H can be regarded as being obtained from G by inflating the vertex u to H − v.

A cubic graphG containing a cycle-separating 2-edge-cut or 3-edge-cut can be expressed
as G ⊕2 H or G ⊕3 H uniquely, only depending on the chosen edge-cut. It is easy to see
that if two 2-cuts or 3-cuts intersect, the result of decomposition does not depend on the
order in which the cuts are taken. As a consequence, we have the following.

Theorem 5.2. Every 2-connected cubic graph G admits a decomposition into a collection
{G1, . . . , Gm} of cyclically 4-edge-connected cubic graphs such that G can be reconstructed
from them by a repeated application of 2-sums and 3-sums. Moreover, this collection is
unique up to ordering and isomorphism.

The first step in the proof of the general case of Theorem 1.1 is to show that, somewhat
surprisingly, cubic graphs with defect 3 containing an essential triangle behave nicely.

Theorem 5.3. If a cubic graph G with defect 3 has an essential triangle, then π(G) = 4.



Perfect-matching covers of cubic graphs with colouring defect 3 644

Proof (sketch). Let T be an essential triangle of G and let M be an optimal 3-array for
G with hexagonal core C. Let w be the unique neighbour of T not lying on C. First
assume that G/T is cyclically 4-edge-connected. We claim that G has a perfect matching
M4 such that M∪ {M4} covers all the edges of G. If not, we apply Theorem 2.1 to the
6-cut δG(C ∪ T ∪ {w}) and with the help of Theorem 2.2 we derive a contradiction in a
similar manner as in the proof of Theorem 4.1. If G is not cyclically 4-edge-connected, we
contract T to a vertex t and decompose G/T to K1, . . . , Km according to Theorem 5.2.
Exactly one Ki, say K1, contains the vertex t. We inflate t back to T , transforming K1 to a
graph L. Note that C survives the decomposition of G intact, so T is an essential triangle
of L. As L/T is cyclically 4-edge-connected, Theorem 4.1 implies that π(L/T ) = 4 or L/T
is the Petersen graph. In both cases L has a cover with four perfect matchings. By using
2-sums and 3-sums this cover can be extended to a cover of the entire G.

Let G and H be 2-connected cubic graphs where H is quasi-bipartite with independent
set U . We say that a 3-sum G⊕3H is correct if the distinguished vertex of H forms a trivial
component of H − U . Note that the result of a correct 3-sum is again quasi-bipartite.

Theorem 5.4. Let G and H be 2-connected cubic graphs where π(G) ≥ 5 and H is 3-
edge-colourable. Then π(G⊕3 H) ≥ 5 if and only if H is quasi-bipartite and the 3-sum is
correct.

Our intention is to characterise all 2-connected cubic graphs G with df(G) = 3 and
π(G) = 5. If G has a 2-edge-cut, then G can be expressed as G′⊕2H. Since no hexagonal
core can intersect a 2-edge-cut, the core stays within one summand, say G′. We conclude
that df(G′) = 3, π(G′) = 5, and that H is 3-edge-colourable. It follows that it is enough
to characterise 3-connected cubic graphs with df(G) = 3 and π(G) = 5. This is done in
the next theorem, whose proof concludes that of Theorem 1.1.

Theorem 5.5. Let G be a 3-connected cubic graph with df(G) = 3. Then π(G) = 5 if
and only if G arises from the Petersen graph by inflating any number of vertices of a fixed
vertex-star by quasi-bipartite cubic graphs in a correct way.

Proof (sketch). Assume that π(G) = 5. The statement is clearly true if G is cyclically
4-edge-connected, so we may assume that H0 = G can be expressed as a 3-sum H1 ⊕3 H

′
1.

By Theorem 5.3, G has no essential triangle, so every hexagonal core of G survives in one
of the summands, say H1. By Theorem 5.4, π(H1) = 5, H ′

1 is quasi-bipartite, and the
3-sum is correct. We now continue with the decomposition by applying Theorem 5.4 to
H1, and so forth. Eventually, we obtain a collection {G1, . . . , Gm} of cyclically 4-edge-
connected cubic graphs exactly one of which, say G1, is a snark, which has df(G1) = 3 and
π(G2) = 5. By Theorem 4.1, G1 is the Petersen graph. It means that G arises from G1 by
a repeated correct 3-sum with a number of quasi-bipartite graphs. Since a fixed hexagon
C ⊆ G1 must survive the summation as a core, only the four vertices of G−V (C), forming
a vertex-star complementary to C, are eligible as distinguished vertices for 3-sums. Thus
G has the structure which is described in Theorem 1.1. The reverse implication proceeds
along similar lines.
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6 Final remarks
This paper summarises results presented in several papers at various stages of writing. Full
proofs of Theorems 2.1-2.2, Theorem 3.2, and Theorem 4.1 can be found in [12], which is
available on arXiv. Theorem 5.1 and the fact that the contraction of an essential triangle
can increase defect arbitrarily are proved in [13]. The latter result heavily depends on
results proved in [14, Theorems 5.1-5.2]. Finally, Theorems 5.3-5.5 and Theorem 1.1 will
be proved in [11].
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Abstract

Let d ≥ 2 be a positive integer. We show that for a class of notions R of rank
for order-d tensors, which includes in particular the tensor rank, the slice rank and
the partition rank, there exist functions Fd,R and Gd,R such that if an order-d ten-
sor has R-rank at least Gd,R(l) then we can restrict its entries to a product of sets
X1 × · · · ×Xd such that the restriction has R-rank at least l and the sets X1, . . . , Xd

each have size at most Fd,R(l). Furthermore, our proof methods allow us to show
that under a very natural condition we can require the sets X1, . . . , Xd to be pairwise
disjoint.
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The results described below are proved and discussed further in the paper [5].

1 Main results
The last few years have seen a sequence of successes in using notions of ranks for higher-
dimensional tensors to solve combinatorial problems. A central idea from the breakthrough
solution to the cap-set problem by Ellenberg and Gijswijt [2], which was based on a tech-
nique of Croot, Lev, and Pach [1], was reformulated by Tao [11] in terms of the notion of
slice rank for tensors, leading to what is now known as the slice rank polynomial method.
The slice rank was further studied by Sawin and Tao [10], and bounds shown there on
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the slice rank involving orderings on the coordinates were later used by Sauermann [9] to
prove under suitable conditions the existence of solutions with pairwise distinct variables
to systems of equations in subsets of Fnp that are not exponentially sparse. Another fruitful
generalisation of the idea underlying the slice rank has been the partition rank, which was
defined by Naslund [8] in order to prove a polynomial upper bound on the size of subsets
of Fnpr not containing any k-right corners (with p a prime integer and r ≥ 1 a positive
integer) and very recently used again by Naslund [7] to prove exponential lower bounds on
the chromatic number of Rn with multiple forbidden distances.

We will focus on high-rank subtensors of tensors: it is a standard fact from linear
algebra that if A is a matrix of rank k then A has a k × k submatrix with rank k, and we
will study here the extent to which this statement can be generalised to notions of rank for
higher-order tensors, in particular to the tensor rank, to the slice rank and to the partition
rank. The results that we obtain in this direction as well as the methods that we use in
their proofs will also allow us to prove that under a very natural assumption we can find a
subtensor such that the coordinates take values in pairwise disjoint sets. As we explain in
a few paragraphs, the formulation of this second result also arises naturally as an analogue
of the standard inequality that every oriented graph has a bipartition such that at least a
quarter of the edges go from the first part to the second.

We now define the relevant notions of higher-dimensional ranks for tensors and state
our main theorems.

Definition 1. Let d ≥ 2 be a positive integer and let F be a field. An order-d tensor over
F is a function T : Q1 × · · · ×Qd → F for some finite subsets Q1, . . . , Qd of N.

Throughout we shall use the following notation. We write F for an arbitrary field, and
all our statements will hold uniformly in F. If d ≥ 2 is a positive integer, then Q1, . . . , Qd

will always stand for finite subsets of N. Given an order-d tensor T : Q1 × · · · × Qd → F
and subsets X1 ⊂ Q1, . . . , Xd ⊂ Qd, we shall write T (X1 × · · · × Xd) for the restriction
X1 × · · · ×Xd → F of T . For each positive integer n we write [n] for the set {1, 2, . . . , n}.
Given x ∈ Q1× · · · ×Qd, and I ⊂ [d], we write x(I) for the restriction (xα : α ∈ I) of x to
its coordinates in I.

Definition 2. Let d ≥ 2 be a positive integer, and let T be an order-d tensor. We say that
T has tensor rank at most 1 if there exist functions aα : Qα → F for each α ∈ [d] such that

T (x1, . . . , xd) = a1(x1) . . . ad(xd)

for every (x1, . . . , xd) ∈ Q1 × · · · ×Qd.
We say that T has slice rank at most 1 if there exist α ∈ [d] and functions a : Qα → F

and b :
∏

α′∈[d],α′ 6=αQα′ → F such that we can write

T (x1, . . . , xd) = a(xα)b(x1, . . . , xα−1, xα+1, . . . , xd)

for every (x1, . . . , xd) ∈ Q1 × · · · ×Qd.
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We say that T has partition rank at most 1 if there exist a bipartition {I, J} of [d] with
I, J both non-empty and functions a :

∏
α∈I Qα → F and b :

∏
α∈J Qα → F such that we

can write
T (x1, . . . , xd) = a(x(I))b(x(J))

for every (x1, . . . , xd) ∈ Q1 × · · · ×Qd.
We say that the tensor rank (resp. slice rank, resp. partition rank) of T is the smallest

nonnegative integer k such that there exist tensors T1, . . . , Tk each of tensor rank at most 1
(resp. slice rank at most 1, resp. partition rank at most 1) and such that T = T1+ · · ·+Tk.
We denote by trT the tensor rank of T , by srT the slice rank of T , and by prT the partition
rank of T .

We will begin by showing the fact that every matrix of rank k has a k × k subtensor
with rank k generalises in the best way one could hope for to the tensor rank for all d ≥ 2:
every order-d tensor T with tensor rank k has a k × k × · · · × k (d times) subtensor with
tensor rank k. However, that becomes false for the order-3 slice rank: we thank Timothy
Gowers for constructing a counterexample. It will nonetheless be true that if an order-3
tensor is such that all its subtensors with size at most 48l3 have slice rank at most l then
the whole tensor has slice rank at most 51l3. Finally we will show that such an asymptotic
subtensors property holds for the slice and partition rank for all d ≥ 2 as well as for a more
general class of notions of rank which we now define before stating this asymptotic result.

Definition 3. Let d ≥ 2 be a positive integer, and let R be a non-empty family of partitions
of [d]. We say that an order-d tensor T has R-rank at most 1 if there exist a partition
P ∈ R and for each I ∈ P a function aI :

∏
α∈I Qα → F such that we can write

T (x1, . . . , xd) =
∏
I∈P

aI(x(I))

for every (x1, . . . , xd) ∈ Q1 × · · · × Qd. We say that the R-rank of T is the smallest
nonnegative integer k such that there exist order-d tensors T1, . . . , Tk with R-rank at most
1 such that T = T1 + · · ·+ Tk.

We will denote by RrkT the R-rank of T . We can check that for every d ≥ 2, the
R-rank specialises to the tensor rank, to the slice rank, and to the partition rank.

We are now in a position to state our first main theorem.

Theorem 4. Let d ≥ 2 be a positive integer, and let R be a non-empty family of partitions
of [d]. There exist functions Fd,R : N → N and Gd,R : N → N such that if T is an order-d
tensor with RrkT ≥ Gd,R(l) then there exist X1 ⊂ Q1, . . . , Xd ⊂ Qd each with size at most
Fd,R(l) such that RrkT (X1 × · · · ×Xd) ≥ l.

Another independent starting point is the following standard statement.

Proposition 5. Let G be an oriented graph with vertex set V . There exists an ordered
bipartition (X, Y ) of V such that the number of edges (u, v) ∈ X × Y of G is at least a
quarter of the total number of edges of G.
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This statement can be seen to be equivalent to the following: given a matrix A :
[n] × [n] → F there exist disjoint subsets X, Y of [n] such that the restriction A(X × Y )
has at least a quarter as many support elements as A has outside the diagonal. A first
step will be to obtain an analogue of this statement for ranks of matrices. We thank Lisa
Sauermann for a sketch that led to the proof of that statement. We will then generalise
this analogue to higher-order tensors. We note that Proposition 5 and its generalisation to
uniform hypergraphs will themselves be involved in the proof of the general higher-order
tensor case.

Let E be the set of points (x1, . . . , xd) ∈ Q1×· · ·×Qd that do not have pairwise distinct
coordinates. The following definition will be central to our second main result.

Definition 6. Let d ≥ 2 be a positive integer, let R be a non-empty family of partitions of
[d]. For T : Q1 × · · · ×Qd → F an order-d tensor we define the essential R-rank

eRrkT = min
V

Rrk(T + V )

where the minimum is taken over all order-d tensors V : Q1 × · · · ×Qd → F with support
contained inside E, and the disjoint R-rank

dRrkT = max
X1,...,Xd

Rrk(T (X1 × · · · ×Xd))

where the maximum is taken over all X1 ⊂ Q1, . . . , Xd ⊂ Qd with X1, . . . , Xd pairwise
disjoint.

It seems worthwhile to compare the essential R-rank with the disjoint R-rank, as it is
straightforward to show that a tensor has essential R-rank equal to 0 if and only if it has
disjoint R-rank equal to 0: the corresponding tensors are the tensors supported inside E.
Moreover, we can show that the disjoint R-rank is at most the essential R-rank.

Lemma 7. Let d ≥ 2 be a positive integer, and let R be a non-empty family of partitions
of [d]. For every order d tensor T : Q1 × · · · ×Qd → F we have

dRrkT ≤ eRrkT.

Our second main result is a weak converse to this last inequality.

Theorem 8. Let d ≥ 2 be a positive integer, and let R be a non-empty family of partitions
of [d]. There exists a function G′d,R : N→ N such that if T is an order-d tensor such that
eRrkT ≥ G′d,R(l) then we have dRrkT ≥ l.

Theorem 8 is also an essential ingredient to the proof of the main result of the paper
[3], where in joint work with Timothy Gowers we generalise a theorem of Green and Tao
([4], Theorem 1.7) on the approximate equidistribution of polynomials with high rank over
finite prime fields to the case where the variables are chosen (uniformly and independently)
at random in an arbitrary non-empty subset of the field rather than in the whole field.
However, we will not focus on this application.

The methods involved in our proofs of Theorem 4 and of Theorem 8 are similar in
several ways: those that we will use to prove the latter can be viewed as a moderate
complication of those that we will use to prove the former.
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2 Proof example
As a simple representative example of our proof techniques, let us explain how we show
Theorem 4 in the case of the order-3 slice rank, assuming that it is already proved in the
case of the order-3 tensor rank. We begin by proving a lemma showing that having a large
separated set of slices guarantees a high slice rank. For T : Q1×Q2×Q3 → F and x ∈ Q1

we write Tx : Q2 × Q3 → F for the matrix defined by Tx(y, z) = T (x, y, z), and similarly
define the notations Ty and Tz.

Lemma 9. Let T : Q1 × Q2 × Q3 → F be an order-3 tensor, and l ≥ 1 be an integer. If
there exist x1 . . . , xl ∈ Q1 such that

rk(
l∑

i=1

aiTxi) ≥ l

for every (a1, . . . , al) ∈ Fl \ {0}, then srT ≥ l.

We next show a partial converse to the inequality srT ≤ trT which holds in the
situation where all slices of T of all three kinds have bounded rank.

Lemma 10. Let T : Q1 × Q2 × Q3 → F be an order-3 tensor. Let m ≥ 1 be a positive
integer. Assume that for all x ∈ Q1, y ∈ Q2, z ∈ Q3 we have rkTx, rkTy, rkTz ≤ m. Then
trT ≤ m(srT )2.

We are now ready to finish the proof.

Proposition 11. Let T : Q1 × Q2 × Q3 → F be an order-3 tensor, and let l ≥ 1 be a
positive integer. If srT ≥ 51l3 then there exist X ⊂ Q1, Y ⊂ Q2, Z ⊂ Q3 with size at most
48l3 such that srT (X × Y × Z) ≥ l.

Let T : Q1×Q2×Q3 → F be an order-3 tensor. If T satisfies the assumption of Lemma
9 then we can conclude using a multidimensional version of the standard statement on
submatrices. If T satisfies the assumption of Lemma 10 then we conclude by reducing
to the tensor rank. Furthermore, these two lemmas can be viewed to some extent as
representing two extreme cases, to which we can always reduce: if T is an order-3 tensor
with high slice rank but which is not in the first situation, then we can always decompose
it as a sum S + U where S has bounded slice rank and U is in the second situation, a
decomposition which hence allows us to prove Proposition 11 for all order-3 tensors.

References
[1] E. Croot, V. Lev and P. Pach, Progression-free sets in Zn4 are exponentially small, Ann

of Math. 185 (2017), 331-337.

[2] J. Ellenberg and D. Gijswijt, On large subsets of Fnq with no three-term arithmetic
progression Ann of Math. 185 (2017), 339-343.



High-rank subtensors of high-rank tensors 652

[3] W. T. Gowers and T. Karam, Equidistribution of high rank polynomials with variables
restricted to subsets of Fp, arXiv:2209.04932 (2022).

[4] B. Green and T. Tao, The distribution of polynomials over finite fields, with applications
to the Gowers norms. Contrib. Discrete Math. 4 (2009), no. 2, 1-36.

[5] T. Karam, High-rank subtensors of high-rank tensors, arXiv:2207.08030v2 (2022).

[6] S. Lovett, The analytic rank of tensors and its applications, Discrete Anal. 7 (2019),
1-10.

[7] E. Naslund, The Chromatic Number of Rn with Multiple Forbidden Distances,
arxiv:2205.12312 (2022).

[8] E. Naslund, The partition rank of a tensor and k-right corners in Fnq , Jour. Combin.
Th, A 174 (2020), 105190.

[9] L. Sauermann, Finding solutions with distinct variables to systems of linear equations
over Fp, Math. Ann. (2022).

[10] W. Sawin and T. Tao, Notes on the “slice rank" of tensors,
https://terrytao.wordpress.com/2016/08/24/notes-on-the-slice-rank-of-tensors.

[11] T. Tao, A symmetric formulation of the Croot-Lev-Pach-Ellenberg-Gijswijt
capset bound, https://terrytao.wordpress.com/2016/05/18/a-symmetric-formulation-
of-the-croot-lev-pach-ellenberg-gijswijt-capset-bound.



Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications
EUROCOMB’23

Prague, August 28 - September 1, 2023

Rainbow spanning trees in uniformly
coloured perturbed graphs

(Extended abstract)

Kyriakos Katsamaktsis∗ Shoham Letzter† Amedeo Sgueglia‡

Abstract

We consider the problem of finding a copy of a rainbow spanning bounded-degree
tree in the uniformly edge-coloured randomly perturbed graph.

Let G0 be an n-vertex graph with minimum degree at least δn, and let T be
a tree on n vertices with maximum degree at most d, where δ ∈ (0, 1) and d ≥ 2
are constants. We show that there exists C = C(δ, d) > 0 such that, with high
probability, if the edges of the union G0 ∪ G(n,C/n) are uniformly coloured with
colours in [n− 1], then there is a rainbow copy of T .

Our result resolves in a strong form a conjecture of Aigner-Horev, Hefetz and
Lahiri.
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1 Introduction
Given δ ∈ (0, 1), we define Gδ,n to be the family of graphs on [n] with minimum degree at
least δn, and we let G(n, p) be the binomial random graph on [n] with edge probability
p. One of the central themes in extremal combinatorics is understanding how large δ
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needs to be so that, for each G ∈ Gδ,n, G contains a copy of a given graph. Similarly,
probabilistic combinatorics aims to determine how large p needs to be for a given graph
to appear in G(n, p) with high probability1. As an interpolation between the two graph
models, Bohman Frieze, and Martin [4] introduced the perturbed graph model. For a given
δ ∈ (0, 1), this is defined as G0 ∪G(n, p) where G0 ∈ Gδ,n, i.e. as the n-vertex graph on [n]
whose edge set is the union of the edges of G0 and the edges of G(n, p). Since [4], there
has been a sizeable body of research extending and adapting results from the extremal and
the probabilistic to the perturbed setting.

Another flourishing trend is to investigate the emergence of rainbow structures in uni-
formly edge-coloured graphs. Given an edge-coloured graph G, a subgraph H of G is
rainbow if each edge of H has a distinct colour. A graph G is uniformly coloured in a
set of colours C if each edge of G gets a colour independently and uniformly at random
from C. For example, for G = G(n, ω(1)/n) uniformly coloured in C = [n], Aigner-Horev,
Hefetz and Lahiri [1] showed that with high probability G admits a rainbow copy of any
fixed almost-spanning bounded-degree tree. Other instances of similar problems in random
graphs can be found in [3, 5–7]. Here we consider rainbow spanning bounded-degree trees
in uniformly coloured perturbed graphs.

Theorem 1.1. Let δ ∈ (0, 1) and let d ≥ 2 be a positive integer. Then there exists C > 0
such that the following holds. Let G0 be a graph on n vertices with minimum degree at
least δn. Suppose that T is a tree on n vertices with maximum degree at most d, and
that G ∼ G0 ∪G(n,C/n) is uniformly coloured in [n− 1]. Then, with high probability, G
contains a rainbow copy of T .

Theorem 1.1 provides a rainbow variant of a result of Krivelevich, Kwan and Su-
dakov [12], who showed that, under the same assumptions, with high probability, G0 ∪
G(n,C/n) contains a copy of T .

Aigner-Horev, Hefetz and Lahiri [1] already considered the question of embedding rain-
bow spanning trees in uniformly coloured perturbed graphs, and they proved that the
same conclusion holds when the edges are uniformly coloured with (1 + ε)n colours (for an
arbitrary constant ε) and C/n is replaced by ω(1)/n. Moreover, Theorem 1.1 proves in a
strong form Conjecture 1.4 of [1].

In the next section, Section 2, we consider the problem of finding rainbow almost-
spanning bounded-degree trees in uniformly coloured random graphs. In Section 3, we
sketch how to prove our main result.

2 Almost-spanning rainbow trees in random graphs
The first ingredient in our proof is Theorem 2.1, which says that we can embed almost-
spanning trees with bounded degree in a rainbow fashion in random subgraphs of uniformly
coloured pseudorandom graphs. The reason we need to consider random subgraphs of

1 Formally, we say that a sequence of events (An)n∈N holds with high probability if P[An]→ 1 as n→∞.
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pseudorandom graphs, as opposed to standard random graphs, is explained in Section 3.1.
We do not define what we mean by pseudorandom here.

For p ∈ [0, 1], the p-random subgraph of a graph G, denoted by Gp, is the random graph
resulting from sampling each edge of G independently with probability p.

Theorem 2.1. Let ε ∈ (0, 1) and let d ≥ 2 be a positive integer. Then there exists C > 0
such that the following holds. Let T be a tree on (1 − ε)n vertices, with maximum degree
d, let G be a pseudorandom graph on n vertices, and write p = C/n. Suppose that Gp is
coloured uniformly in [n]. Then, with high probability, Gp contains a rainbow copy of T .

Theorem 2.1 resolves Conjecture 1.2 of [1].
The proof of Theorem 2.1 uses two previous results. The first, due to Alon, Krivelevich

and Sudakov [2, Thm. 1.4], says that sparse expander graphs contain a copy of every
almost-spanning bounded-degree tree. Because with p ≥ C/n, for a large constant C > 0,
in the p-random subgraph of a pseudorandom graph sufficiently large subsets of vertices
expand, this result from [2] implies the uncoloured version of Theorem 2.1.

The second result we use is a simple consequence of a general result of Ferber and
Krivelevich [6, Thm. 1.2] for binomial random subgraphs of uniformly edge-coloured hy-
pergraphs. This allows us to deduce Theorem 2.1 from its uncoloured version.

Theorem 2.2 (Consequence of [6, Thm. 1.2]). Let ε, p, q ∈ (0, 1) satisfy q = ε−1p. Suppose
that H is a collection of subgraphs of Kn with at most (1− ε)n edges. Then

P
[
G(n, p) contains

some H ∈ H

]
≤ P

[
a uniformly edge-coloured G(n, q),

with colours in [n], contains a rainbow H ∈ H

]
.

3 Rainbow spanning trees in randomly perturbed graphs
Let G ∼ G0 ∪G(n,C/n) and suppose G is uniformly coloured in [n − 1]. Let T be the
spanning tree of maximum degree at most d that we wish to embed in a rainbow fashion
in G. Our proof splits into two cases, according to the structure of the tree T : when T has
Ω(n) leaves; and when T has Ω(n) disjoint, not-too-short bare paths (where a bare path
is a path whose interior vertices have degree 2 in T ). An observation of Krivelevich [11]
shows that each tree falls into at least one of these categories.

3.1 Embedding trees with long bare paths

Suppose that T has Ω(n) not-too-short disjoint bare paths. Consider r such paths of length
` (where r = Ω(n) and ` is a constant which is not too small), and denote the ends of
the i-th path by xi, yi. Let F be the forest resulting from removing the interior vertices of
these bare paths from T .

We will use Theorem 2.1 to embed F in G 2. However, in order to be able to turn this
into a rainbow embedding of T (by embedding a rainbow collection of r paths of length `,

2Observe this still follows from Theorem 2.1 despite F being a forest. In fact we can find a rainbow
embedding of the almost spanning tree which consists of F and the edges xiyi.
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with the i-th path having endpoints xi, yi), we first prepare an absorbing structure, which is
an adaptation of such a structure of Montgomery [13]. The building block of our absorber
is given by the so-called (v, c)-gadget. These have been introduced by Gould, Kelly, Kühn
and Osthus [8] in the context of random optimal proper colourings of the complete graph,
and have already been used for perturbed graphs by the first two authors [9].

Given a vertex v and a colour c, a (v, c)-gadget Av,c is a graph on 11 vertices with the
following property (the notation refers to Figure 1). Av,c contains two rainbow paths P
and P ′ with the same end points, such that P uses all vertices in Av,c and has a c-coloured
edge, and P ′ uses all vertices apart from v and all colours of P except for c.

P1 P2v

u

u′

c

x y

zw

Figure 1: The (v, c)-gadget Av,c, where the paths P1 and P2 have length three and are
rainbow (with colours distinct from those already appearing). The path P (resp. P ′) is
uvu′P1wxP2zy (resp. uu′P1wzP2xy).

3.2 Embedding trees with many leaves

Suppose now that T has Ω(n) leaves. Roughly speaking, here is what we do. We first
remove a constant proportion of the leaves, one leaf per parent, and embed the resulting
almost-spanning tree in a rainbow fashion in G using Theorem 2.1. Completing this to
a rainbow embedding of T amounts to finding a rainbow perfect matching between the
removed leaves and their parents (since we removed one leaf for each parent), using all re-
maining colours. With some work, this follows from a forthcoming result of the authors [10],
which in turn is an adaptation of a recent preprint of the first two authors [9].

Let L be a maximal collection of leaves with distinct parents. By the maximum degree
assumption, |L| = Ω(n). Let L′ be the collection of parents of the leaves in L, so |L| = |L′|.
Let T ′ = T \L. Let G1 ∼ G(n,C/n) and colour G1 uniformly in [n− 1]. By Theorem 2.1,
with high probability, we can find a rainbow embedding of T ′ in G1

3. Then, observe that
the image of L′ in V under the embedding, and the complement of V (T ′) in the embedding,
are distributed uniformly at random among all disjoint subsets of V of size |L′|.

3 Theorem 2.1 applies when the number of vertices equals the number of colours, so formally it applies
on a subgraph of G1 on n − 1 vertices, which will be a binomial random graph with edge probability
C ′/(n− 1).
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Draw a new copy of the random graph G2 ∼ G(n,C/n). For each edge e ∈ E(G0) ∪
E(G2), reveal whether its colour lies in C(T ′), the set of colours in the rainbow embedding
of T ′. Let G′0 be the subgraph of G0 consisting of the edges which are disjoint from E(G1)
and have colours in C ′ := [n − 1] \ C(T ′). Then, from Chernoff’s bound, it follows that
G′0[L,L

′] has minimum degree Ω(n). Let G′2 be the subgraph of G2 whose edges are
coloured in C ′. Then G′2 is a copy of the random graph G(n,C ′/n), coloured uniformly
in C ′, for an appropriate (but still large) constant C ′.4 Let H = (G′0 ∪G′2)[L,L

′]. So H
is a balanced bipartite graph, with bipartition {L,L′}, each of whose edges is coloured
uniformly in C ′, a set of size |L|. It suffices to show that, with high probability, H has a
rainbow perfect matching.

We now show that this reduces to finding a rainbow directed Hamilton cycle in a
uniformly coloured directed perturbed graph. This can be proved as follows. Pick an
arbitrary bijection π : L′ → L and let D be the edge-coloured digraph on vertex set L with
the following edges: for each xy ∈ E(H), with x ∈ L and y ∈ L′, add the directed edge
xπ(y) and colour it by the colour of xy in H. It is straightforward to check that, if D has a
rainbow directed Hamilton cycle, then H has a rainbow perfect matching. Indeed, suppose
x1, . . . , x|L| is a rainbow Hamilton cycle in D. Then x1π−1(x2), x2π−1(x3), . . . , x|L|π−1(x1)
is a rainbow perfect matching in H.

It is also easy to check that D is distributed according to the directed perturbed model:
this is the union of a digraph with linear minimum in- and out-degree, and D(n, p), the
random directed graph, where each ordered pair of distinct vertices is an edge with prob-
ability p, independently. Moreover, D is uniformly coloured in C ′. The proof thus follows
from the next theorem.

Theorem 3.1 ( [10]). Let δ ∈ (0, 1). Then there exists C > 0 such that the following holds.
Let D0 be a directed graph on vertex set [n] with minimum in- and out-degree at least δn,
and let D ∼ D0 ∪D(n,C/n) be uniformly coloured in [n]. Then, with high probability, D
has a rainbow directed Hamilton cycle.
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Abstract

For every sufficiently well-behaved function g : R≥0 → R≥0 that grows at least
linearly and at most exponentially we construct a tree T of uniform volume growth
g, that is,

C1 · g(r/4) ≤ |BG(v, r)| ≤ C2 · g(4r), for all r ≥ 0 and v ∈ V (T ),

with C1, C2 > 0 and where BG(v, r) denotes the ball of radius r centered at a vertex
v. In particular, this yields examples of trees of uniform intermediate (i.e., super-
polynomial and sub-exponential) volume growth.

We use this construction to provide first examples of unimodular random rooted
trees of uniform intermediate growth, answering a question by Itai Benjamini. We
find a peculiar change in structural properties for these trees at growth rlog log r.

Our results can be applied to obtain triangulations of R2 with varied growth be-
haviours and a Riemannian metric on R2 for the same wide range of growth behaviors.
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1 Introduction
For a graphG, a vertex v ∈ V (G) and r ≥ 0, the set BG(v, r) := {w ∈ V (G) | dG(v, w) ≤ r}
is the ball of radius r around v. The growth of these balls as r increases is the growth
behavior or volume growth of G at the vertex v. The two extreme cases of growth are the
regular trees (of exponential growth) and the lattice graphs (of polynomial growth).
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It is an ongoing endeavor to map the growth behaviors in various graph classes, the
most famous example being Cayley graphs of finitely generated groups (see e.g. [8]). Major
results in this regard are the existence of Cayley graphs of intermediate growth (that is,
super-polynomial but sub-exponential) [7], and the proof that vertex-transitive graphs only
have polynomial growth for integer exponents [11, Theorem 2].

Vertex-transitive graphs have the same growth at every vertex. In other graph classes
this must be imposed more explicitly: following [5], a graph G is of uniform growth
g : R≥0 → R≥0 if there are constants c1, C1, c2, C2 ∈ R>0 so that

C1 · g(c1r) ≤ |BG(v, r)| ≤ C2 · g(c2r) for all r ≥ 0 and v ∈ V (G). (1.1)

In this article we construct trees for a wide range of growth behaviors, including inter-
mediate and polynomial with non-integer exponents. The question of uniform intermediate
growth for trees was initially posed by Itai Benjamini (private communication) in the con-
text of unimodular random trees. However, even the existence of deterministic trees of
such growth was unknown at that time.

We firstly verify the existence in the deterministic case for various growth behaviors.
We then demonstrate that our construction extends to unimodular random rooted trees
with the same wide range of growth behaviors, answering Benjamini’s question in the
positive. Finally, we probe the structure of these unimodular trees and find a threshold
phenomenon happening at growth roughly rlog log r. As an application, in Section 4.1 we
obtain triangulations of the plane, as well as Riemannian metrics on R2, both with the
same wide range of growth behaviors.

Our work follows a history of studies on the growth rate of graphs, and particular-
ly of trees. The first (unimodular) trees of uniform polynomial growth were constructed
by Benjamini and Schramm [6]. Special attention to exponential growth for trees was
given by Timár [10], focusing on the existence of a well-defined exponential rate. Recent
advancement in this regard was made by Abert, Fraczyk and Hayes [1]. Intermediate but
not necessarily uniform growth in trees has been studied by Amir and Yang [3] as well as
the references given therein.

1.1 Motivation

The interest in such trees originates in the observation, made by physicists, that planar
triangulations can have non-quadratic uniform growth [2, 4]. In their landmark paper [6]
Benjamini and Schramm explained this curious phenomenon by constructing trees of every
polynomial growth and then demonstrating how any tree of a particular growth can be
turned into such a triangulation with a similar growth:

Construction 1.1. Suppose T is a tree of maximum degree ∆̄. Fix a triangulated sphere
with at least ∆̄ pairwise disjoint triangles. Take copies of this sphere, one for each vertex
of T , and identify two spheres along a triangle when the associated vertices are adjacent in
T . This yields a planar triangulation. If T is of uniform growth g, so is this triangulation.
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As we explain at the concluding remarks, our trees can be similarly adapted to produce
triangulations of the plane.

1.2 Main results

We show the existence of deterministic and unimodular random rooted trees with growth
g : R≥0 → R≥0 for various functions between polynomial and exponential growth:

Theorem 1. If g : R≥0 → R≥0 is super-additive and (eventually) log-concave, then there
exists a deterministic tree T of uniform growth g.

Theorem 2. If g : R≥0 → R≥0 is super-additive and (eventually) log-concave, then there
exists a unimodular random rooted tree (T , ω) of uniform growth g.

Super-additivity and log-concavity formalize the constraints on prescribed growth to
be “at least linear” and “at most exponential” and prevent certain pathologies, such as
unbounded degree or too strong oscillations in the growth behavior. Concretely, a function
g is super-additive if g(x+y) ≥ g(x)+g(y) for every x, y in its domain, and it is log-concave
if g(tx+ (1− t)y) ≥ g(x)tg(y)1−t for every x, y in its domain and every t ∈ (0, 1).

We also prove a structure theorem (Theorem 3) that describes the structure of our
unimodular trees depending on the prescribed growth rate. We show that the growth rate
rlog log r acts as a threshold, with “faster-growing” trees being apocentric (not unlike the
classical canopy tree) and “slower-growing” trees being balanced (with a precise definition
of these terms in Construction 2.3). In both cases, the trees are a.s. 1-ended for most
prescribed growths.

2 The construction

For each integer sequence δ1, δ2, δ3, ... ∈ N with δn ≥ 1 we construct a tree T = T (δ1, δ2, ...).
The choice of sequence will determine the growth rate of T .

Construction 2.1. The trees Tn are defined recursively. In each tree we distinguish
two special types of vertices: a center, and the apocentric vertices. Both will be defined
alongside the trees:

(i) T0 is a single vertex, which is the center of T0 and an apocentric vertex.

(ii) Tn is built from δn + 1 disjoint copies τ0, τ1, ..., τδn of Tn−1 that we join into a tree by
adding the following edges: for each i ∈ {1, ..., δn} add an edge between the center
of τi and some apocentric vertex of τ0.

There is a choice in selecting these apocentric vertices of τ0 (and we can choose the
same apocentric vertex more than once), but we require that these adjacencies be
distributed in a uniform way among the apocentric vertices of τ0.

The center of Tn is that of τ0; the apocentric vertices of Tn are those of τ1, ..., τδn .
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Figure 1: The first four trees T0, ..., T3 defined by δn := n+ 2. The ringed vertex is the center,
and the white vertices are the apocentric vertices in the respective tree. The highlighted subgraph
is the central copy τ0 in Tn. The dashed lines are the new edges connecting the copies to form a
single tree.

Observation 2.2.

(i) Tn has exactly (δ1 + 1) · · · (δn + 1) vertices;

(ii) Tn has exactly δ1 · · · δn apocentric vertices, all of which are leaves of the tree;

(iii) the distance from the center of Tn to any of its apocentric vertices is 2n − 1.

Construction 2.3. For each n ≥ 1 identify Tn with one of its copies τ0, τ1, ..., τδn+1 in
Tn+1. In this way we obtain an inclusion chain T0 ⊂ T1 ⊂ T2 ⊂ · · · and the union
T = T (δ1, δ2, ...) :=

⋃
n≥0 Tn is an infinite tree.

For later use we distinguish three natural types of limits:

• the centric limit always identifies Tn with the “central copy” τ0 in Tn+1. This limit
comes with a designated vertex x∗ ∈ V (T0) ⊂ V (T ), the global center.

• apocentric limits always identify Tn with an “apocentric copy” τi in Tn+1.

• balanced limits make infinitely many central and apocentric identifications.

We show that for a suitable sequence δ1, δ2, δ3, ... ∈ N and independently of the type
of the limit, the tree T has a uniform volume growth, and that with a deliberate choice
of the sequence we can model a wide range of growth behaviors, including polynomial,
intermediate and exponential. This proves Theorem 1.

The following example computation gives an idea of the connection between the se-
quence δ1, δ2, δ3, ... ∈ N and the growth of T . Let T be the centric limit with global center
x∗ ∈ V (T ). By Observation 2.2 (iii) the ball of radius r = 2n − 1 in T , centered at x∗, is
exactly Tn ⊂ T . By Observation 2.2 (i) it follows that

|BT (x∗, r)| = |Tn| = (δ1 + 1) · · · (δn + 1). (2.1)
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So, if we aim for BT (x∗, r) ≈ g(r) with a given growth function g : R0 → R0, then (2.1)
suggests to use a sequence δ1, δ2, δ3, ... ∈ N for which (δ1 + 1) · · · (δn + 1) approximates
g(2n − 1). It turns out to be more convenient to approximate g(2n), so

δn + 1 ≈ g(2n)

g(2n−1)
, (2.2)

where we introduce an error when rounding the right side to an integer.
To establish uniform growth with a prescribed growth rate g it remains to prove:

• the error introduced by rounding the right side of (2.2) is manageable;

• an estimation close to (2.1) holds for radii r that are not of the form 2n − 1;

• an estimation close to (2.1) holds for general limit trees and around vertices other
than a designated “global center”.

We address each of these points in our paper for g super-additive and log-concave.
We close with three examples demonstrating the versatility of Construction 2.3.

Figure 2: T (3, 3, ...) embedded in the square of the 2D lattice.

Example 2.4 (Polynomial growth). If we aim for polynomial growth g(r) = rα, α ∈ N
then the heuristics (2.2) suggests to use a constant sequence δn := 2α − 1.

The corresponding trees Tn embed in the α-th powerof the α-dimensional lattice.
More generally, for any constant sequence δn := c we expect to find polynomial volume

growth, potentially with a non-integer exponent log(c+ 1).

Example 2.5 (Exponential growth). For δn := d2
n−1
, d ∈ N the centric limit T is the d-ary

tree,
of exponential volume growth. Using (2.1) for r = 2n we find

|BT (x∗, r − 1)| = (δ1 + 1) · · · (δn + 1) =
n∏
k=1

(
d2

k−1

+ 1
)

=
2n−1∑
i=0

di =
d2

n − 1

d− 1
=
dr − 1

d− 1
.
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...

Figure 3: The binary tree constructed from Construction 2.1 using the sequence δn = 22
n−1 .

Extrapolating from Example 2.4 and Example 2.5, it seems reasonable that unbounded
sequences δ1, δ2, δ3, ... with a growth sufficiently below doubly exponential result in inter-
mediate volume growth.

Example 2.6 (Intermediate growth). For δn := (n+ 3)α − 1, α ∈ N we can compute this
explicitly (see Figure 1 for the case α = 1). If T is the centric limit with global center
x∗ ∈ V (T ) and r = 2n, then:

|BT (x∗, r − 1)| = (δ1 + 1) · · · (δn + 1) = (1
6
(n+ 3)!)α ∼ (n!n3)α ∼ (nne−nn7/2)α

= rα log log rr−α/ ln 2 (log r)7α/2

Indeed, by Theorem 1, this choice of sequence leads to a tree of uniform intermediate
volume growth. Trees constructed from δn ∼ nα present an interesting boundary case in
Section 3 when we discuss unimodular random trees (see also Theorem 3).

3 Passing to unimodular random trees
A rooted graph is a pair of the form (G, o), where G is a graph and o ∈ V (G) is “a root”. For
a definition of random rooted graphs we follow [6]: firstly, there is a natural topology on
the set of rooted graphs – the local topology – induced by the metric

dist
(
(G, o), (G′, o′)

)
:= 2−R if BG(o, r) ∼= BG′(o

′, r) for all 0 ≤ r ≤ R

and BG(o,R + 1) � BG′(o
′, R + 1),

where it is understood that BG(o, r) is rooted at o and that isomorphisms between
rooted graphs preserve roots.

A random rooted graph (G, o) is a Borel probability measure (for the local topology) on
the set of locally finite, connected rooted graphs. We call (G, o) finite if the set of infinite
rooted graphs has (G, o)-measure zero. If in addition the conditional distribution of the
root in (G, o) over each finite graph is uniform, then (G, o) is called unbiased.

Given a sequence (Gn, on) of unbiased random rooted graphs, a random rooted graph
(G, o) is said to be the Benjamini-Schramm limit of (Gn, on) if for every finite rooted graph
(H,ω) and natural number r ≥ 0 we have

lim
n→∞

P
(
BGn(on, r)

∼= (H,ω)
)

= P
(
BG(o, r) ∼= (H,ω)

)
.
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If it exists, (G, o) is the unique limit. If a random rooted graph is the Benjamini-Schramm
limit of some sequence, we say that it is sofic.

One can show that a set of graphs of uniformly bounded degree is compact in the
local topology, and thus, a sequence (Gn, on) of uniformly bounded degree always has a
convergent subsequence.

We say that a random rooted graph (G, o) is of uniform growth g : R≥0 → R≥0, if there
are constants c1, C1, c2, C2 ∈ R>0 so that a.s.

C1 · g(c1r) ≤ |BG(o, r)| ≤ C2 · g(c2r), for all r ≥ 0.

A random rooted graph (G, o) is unimodular if it obeys the mass transport principle,
i.e.,

E
[∑
x∈V (G)

f(G, o, x)
]

= E
[∑
x∈V (G)

f(G, x, o)
]

for every transport function f , which, for our purpose, are sufficiently defined as Borel
functions over doubly-pointed graphs that output non-negative real numbers (for a precise
definition we direct the reader to [9]).

The function f simulates mass transport between vertices, and the mass transport
principle states, roughly, that the root o sends, on average, as much mass to other vertices
as it receives from them. Unimodular graphs are significant in the theory of random graphs
and encompass some important classes, notably, all sofic graphs.

Proposition 3.1. Let g : R≥0 → R≥0 be super-additive and log-concave. Let Tn be as
in Construction 2.1. Then the sequence (Tn, on) has a subsequence that converges in the
Benjamini-Schramm sense to a unimodular random rooted tree of uniform growth g.

This proves Theorem 2. We examine the structure of the Benjamini-Schramm limit T :

Theorem 3 (Structure Theorem).

(i) If g = Ω(rα log log r), α > 1, then (T , ω) is a.s. an apocentric limit. In particular, it is
1-ended.

(ii) If g = O(rlog log r), then (T , ω) is a.s. a balanced limit and it is a.s. 1-ended or 2-ended.
In particular, if δn 6= 1 eventually, then (T , ω) is a.s. 1-ended and the probability for
being isomorphic to any particular tree is 0.

The significance of the distinction worked out in Theorem 3 becomes more apparent
with an example: the Benjamini-Schramm limit of (Tn, on) for a sufficiently fast growing
function g (including intermediate) can be a.s. isomorphic to a single deterministic tree.
Such a limit can be seen as deterministic trees with a randomly chosen root.

Example 3.2. Define recursively δ1 := 1, δ2 := 2 and δn+1 := δnδn−1. Hence, δn = 2Fn ,
for all n ≥ 0, where Fn denotes the n-th Fibonacci number.

Let Tn, n ≥ 0 be the sequence of trees according to Construction 2.1.
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Then (Tn, on) has a subsequence that converges in the Benjamini-Schramm sense to a
random rooted tree (T , ω) of uniform volume growth.

From |Tn| = (δ1 + 1) · · · (δn + 1) we have, for r := 2n,
1
2
Drα≤ |Tn| ≤ 1

2
r ·Drα, with D := 2ϕ

2/
√
5 ≈ 2.251 and α := logϕ ≈ 0.6942.

Here ϕ ≈ 1.618 denotes the golden ratio. The growth is therefore intermediate.

We claim that (T , ω) is a.s. isomorphic to a particular deterministic tree: from The-
orem 3 we can see that (T , ω) is an apocentric limit. We show that the Tn are highly
symmetric in that any two apocentric copies τ, τ ′ ≺n−1 Tn are in fact indistinguishable
by symmetry. In consequence, there exists only one possible inclusion chain leading to an
apocentric limit, and T is the unique tree obtained in this way.

Unimodular random rooted trees that are a.s. isomorphic to a unique tree of smaller
uniform growth can be constructed by setting δn+1 := δnδn−1 for only some n, and δn+1 :=
δn otherwise.

In contrast, Benjamini-Schramm limits for g of growth below rlog log r have measure zero
on every countable set of trees, hence this approach cannot yield examples with uniform
growth. It remains to ask whether this is an artifact of our construction or a general
phenomenon.

4 Concluding remarks and open questions

4.1 Planar triangulations

Having established the existence of trees for various growth rates, we can use Construc-
tion 1.1 to conclude the existence of planar triangulations with the same range of growth
behaviors. In fact, we can say more: previously known triangulations of polynomial growth
are planar, but not necessarily triangulations of the plane, i.e., they are not necessarily
homeomorphic to R2. For this to be true, the tree T needs to be 1-ended, which is the
case e.g. for apocentric limits obtained from a sequence of Construction 2.1. Choosing
a suitable metric on each triangle then also yields a Riemannian metric on R2 with the
respective growth behavior.

4.2 Subgraphs of uniform growth

At the early stages of our research, the approach for constructing trees of uniform inter-
mediate growth was to start from just any graph of intermediate growth (such as a Cayley
graph of the Grigorchuk group [7]), and extract a spanning tree that inherits this growth in
some way. Ironically, working out the details of this extraction led to an understanding of
the desired trees that allowed us constructing them without a need for the ambient graph.
Still, we ask:

Question 4.1. Given a graph G of uniform growth g, is there a spanning tree (or just any
embedded tree) of the same uniform growth?
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4.3 Beyond the construction

The unimodular random rooted trees of uniform volume growth constructed in Section 3
were obtained as Benjamini-Schramm limits of the sequence Tn. We found a threshold
at growth rlog log r and it remains open whether this is an artifact of our construction or
whether it points to a fundamental phase change phenomenon in unimodular trees of
uniform growth.

Question 4.2. To what extent are unimodular trees with growths on either side of the
threshold rlog log r structurally different?
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Abstract

We consider the following question by Balister, Győri and Schelp: given 2n−1

nonzero vectors in Fn
2 with zero sum, is it always possible to partition Fn

2 into pairs
such that the difference between the two elements of the i-th pair is equal to the i-th
given vector? An analogous question in Fp was resolved by Preissmann and Mischler
in 2009. In this paper, we prove the conjecture in Fn

2 in the case when there are at
most n− 2 log n− 1 distinct values among the given differences, and also in the case
when at least a fraction 28

29 of the differences are equal.
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1 Introduction
We consider the following conjecture of Balister, Győri and Schelp [2] from 2008:

Main conjecture 1.1. Let n ≥ 2 be an integer and m = 2n−1. If the nonzero difference
vectors d1, d2, . . . , dm are given in Fn

2 such that
∑m

i=1 di = 0 (and the di’s are not
necessarily distinct), then Fn

2 can be partitioned into disjoint pairs {ai,bi} (1 ≤ i ≤ m)
such that ai − bi = di holds for every i.
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In 2008, Bacher [1] has independently posed another analogous version of this conjec-
ture, where instead of Fn

2 , we partition the elements of Fp\{0} into pairs, where p is an odd
prime, and there is no restriction on the sum of the given (nonzero) differences. For this
case, Preissmann and Mischler gave a positive answer [9]; their method relies on summing
the values of an appropriate multivariate polynomial over Fp.

Theorem 1.2 (Preissmann, Mischler). Let p be an odd prime and M = p−1
2

. If in Fp, the
nonzero differences d1, d2, . . . , dM are given, then Fp \ {0} can be partitioned into disjoint
pairs {ai, bi} (1 ≤ i ≤ M) such that for each i, ai − bi = di holds.

Later, Kohen and Sadofschi [6] gave a new proof of this claim using the Combinatorial
Nullstellensatz.

The statement can also be investigated for other cyclic groups as well. The following
conjecture of Adamaszek pertaining to cyclic groups of even order has been proven by
Kohen and Sadofschi [7]:

Theorem 1.3 (Kohen, Sadofschi). Let n = 2M be even. If the elements d1, d2, . . . , dM ∈
(Z/nZ)× are arbitrarily given, then Z/nZ can be partitioned into disjoint pairs {ai, bi} such
that for each i, we have ai − bi = di.

Another way to generalize Theorem 1.2 is if we consider the problem for Fn
p \{0} instead

of Fp\{0}. Karasev and Petrov showed that in this case, the same statement does not hold
(by considering the case when every di is equal to the same nonzero vector d). However
they have shown the following claim [5, Theorem 3]:

Theorem 1.4 (Karasev, Petrov). Let p be an odd prime and M = pn−1
2

. If the sets
{d1,1, . . . , d1,n}, {d2,1, . . . ,d2,n}, . . . , {dM,1, . . . ,dM,n} are given in Fn

p such that each set
is a basis of Fn

p , then there exists a function g : [M ] → [n] such that Fn
p \ {0} can be

subdivided into disjoint pairs {ai,bi}, 1 ≤ i ≤ M with ai − bi = di,g(i) for every i.

If we investigate the statement in Fn
2 instead of Fn

p , then to obtain a perfect matching,
we also need to include the zero vector in the set of elements to be matched. Even in this
case, the claim does not hold for arbitrary nonzero differences, as the sum of differences
has to be equal to the sum of all elements of the vector space, which is zero. By the main
conjecture, this would be a sufficient condition for an adequate perfect matching to exist.

The authors of [2] have also verified this conjecture for the case n ≤ 5, and they have
proved the main conjecture in the following special case [2, Theorem 4]:

Theorem 1.5 (Balister, Győri, Schelp). The main conjecture is true in the case when the
vectors d1,d2, . . . ,dm

2
are all equal, and for every integer 1 ≤ i ≤ m

2
we have d2i−1 = d2i.

In 2021, Correia, Pokrovskiy and Sudakov [3] published the following result:

Theorem 1.6 (Correia, Pokrovskiy, Sudakov). Let G be a multigraph whose edges are
t-coloured, so that each colour class is a matching of size at least t + 20t15/16. Then there
exists a rainbow matching (that is, a matching with t edges of all distinct colours).
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Applying this result to the graph on the vertex set Fn
2 with colour class i consisting of

the edges between pairs of difference di, we get that for any M ≤ 1
2
N −C ·N15/16 nonzero

differences di, where N = 2n, we can find disjoint pairs {ai,bi} such that ai − bi = di.
However this method does not result in perfect matchings.

Gao, Ramadurai, Wanless and Wormald [4] conjectured that Theorem 1.6 holds for
t+2 in place of t+20t15/16, which would resolve this problem for any M ≤ 1

2
N−2 nonzero

difference vectors.
In this paper, we prove the main conjecture in the following two special cases:

• when the number of distinct values among the 1
2
N difference vectors is at most

n− 2 log n− 1;

• and when n is sufficiently large and at least a fraction 28
29

of the difference vectors are
all equal.

2 Perfect matching in the case of few difference classes
Let the nonzero differences d1,d2, . . . , dm be given such that

∑m
i=1 di = 0, where m = 2n−1.

The collections containing all differences equal to a fixed vector d will be called difference
classes. For a given configuration {d1,d2, . . . ,dm}, let t denote the number of nonempty
difference classes. We would like to give a value T (n) as large as possible, for which we
can guarantee the existence of a suitable perfect matching of Fn

2 in the case t ≤ T (n).
In the case t = 1 the task is trivial: take the ⟨d⟩-cosets of Fn

2 for the difference d.
In the case t = 2, the task can be solved using Theorem 1.5, as

∑
di = 0 means that

both difference classes have even size. So we have the structure that half of the differences
are the same and the rest of the differences can be partitioned into equal-valued pairs.

Theorem 2.1. The main conjecture is true in the case when the number of difference
classes is at most n− 2 log n− 1.

Lemma 2.2. Let n ≥ 4, and let Pn denote the power set of [n] as a poset ordered by
containment. Let H be a subset of Pn of size at most n+1, for which ∅ ̸∈ H and [n] ̸∈ H.
Moreover assume that H does not contain all of the one-element sets and does not contain
all of the n− 1 element sets either. Then Pn \H contains a chain of size n+ 1.

Proof sketch. This can be proved using the fact that Pn admits a decomposition into dis-
joint symmetric chains (i.e. chains containing one set of each integer cardinality between
k and n− k for some k); the proof of this fact can be found in [8, Proposition 2].

Proof sketch of theorem 2.1. Let the distinct values of the given differences be u1, u2, . . . ,
ut where for each 1 ≤ i ≤ t, ui appears ni times with n1 ≥ n2 ≥ · · · ≥ nt.

Let U = ⟨u1, . . . ,ut⟩ and k = dimU . (Then k ≤ t.) We can assume that k ≥ 2, as
otherwise t = 1, a case already seen. Call the U -cosets of Fn

2 layers. We create perfect
matchings of each layer separately, and will not modify any finished layers later. Our
algorithm consists of 3 phases.
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Phase 1: We create perfect matchings in some (less than t) layers in such a way that
an even number of vectors will remain in each difference class.

Phase 2: We create perfect matchings in some (less than t) layers in such a way that
in each difference class, the number of remaining vectors will be divisible by 2k−1.

Phase 3: All of the remaining differences are used to create homogeneous layers (i.e.
layers consisting of differences from only one class).

Phase 1. Let H = {ui : 2 ≤ i ≤ t, ni ≡ 1 (mod 2)}, and we use the notation u = u1.
We call a subset S of H a circuit if its elements are linearly dependent mod u, and this

property does not hold for any proper subset of S. A circuit S has good parity if the sum
of its elements is |S|u, and bad parity if the sum of its elements is (|S|+ 1)u.

As we have
∑

niui = 0, the sum of the elements of H is equal to n1u, so it is 0 mod u.
We will apply the following step repeatedly: as long as H is nonempty, we select some of
its elements (at least three of them), and we will create a perfect matching of a full layer
using one copy of each of the selected vectors, and a suitable number of copies of u. The
vectors of H used in this process will be removed from H. When all elements of H are
depleted, we move on to Phase 2.

A sequence (v1,v2, . . . ,vi) consisting of nonzero vectors in H is diverse if 0, v1, v1+v2,
. . . , v1 +v2 + · · ·+vi−1 are all distinct mod u. If (v1,v2, . . . ,vi) is a diverse sequence for
which v1 + v2 + · · · + vi = iu holds, then we can make a layer with one copy of each of
v1, . . . , vi as differences, and all remaining differences being u.

In each step, take A to be a subset of H of minimal size with 0 sum mod u. If A has
good parity, then any ordering of it is diverse, and a layer can be created. If it has bad
parity, then from H \ A we can select another minimal-size subset B with 0 sum mod u,
which can also be assumed to have bad parity. Then A∪B can be put into a diverse order
(by applications of Lemma 2.2), which will be used to create the layer.

Phase 2. For each 2 ≤ i ≤ n, if the number of remaining copies of ui has a remainder
mi mod 2k−1, then a single layer containing mi copies of ui and 2k−1 −mi copies of u is
made, which is possible by the main conjecture for two difference classes.

Phase 3. As the number of remaining vectors in each class is divisible by 2k−1, this
phase can be trivially performed, completing the required perfect matching of Fn

2 .
By calculation, it can be seen that altogether we used 4

3
(t− 1) · 2k−1 copies of u during

the first two phases, which is less than 2n−1

t
, and so less than n1, as required.

3 Perfect matching in the case of many equal vectors
In this chapter, we resolve the main conjecture (for sufficiently large n) in the special
case when at least a fraction 28

29
of the difference vectors are all equal, and the others are

arbitrary. So in contrast to the theorem of Balister, Győri and Schelp (see Theorem 1.5),
here we do not require that all differences appear an even number of times.

Lemma 3.1. Let G be a finite abelian group, and let X ⊆ G. Then in G, we can select at
least |G|

|X|(|X|−1)+1
pairwise disjoint translates of X.
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Proof idea. Keep choosing translates of X greedily which are disjoint from the previously
chosen ones.

Remark 3.2. If the group G has exponent 2, the lemma can be improved to say that at
least |G|

(|X|
2 )+1

pairwise disjoint translates of X can be selected.

Lemma 3.3. Let n ≥ 2 and a ≥ t ≥ 2 be integers, for which
∑⌊t/2⌋

i=0

(
a
i

)
> 2n. Then in Fn

2 ,
among any a vectors one can find at most t which are linearly dependent.

Proof idea. From the assumption, there exist two distinct subsets of the given vectors of
size ≤

⌊
t
2

⌋
with the same sum. Take the symmetric difference of these two subsets.

Theorem 3.4. The main conjecture is true in the case when at least a fraction 28
29

of the
differences are all equal, and n is sufficiently large.

Proof sketch. Let u ∈ Fn
2 appear more than 28

29
m times among the given differences d1, d2,

. . . , dm. (Here m = 1
2
· 2n.) Let H denote the multiset of vectors di not equal to u. Then

|H| < 1
29
m.

We will partition Fn
2 into pairs in the following way. In each step we select some

elements (v1, v2, . . . , vi) of the multiset H, and among the elements of Fn
2 not yet used,

for each 1 ≤ j ≤ i we select a pair of elements with difference vj (so that these pairs
are disjoint from each other). The set of elements used in each step will be a union of
some ⟨u⟩-cosets; so at the end of the process, after having used all elements of H, all the
remaining differences will be equal to u, and these can be assigned to one coset each.

Similarly to the notions used in the proof of Theorem 2.1, define diverse sequences, and
circuits and their parity.

If the nonzero vectors (v1,v2, . . . ,vi) form a diverse sequence, and v1+v2+· · ·+vi = iu,
then we can take i pairwise disjoint vector pairs which use each vector in the given sequence
as a difference precisely once, and whose union is equal to the union of some ⟨u⟩-cosets.
In each step of the partitioning of Fn

2 , we will use such a pattern.
We partition H into circuits by always removing the smallest circuit from it, and then

in this partition, we pair up bad circuits according to increasing order of their size. Then
similarly to the proof of Theorem 2.1, each good circuit, or pair of bad circuits can be
arranged in a diverse order. We will use these diversely-ordered classes in decreasing order
of size, always trying to find a translate of the corresponding vector set in Fn

2 that does
not contain any previously-used vectors. Classes of size greater than 8 will be called large,
and otherwise a class is called small.

When we selected the circuits Ci in H (always selecting the smallest possible circuit
within the remaining vectors), then because of Lemma 3.3, as long as the number of
remaining vectors (a) fulfilled the inequality

(
a
0

)
+
(
a
1

)
+
(
a
2

)
> 2n, we always found a circuit

of size at most 4, leading to small classes. Therefore the total size of large classes is at
most 4 · 2n/2.

For sets of vectors X corresponding to large classes, by a calculation via Remark 3.2,
we can find more disjoint translates of X in Fn

2 then there are previously-used points, hence
there will always be a translate of X which is completely unused.
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For X corresponding to small classes, the total size of previous classes is less than 1
58
·2n,

and calculating by Remark 3.2, using the fact that |X|
2

≤ 8, there will again be a sufficient
number of pairwise disjoint translates of X.
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1 Introduction
In this paper, we address the following general problem. Let S be a subset of size m of
the affine space AG(n, q). Does there always exist a k-dimensional affine subspace which
contains exactly t points of S? A k-dimensional affine subspace will be referred to as a
k-flat, and a k-flat which contains exactly t points of a given set S will be called a [k, t]-flat
(induced by S). If for every m-element set S in the n-dimensional affine space, there is a
k-flat containing exactly t points of S, we say that the pair [n,m] forces the pair [k, t], or
that t-sets are unavoidable in k-flats. We use the notation [n,m]q → [k, t] for this concept.

Our main focus will be the case q = 2, and we will omit the index q except when we wish
to refer to arbitrary finite fields. The graph theoretic analogue of this problem was initiated
by Erdős, Füredi, Rothschild and T. Sós [7]. Let G(n,m) denote a graph on n vertices and
m edges. Fix a positive integer k and a pair of integers (n,m) such that 0 ≤ m ≤

(
n
2

)
. For
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which t does it hold that any n-vertex graph with m edges contains an induced subgraph
on k vertices having exactly t edges? Equivalently, we are seeking pairs (k, t) such that
k-vertex induced subgraphs with t edges are unavoidable in graphs of the form G(n,m).
Erdős, Füredi, Rothschild and T. Sós introduced the notation (n,m)→ (k, t) for the case
when this is true.

Their main result showed that forced pairs (k, t) are rare in the following sense. Consider
the set Sp(n; k, t) of all edge cardinalities m such that (n,m) → (k, t). Its density is the
ratio |Sp(n;k,t)|

(n2)
. They proved that the limit superior of this density is bounded from above

by 2/3 apart from a handful cases, and is 0 for the majority of the pairs (k, t) for fixed and
large enough k. Erdős, Füredi, Rothschild and T. Sós conjectured that in fact it is bounded
from above by 1/2 apart from finitely many pairs (k, t). This was confirmed recently by
He, Ma and Zhao [9]. Several related problems have been studied in the last couple of years
[1, 4]. Our problem can be viewed as the q-analogue of this problem, when we investigate
whether all subspaces of given dimension k can avoid to have an intersection of size t with
an m-element set of the space AG(n, q), which corresponds to Fn

q .
Considering the case q = 3, k = 1 and t = 3, we in turn get the famous cap set problem,

which asks for the maximum number of points in AG(n, 3) without creating a line, or in
other words, without containing a 3-term arithmetic progression. There has been a recent
breakthrough due to Ellenberg and Gijswijt [6], building upon the ideas of Croot, Lev and
Pach [5], which showed that to avoid complete lines, |S|/3n has to be exponentially small.
This connection highlights the complexity of the problem.

There has been significant interest in the case when we want to forbid each intersection
of size larger than or equal to f instead of avoiding only f -sets in k-flats. If there exists
a set S ∈ AG(n, q) for which all k-dimensional affine subspaces contain at most c points
of S, then S is called (k, c)-subspace evasive.The importance of such sets relies on its
connections to explicit contructions to bipartite Ramsey graphs by Pudlák and Rödl [10]
and with list-decodable codes by Guruswami [8].

By a standard application of the first moment method, Guruswami obtained random
subsets of Fn of large size which are (k, c)-subspace evasive. (F denotes a finite field.)

Theorem 1.1 (Guruswami, [8]). For any fixed pair (k, c), there exists a (k, c)-evasive set
in Fn of size at least C · |F|n(1− 2k

c
), where C > 0 is a constant independent of n.

Corollary 1.2. For any fixed pair (k, t) with t > 1, there exists a constant C > 0 for
which the following holds: if m ≤ C · 2n(1−

2·k
t−1

), then t-sets are avoidable in the k-flats of
AG(n, 2), i.e., in this case [n,m] 6→ [k, t].

Surprisingly it turned out that the obtained bounds are sharp in a weak sense.

Theorem 1.3 (Sudakov and Tomon, [11]). Let F be a field, k ∈ Z+ and ε ∈ (0, 0.05). If
n is sufficiently large with respect to k, and S ⊆ Fn has size m ≥ |F|n(1−ε), then S is not
(k, k−log2(1/ε)

8ε
)-subspace evasive.
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Note however that S being non-(k, c)-evasive does not necessarily imply that S contains
a k-flat with c + 1 points, except when c = |F|n − 1. The latter case on the other hand is
not covered by the theorem, as k−log2(1/ε)

8ε
< 2k−3 holds for every ε ∈ (0, 0.05).

2 Our main results
Similarly to the investigation in [7], we define the set of forcing sizes m with respect to
[k, t], which are the sizes for which a [k, t]-flat is unavoidable, as follows.

Definition 2.1.
Sp(n; k, t) := {m : [n,m]q → [k, t]}

is called the set of forcing sizes with respect to n, k, t, and we refer to it as the (n; k, t)-
spectrum.

ρ(n; k, t) :=
Sp(n; k, t)

|F|n

is the density of the spectrum.

Our aim is to characterize the spectra or at least bound the density of the spectra for
various values of k and f . Note that from now on, F is considered to be the binary field.
When it is not confusing, we use the notation [a, b] for the integers in the interval. For a
set of integers H ⊆ Z and c ∈ Z, let c−H = {c− h : h ∈ H}. For any set X ∈ Fn

2 , X will
denote the complement of X. Observe first that determining the spectrum Sp[n, k, f ] or
its density is essentially the same problem as determining Sp[n, k, 2k − f ] or its density.

Lemma 2.2. If n, k ≥ 1 are integers and 0 ≤ f ≤ 2k then Sp[n, k, f ] = 2n−Sp[n, k, 2k−f ].

2.1 Some exact results on the spectrum

We start with investigating Sp[n, k, f ] in cases where k is small.

Proposition 2.3. (i) Sp[n, 1, 0] = [0, 2n − 2], (ii) Sp[n, 1, 1] = [1, 2n − 1],
(iii) Sp[n, 2, 1] = [0, 2n] \ ({2n} ∪ {2n − 2d : d ∈ [0, n]}),
(iv) Sp[n, 2, 2] = [2, 2n − 2], (v) Sp[n, 2, 3] = [0, 2n] \ ({0} ∪ {2d : d ∈ [0, n]}).

The determination of the spectrum Sp[n, 2, 4] for the full 2-dimensional flat is still a
challenging problem. This has been studied under the name of Sidon sets in binary vector
spaces. A subset S of an Abelian group is a Sidon set if the only solutions to the equation
a + b = c + d with a, b, c, d ∈ A are the trivial solutions when (a, b) is a permutation of
(c, d). Observe that for A = Fn

2 , S contains a (2, 4)-flat if and only if it is not a Sidon set.
There are known results on Sidon sets in this setting which imply the following.

Proposition 2.4 (([3], also see [2, 12])).

1. There exists a constant C > 0 such that [n,m]→ [2, 4] for every m ≥ C · 2 1
2
n.

2. The explicit construction {(x, x3) : x ∈ F2n/2} shows that [n, 2
1
2
n] 6→ [2, 4].
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The complete characterization of the spectrum for case k = 3, f = 4 requires a combi-
nation of various tools, including probabilistic methods.

Proposition 2.5. For every n ≥ 3, Sp[n, 3, 4] = [4, 2n − 4].

2.2 Bounds on the density of the spectrum - unavoidable elements

Our main results are concerning the case when f is a power of 2.

Theorem 2.6. Suppose that k > ` > 0. Then there exist absolute constants C,D > 0 such
that [n,m] → [k, 2k−`] for m ∈

(
C · 2n(1−

1

2k−`−1 ), D · 2n
)
. Moreover, for each ε > 0 and

sufficiently large n, ρ(n; k, 2k−`) ≥ 1−ε
2`−1 .

If ` is small, we can prove even stronger results.

Theorem 2.7. Suppose that ` ∈ {0, 1}. Then there exists an absolute constant C such
that [n,m] → [k, 2k−`] for m ∈

(
C · 2n(1−

1

2k−`−1 ), 2n − C · 2n(1−
1

2k−`−1 )
)
.

Finally we discuss a case when t is the sum of two consecutive powers of 2. This case
is significantly more involved compared to the case of t = 2k−`.

Theorem 2.8. For every pair (k, `) of integers with 2 ≤ ` ≤ k − 1, the density of integer
values m within the interval

[
0, 1

2`−1 · 2n
]
for which [n,m] → [k, 3 · 2k−`] holds, tends to 1

as n→∞. Hence ρ(n; k, 3 · 2k−`) ≥ 1
2`−1 .

The above described results are relying on bounds on the size of cut in hypercube,
induction and supersaturation results, and bounds on the additive energy.

If f is not a power of 2, then we must expect that the spectrum is scattered, several
values of m are missing from it.

2.3 Missing elements from the spectrum

The random construction of Guruswami showed that we can obtain a (k, c)-evasive set on
at least 2n(1−

2k
c
)/2k+1 points. Below we refine his argument using alteration.

Theorem 2.9. Let k, c ∈ Z+ with c ≥ k + 1. Then for n > k, there exists a (k, c)-evasive
set in Fn

2 of size at least

bK · 2n(1−
k
c )c − 1 where K = K(k, c) :=

c

c+ 1
· 2k(k+1)/c ·

(
2e2/3(c+ 1)

(
2k

c+ 1

))− 1
c

.

Thus if t > k, then the smallest element in the spectrum of Sp[n, k, t] is exponential in n.
There is another reason why some elements are missing from a spectrum. The lexicographic
construction below shows that if m can be obtained as a sum of few powers of 2, then the
intersections with k-flats avoids many possible sizes.
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Definition 2.10. Let m be an integer in [0, 2n]. The lexicographic construction of m
points is defined as follows. Take every point P = (x1, x2, . . . , xn) in Fn

2 for which the
binary representation of the n-digit binary number x1x2 . . . xn represents a number smaller
than m.

Proposition 2.11. Let m be a positive integer and letM(m) denote the number of nonzero
digits in the binary representation of m. If M(t) > M(m) then [n,m] 6→ [k, t].

Corollary 2.12. The lexicographic construction guarantees that for a given pair of integers
k, t, the number of avoidable intersection sizes with respect to k-flats is at least a polynomial
in n having degree M(t).

The theorem above can be combined with the former results on (k, c)-subspace-evasive
sets. Indeed, suppose that we have a point set S0 which avoids k-flats having intersection of
size r for each r ∈ [t1, t2] and c < t2−t1. Then the union of S0 and a (k, c)-subspace-evasive
set S1 will avoid k-flats with intersections of size t ∈ [t1 + c, t2].

In fact the lexicographic construction shows further values of m which are avoidable.
Suppose that m is a difference of two powers of 2. While M(m) might be large, the
lexicographic construction of m points shows that [k, t] is avoidable if t cannot be written
as a power of 2 or a difference of two powers of 2. It is easy to deduce a statement similar
to Proposition 2.11. Still, we believe that in general the following conjecture holds.

Conjecture 2.13. Let t > k integers. Then limn→∞ ρ[n, k, t] = 1.
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every simple graph that covers A also covers B. Witnesses of A not being stronger
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A is stronger than B if and only if A covers B. We prove this conjecture for cubic
one-vertex graphs, and we also justify it for all cubic graphs A with at most 4 vertices.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-094
∗Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Prague,

Czech Republic. E-mail: honza@kam.mff.cuni.cz. Supported by Czech Science Foundation through
research grant GAČR 20-15576S.
†Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic. E-mail:

nedela@savbb.sk. Supported by Czech Science Foundation through research grant GAČR 20-15576S.

681



Graph Covers and Generalized Snarks 682

1 Introduction
Combinatorial treatment of graph coverings had its primary incentive in the solution of
Heawood’s Map Colour Problem due to Ringel, Youngs and others [18, 17]. That coverings
underlie the techniques that led to the eventual solution of the problem was recognized by
Alpert and Gross [9]. These ideas further crystallized in 1974 in the work of Gross [8] where
voltage graphs were introduced as a means of a purely combinatorial description of regular
graph coverings. In parallel, motivated by the effort to construct infinite families of highly
symmetrical graphs, Biggs came with the very same idea which appeared in monograph
[2]. Much of the theory of combinatorial graph coverings in its own right was subsequently
developed by Gross and Tucker in the 1970’s. We refer the reader to [10, 20] and the
references therein.

In [13] the combinatorial theory of graph coverings and voltage assignments was estab-
lished and extended onto a more general class of graphs which include edges with free ends
(called semi-edges). The new concept of a graph proved to be useful in applications as well
as in theoretical considerations.

Nowadays, the construction of a graph covering over a prescribed graph is established
as a useful technique allowing to construct effectively infinite families of graphs sharing
prescribed properties. In particular, it was used to construct extremal regular graphs with
fixed degree and diameter [15], to construct cages and their approximations [11], and in
investigation of flows on graphs [16] .

From the computational complexity point of view, Bodlaender [3] showed that deciding
if a given graph G covers a given graph H (both graphs are part of the input) is NP-
complete. Abello et al. [1] asked for the complexity of this question when parameterized
by the target graph H. They gave the first examples of graphs for which the problem,
referred to as H-Cover, is NP-complete or polynomial time solvable. It should be noted
that in this seminal paper, both the parameter and the input graphs are allowed to have
loops and multiple edges, but not semi-edges. The impact of semi-edges for the complexity
issues is first discussed in Bok et al. [5]. It is perhaps somewhat surprising that in all cases
where the complexity of the H-Cover problem is known to be NP-complete, it has been
proved NP-complete even for simple graphs on input. This has been now conjectured to
hold true in general, as the Strong Dichotomy Conjecture (cf. Conjecture 1 below) in [6].

Bok et al. [4] have proved that the Strong Dichotomy Conjecture holds true for all
graphs, provided it holds true for connected ones. The curiosity of the NP-hardness re-
duction is its non-constructiveness. For two graphs A and B, they use a simple graph
A′ which covers A and does not cover B, if such a simple graph exists (and an arbitrary
simple cover of A otherwise). However, there is no clue how to decide if such an A′ exists
or not. (This paradox is not undermining the reduction, because the approach is used for
fixed graphs A and B, two of the connected components of the target graph H, to prove
the existence of a polynomial time reduction between computational problems.) As a con-
sequence, they defined a binary relation between connected graphs, saying that a graph A
is stronger than a graph B if such a graph A′ does not exist. Our aim is to contribute to
the study of this relation, which shows a surprising connection to the well studied area of
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edge-colorings of graphs. In order to describe this connection, let us remind the reader of
the (graph-theoretical) notion of a snark.

A snark is a simple 2-connected cubic graph which is not 3-edge-colorable. The interest
in snarks was boosted by an observation by Heawood (1890) that the Four Color Theorem
is equivalent to the statement: there are no planar snarks. For about 80 years only few
examples of non-trivial snarks were constructed until Isaacs (1975) introduced the infinite
family of flower snarks and the operation of dot-product allowing to construct a new
nontrivial snark from two given ones. Investigation of snarks is an active area of research
due to the fact that many long-standing conjectures on graphs (such as the 5-flow conjecture
or the cycle double cover conjecture) can be reduced to problems on snarks, see [19, 7, 14]
and the references therein.

If we denote by F (3, 0) the one-vertex graph with 3 semi-edges, and by F (1, 1) the
one-vertex graph with 1 semi-edge and 1 loop, a snark is a simple cubic graph that covers
F (1, 1) but does not cover F (3, 0), i.e., a witness for the fact that B = F (1, 1) is not
stronger than A = F (3, 0). By the Petersen theorem, a 2-connected cubic graph always
contains a perfect matching and hence it covers F (1, 1). In this sense every witness A′ for
A not being stronger than B can be viewed as a generalized snark.

It is easy to see that A is stronger than B whenever A covers B. For all known pairs
A,B such that A is stronger than B and A does not cover B, the graph A contains semi-
edges. In [12] it is conjectured that this is always the case (cf. Conjecture 2 below). In this
paper, we justify these conjectures in several general situations, namely for cubic graphs.

2 Preliminaries
Definition 1. A graph is a finite set of vertices accompanied with a finite set of edges,
where an edge is either a loop, or a semi-edge, or a normal edge. A normal edge is incident
with two distinct vertices and adds 1 to the degree of each of them. A loop is incident with
a single vertex and adds 2 to its degree. A semi-edge is also incident with a single vertex,
but adds only 1 to its degree.

As defined, we only consider undirected graphs. However, graphs may have multiple
loops and/or multiple semi-edges incident with the same vertex, and also multiple normal
edges incident with the same pair of vertices. A graph is called simple if it has no loops,
no semi-edges and no multiple normal edges. The edge-neighborhood EG(u) of a vertex u
is the set of edges of G incident with u.

Definition 2. A covering projection from a graph G to a connected graph H is a pair of
surjective mappings fV :V (G)→ V (H) and fE:E(G)→ E(H) such that

- fE maps semi-edges onto semi-edges and loops onto loops, respectively, (normal edges
may be mapped onto normal edges, loops, and semi-edges),

- fE is incidence preserving (i.e., if e ∈ E(G) is incident with vertices u, v ∈ V (G),
then fE(e) is incident with fV (u) and fV (v), which may of course be the same vertex),

- fE is a local bijection on the edge-neighborhoods of any vertex and its image.
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The last condition implies that fV is degree preserving and, together with the other
conditions, that the preimage of a normal edge incident with vertices u, v ∈ V (H) is a
disjoint union of normal edges, each incident with one vertex in f−1V (u) and with one
vertex in f−1V (v), spanning f−1V (u) ∪ f−1V (v); the preimage of a loop incident with vertex
u ∈ V (H) is a disjoint union of cycles spanning f−1V (u) (a loop is a cycle of length 1, and
two parallel edges form a cycle of length 2); and the preimage of a semi-edge incident with
a vertex u ∈ V (H) is a disjoint union of semi-edges and normal edges spanning f−1V (u).

If a graph G allows a covering projection onto a graph H, we say that G covers H, and
we write G→ H.

It is well known that in a covering projection to a connected graph, the sizes of preimages
of all vertices of the target graph are the same. This implies that |V (H)| divides |V (G)|
whenever G → H for a connected graph H. We say that G is a k-fold cover of H, with
k = |V (G)|

|V (H)| in such a case. It follows that both vertex- and edge-component of a covering
projection into a connected graph are surjective mappings.

We are interested in the following computational problem, parameterized by the target
graph H.

Problem: H-Cover
Input: A graph G.

Question: Does G cover H?

Abello et al. [1] raised the question of characterizing the complexity of H-Cover
for simple graphs H. Despite intensive effort and several general results, the complete
characterization and even a conjecture on what are the easy and hard cases is not in
sight. Bok et al. [5] was the first paper that studied this question for (multi)graphs with
semi-edges. A polynomial/NP-completeness dichotomy is believed in, and it has been
conjectured in a stronger form in [6]:

Conjecture 1 (Strong Dichotomy Conjecture). For every graph H, the H-Cover
problem is either polynomial-time solvable for general input graphs, or NP-complete for
simple graphs on input.

In this connection, the following relation among graphs introduced in [4] seems to play
quite an important role.

Definition 3. A connected graph A is said to be stronger than a connected graph B,
denoted by A . B, if it holds true that any simple graph covers A only if it also covers B.
Formally,

A . B ⇔ ∀G simple graph : ((G→ A)⇒ (G→ B)).

It follows from the definition (and from the fact that the composition of covering pro-
jections is also a covering projection) that A . B whenever A → B. Moreover, if A is
a simple graph, then A . B if and only if A → B. The graphs F (3, 0) and F (1, 1) de-
fined in the Introduction provide an example of graphs such that F (3, 0) . F (1, 1) though
F (3, 0) 6→ F (1, 1).



Graph Covers and Generalized Snarks 685

It would certainly be too ambitious a goal to try to understand the complexity of the
“being stronger" relation, as understanding the complexity of the . relation would require a
full understanding of covering graphs by simple graphs, which is known to be NP-complete
for many instances of the target graphs. However, there may be a hope for understanding
A . B for those pairs of graphs A,B such that A 6→ B. In the problem session of GROW
2022 workshop in Koper, September 2022, we have conjectured that the presence of semi-
edges in A is vital in this sense (cf. [12]).

Conjecture 2. If A has no semi-edges, then A . B if and only if A→ B.

3 Our results
The goal of this paper is to justify the above mentioned conjectures for several general
situations. We first show that A cannot be much smaller than B in order to be stronger
than it. Then we prove the conjectures for bipartite two-vertex graphs A.

Theorem 1. Let A and B be connected graphs such that A . B. Then |V (B)| divides
2|V (A)|. If, moreover, A has no semi-edges, then |V (B)| divides |V (A)|.

Theorem 2. Let A be a dipole, i.e., a graph with two vertices joined by d parallel edges.
Then for every graph B, A . B implies A→ B.

We further pay a closer attention to cubic graphs. By a technical case analysis, which
involves construction of several generalized snarks, we prove that Conjectures 2 and 3 hold
true for all graphs A with at most 4 vertices (and all graphs B). Our last two results prove
the conjectures for all one-vertex cubic graphs B (i.e., for B = F (3, 0) and B = F (1, 1)) and
arbitrary A by actually completely describing the graphs A (even those with semi-edges)
such that A . B.

Theorem 3. For any connected graph A, it holds true that A . F (3, 0) if and only if
A→ F (3, 0).

For the last result, we need to introduce a new notion. A semi-covering projection
from a graph G to a graph H is a pair of vertex and edge mappings which are incidence
preserving (like covering projections), but semi-edges are allowed to be mapped on loops
and the preimage of a loop in H is allowed to be any 2-regular subgraph of G spanning the
preimage of the vertex incident with the loop in H (i.e., a disjoint union of cycles, digons,
loops and open paths). We write G  H when G allows a semi-covering projection onto
H. With the help of this notion we can describe the graphs that are stronger than F (1, 1).
(Note that a graph without semi-edges which semi-covers F (1, 1) also covers F (1, 1).)

Theorem 4. For any connected graph A, it holds true that A . F (1, 1) if and only if
A F (1, 1).
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1 History
Turán-type extremal graph theory asks how many edges an n-vertex simple graph can

have if it does not contain a subgraph isomorphic to a forbidden graph. We introduce the
relevant notation here.

Definition 1.1. We say that a simple graph G avoids another simple graph H, if no
subgraph of G is isomorphic to H. The Turán number ex(n,H) of a forbidden finite
simple graph H (having at least one edge) is the maximum number of edges in an n-vertex
simple graph avoiding H.
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This theory has proved to be useful and applicable in combinatorics, as well as in
combinatorial geometry, number theory and other parts of mathematics and theoretical
computer science. Turán-type extremal graph theory was later extended in several direc-
tions, including hypergraphs, geometric graphs, convex geometric graphs, vertex-ordered
graphs, etc. Here we work with edge-ordered graphs as introduced by Gerbner, Methuku,
Nagy, Pálvölgyi, Tardos and Vizer in [4]. The several extension of extremal graph theory
each proved useful and applicable in different parts of mathematics and this also holds for
the (still new) edge-ordered version discussed here, see e.g. [2]. Let us recall the basic
definitions.

Definition 1.2. An edge-ordered graph is a finite simple graph G together with a linear
order on its edge set E. We often give the edge-order with an injective labeling L : E → R.
We denote the edge-ordered graph obtained this way by GL, in which an edge e precedes
another edge f in the edge-order (denoted by e < f) if L(e) < L(f). We call GL the
labeling or edge-ordering of G and call G the simple graph underlying GL.

An isomorphism between edge-ordered graphs must respect the edge-order. A subgraph
of an edge-ordered graph inherits the edge-order and so it is also an edge-ordered graph.
We say that the edge-ordered graph G contains another edge-ordered graph H, if H is
isomorphic to a subgraph of G otherwise we say that G avoids H.

For a positive integer n and an edge-ordered graph H, let the Turán number ex<(n,H)
be the maximal number of edges in an edge-ordered graph on n vertices that avoids H.
Fixing the forbidden edge-ordered graph H, ex<(n,H) is a function of n and we call it the
extremal function of H. Note that this definition does not make sense if H has no edges,
so we insist that H is non-trivial, that is, it has at least one edge.

Braß, Károlyi and Valtr, [1] introduced convex geometric graphs while Pach and Tardos,
[7] introduced vertex-ordered graphs and studied their extremal theories. In both cases a
simple graph is given extra structure by specifying an order on their vertices (a cyclic order
for convex geometric graphs and a linear order for vertex-ordered graphs). Characterizing
the convex geometric or vertex-ordered graphs with a linear extremal function seems to
be beyond reach (so far), but Füredi, Kostochka, Mubayi and Verstraëte, [3] found such
a characterization for connected convex geometric graphs and also for connected vertex-
ordered graphs. The situation seems to be similar for edge-ordered graphs: while we could
not give a general characterization of edge-ordered graphs with linear extremal functions,
in Section 2 we characterize when connected edge-ordered graphs have linear extremal
functions. This characterization is also a dichotomy result: we show that whenever the
extremal function of a connected edge-ordered graph is not linear, it must be Ω(n log n).

2 Main result
In classical (unordered) extremal theory the following dichotomy is immediate:

Observation 1. If H is a forest, then ex(n,H) = O(n), otherwise ex(n,H) = Ω(nc) for
some c = c(H) > 1.
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The analogous statement fails for edge-ordered graphs: the paper [4] exhibits several
edge-ordered paths with extremal functions Θ(n log n). Therefore, when looking for an
analogous result for edge-ordered graphs, we have a choice to make. Either we want
to characterize the edge-ordered graphs with linear extremal functions, or the ones with
extremal functions that are almost linear, i.e., n1+o(1). In the latter direction the authors
of [4] formulated a conjecture that we recently verified, see [6]. The former problem seems
to be considerably more difficult as there is not even a reasonable conjecture characterizing
all edge-ordered graphs with a linear extremal function.

The first result in this direction appeared in the MSc thesis of the first author, [5]: he
gave a simple characterization of edge-ordered paths with linear extremal functions. In
this section we generalize this result and provide a characterization for connected edge-
ordered graphs with linear extremal functons, see Theorem 1. This is the same restriction
considered in [3] with respect to vertex-ordered and convex geometric graphs. Our theorem
also states that if the extremal function of a connected edge-ordered graph is not linear,
then it is Ω(n log n). Such a dichotomy does not hold for edge-ordered graphs in general
as [4] exhibits a (necessarily disconnected) edge-ordered graph whose extremal function is
Θ(nα(n)), where α is the inverse of the Ackermann function.

In order to formulate the characterization and dichotomy in Theorem 1 we need to
introduce some terminology. The reverse GR of an edge-ordered graph G is obtained from
G by reversing its edge-order. The order chromatic number χ<(G) of an edge-ordered graph
G is the smallest chromatic number χ(H) of a simple graph H such that all edge-orderings
of H contain G. (If no such H exists we write χ<(G) =∞). The order chromatic number
was introduced in the paper [4] to play the role of the (ordinary) chromatic number in a
version of the Erdős-Stone-Simonovits theorem for edge-ordered graphs, see Theorem 2.3
in [4]. For the purposes of our Theorem 1, one does not even have to apply this definition,
it is enough to apply Lemma 2.1 below that gives a simple characterization when the order
chromatic number of an edge-ordered forest is two. We call a vertex v of an edge-ordered
graph close if the edges adjacent to v form an interval in the edge-order.

Lemma 2.1 ([4]). A non-trivial edge-ordered forest has order chromatic number 2 if and
only if it has a proper 2-coloring such that all vertices in one of the color classes are close.

We call the edges e1 < e2 consecutive in an edge-ordered graph G if no edge e of G
satisfies e1 < e < e2. An edge-ordered graph G is a semi-caterpillar if the underlying simple
graph is a non-trivial tree and any pair of consecutive edges in G are either adjacent in G
or they are directly connected by an edge larger than both of them.

Theorem 1 (Dichotomy). If G or its reverse GR is a semi-caterpillar of order chromatic
number 2, then ex<(n,G) = O(n). For any other non-trivial connected edge-ordered graph
G we have ex<(n,G) = Ω(n log n).

Neither direction of the above dichotomy seems to follow from earlier results. For lack
of space we do not give the full proofs, just sketch the main concepts involved. We start
with saying a few words on semi-caterpillars.
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Recall that the definition of semi-caterpillars insists that each pair of consecutive edges
must either be adjacent or they are connected directly by a single larger edge. If we insist
that all pair of consecutive edges are adjacent in an edge-ordered tree, we obtain a sub-class
of semi-caterpillars, let us call these basic caterpillars. Note that the underlying simple
graphs of basic caterpillars are (conventional) caterpillars: each vertex is at distance at
most one from a single path. It is easy to prove that the order chromatic number of all
basic caterpillars is 2. Neither statement generalizes to all semi-caterpillars, but it is not
hard to prove that all vertices of a semi-caterpillar are at distance at most two of a single
path. See Figure 1 for an example of an order chromatic number 2 semi-caterpillar whose
underlying graph is not a caterpillar. The fact that basic caterpillars have linear extremal
functions follows easily from the following two observations about a concept we call basic
extension: A basic extension of a non-trivial edge-ordered graph G is an edge-ordered graph
obtained by adding a single new edge to G that connects one end of the smallest edge of
G to a new vertex outside G and making this new edge smaller than any edge in G.
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Figure 1: A semi-caterpillar with a linear extremal function

Lemma 2.2. A non-trivial edge-ordered graph G without isolated vertices is a basic cater-
pillar if and only if G is obtained (up to isomorphism) from the (only) edge-ordering of the
graph K2 by a sequence of basic extensions.

Lemma 2.3. If G′ is a basic extension of the edge-ordered graph G, then ex<(n,G′) =
ex<(n,G) +O(n).

Lemma 2.2 is very easy to prove and Lemma 2.3 was already implicit in [4]. We use a
similar approach for proving the first statement of Theorem 1, but we will have to resolve
several complications on the way. To formulate a version of Lemma 2.2 for semi-caterpillars
of order chromatic number 2 we will introduce a generalization of basic extensions we call
extensions. We deal with edge-ordered trees, so the underlying simple graphs are bipartite.
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We will have to break symmetry and distinguish the two sides. This is largly motivated
by Lemma 2.1.

An edge-ordered bigraph G is an edge-ordered graph G0 together with a proper 2-
coloring to left and right vertices, so each edge has a left end and a right end. We call
G0 the edge-ordered graph underlying G. Note that we use many terms, like edge-ordered
forest, edge-ordered tree, edge-ordered path in a simpler sense meaning an edge-ordered
graph whose underlying simple graph is a forest, a tree, or a path, respectively. Our use
of edge-ordered bigraph as explained above is more than an edge-ordered graph whose
underlying simple graph is bipartite. The notions of isomorphism, subgraph, contain and
avoid naturally extend to edge-ordered bigraphs.

The paper [4] introduced edge-ordered bigraphs in order to break symmetry. Using
them one can distinguish the two ways a connected edge-ordered graph may be embedded
in another edge-ordered graph if both underlying simple graphs happen to be bipartite:
after making them into edge-ordered bigraphs by designating left and right vertices in both
graphs either all left vertices map to left vertices and the mapping ensures containment
between the edge-ordered bigraphs or all left vertices map to right vertices in which case
it does not.1

Let G be a non-trivial edge-ordered bigraph and let e be the smallest edge in G. We
call the edge-ordered bigraph G′ an extension of G if G′ is obtained from G by adding new
edges to it, such that

1. every new edge connects one end of e to a new degree 1 vertex;
2. all new edges are smaller than the edge e;
3. all new edges incident to the left end of e are smaller than any new edge incident to

the right end of e.

Let T0 denote the unique edge-ordered bigraph with a single edge and two vertices. We are
now ready to formulate our analogue of Lemma 2.2 for semi-caterpillars of order chromatic
number 2.

Lemma 2.4. An edge-ordered graph is a semi-caterpillar of order chromatic number 2 if
and only if it is isomorphic to the underlying edge-ordered graph of an edge-ordered bigraph
obtained by a sequence of extensions from T0.

The proof of this lemma uses among other things the characterization in Lemma 2.1.
If we could complement Lemma 2.4 with an appropriate analogue of Lemma 2.3, that
would finish the proof of the first statement of Theorem 1. This analogue should state
that if G′ is an extension of the edge-ordered bigraph G and their underlying edge-ordered
graphs are G′

0 and G0, respectively, then ex<(n,G′
0)−ex<(n,G0) = O(n) or—at least—that

ex<(n,G′
0) is linear if ex<(n,G0) is linear. Unfortunately, neither statement holds.

This makes our proof of the first statement of Theorem 1 necessarily more involved:
instead of being able to concentrate on a single extension step, we have to argue about the
entire sequence of extensions that produces a certain edge-ordered bigraph.

1The paper [4] used the terms edge-ordered bipartite graph instead of edge-ordered bigraph and the
terms left-contain and right-contain for the two ways an edge-ordered bigraph can contain a path.
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And now we say a few words on the proof of the second statement of Theorem 1 which
states that the extremal functions of connected edge-ordered graphs not covered by the
first statement are Ω(n log n). Its main ingredient is the following lemma. We denote the
simple path on k vertices by Pk and denote its labeling by listing the labels along the path
in the upper index. For example, P 213

4 mentioned in the lemma below is the edge-ordered
3-edge path whose middle edge is the smallest.

Lemma 2.5. Let G be a non-trivial edge-ordered tree. G is a semi-caterpillar if and only
if it does not contain any of the edge-ordered paths P 213

4 , P 1342
5 or P 1432

5 .

Using this lemma one can finish the proof of the second statement of Theorem 1 as
follows. If the order chromatic number of G is not 2, then by the edge-ordered version of the
Erdős-Stone-Simonovits theorem (see [4]) ex<(n,G) = Θ(n2). Recall that G is assumed to
be connected, so if it is not an edge-ordered tree, then its underlying simple graph contains
a cycle Ck and therefore ex<(n,G) ≥ ex(n,Ck) = Ω(n1+1/k). If G is a non-trivial edge-
ordered tree, but not a semi-caterpillar, then it contains one of the three edge-ordered paths
listed in Lemma 2.5 and therefore the extremal function ex<(n,G) is at least the extremal
function of the corresponding edge-ordered path. The extremal functions of these edge-
ordered paths were studied in the paper [4] and we know that ex<(n, P 1432

5 ) = Θ(n log n)
and ex<(n, P 1342

5 ) = Ω(n log n), so we are done in these cases. In the only remaining case
G contains P 213

4 .
The paper [4] calculates the extremal function of P 213

4 also, but unfortunately it is linear.
Now we apply the same argument to the reverse GR of G, which is also connected. We
obtain that if GR is not a semi-caterpillar of order chromatic number 2, then its extremal
function is Ω(n log n) or else it contains P 213

4 . Note that the extremal function of G and
GR coincide, so we are done unless both edge-ordered graphs G and GR contain P 213

4 or,
in other words, G contains both P 213

4 and P 132
4 .

There are edge-ordered graphs with linear extremal functions containing both P 213
4 and

P 132
4 , for example the disjoint union of P 213

4 and P 465
4 . But recall that G is connected.

We finish the proof by showing that the extremal function of any connected edge-ordered
graph G containing both P 213

4 and P 132
4 is Ω(n log n). The proof uses the construction in

Lemma 4.11 of [4].

3 Concluding remarks
Studying the extremal functions of edge-ordered graphs, especially those at the lower

end of the spectrum seems very interesting. In particular, Gerbner, Methuku, Nagy, Pálvöl-
gyi, Tardos and Vizer in [4] studied the extremal functions of many edge-ordered graphs,
among them all edge-ordered paths consisting of up to four edges. In the journal version
of this paper we extend their research to paths of five edges and beyond. Unfortunately,
we do not have enough space to include the highlights of this line of research here.
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lemma by Ruzsa and Szemerédi [21] usually stated in the form that if a graph G admits
δ|V (G)|3 triangles then it can be made triangle-free by the removal of ε|V (G)|2 edges, where
δ depends only on ε. This can be applied to give a combinatorial proof of Roth’s theorem
[19] on 3-term arithmetic progressions, while the hypergraph removal lemma has been used
to prove Szemerédi’s theorem. Removal lemmas were proved for abelian groups by Green
[13], for linear systems of equations by Král, Serra and Vena [16] and for permutations by
Klimošová and Král [15], and by Fox and Wei [10], as well. These have led to applications
in computer science allowing to test many properties by sampling a constant number of
element from a structure [20].

We say that a property of (di)graphs is a set of finite (di)graphs. A (di)graph G is ε-far
from having a property Φ if any (di)graph G′ on the vertex set V (G) that differs by at
most ε|V (G)|2 edges from G does not have the property Φ either. A property Φ is strongly
testable if for every ε > 0 there exists an f(ε) such that if G is ε-far from having the
property Φ then for a (di)graph G the induced (directed) subgraph on f(ε) vertices chosen
uniformly at random does not have the property Φ with probability at least one half. Alon
and Shapira [3] proved that every property of undirected graphs closed under the removal
of edges and vertices is strongly testable, see Lovász and Szegedy for an analytic approach
[17], while Rödl and Schacht generalized this to hypergraphs [18], see also Austin and Tao
[7].

Unfortunately, the dependence on ε can be quite bad already in the case of undirected
graphs: the known upper bounds in the Alon-Shapira theorem are wowzer functions due
to the iterated involvement of Szemerédi’s regularity lemma. We call a property easily
testable if f(ε) can be bounded by a polynomial of ε. Even triangle-free graphs are hard
to test, i.e., this class is not easily testable: Behrend’s construction [8] on sets of integers
without 3-term arithmetic progression leads to a lower bound of magnitude εc log(ε). Alon
proved that H-freeness is easily testable in case of undirected graphs if and only if H is
bipartite. For forbidden induced subgraphs Alon and Shapira gave a characterization [4],
where there are very few easy cases, and ordered graphs studied by Gishboliner and Tomon
are similar [11]. On the other hand, 3-colorability and, in general, "partition problems"
surprisingly turned out to be easily testable, see Goldreich, Goldwasser and Ron [12]. Even
a conjecture to draw the borderline between easy and hard properties seems beyond reach.

The goal of this paper is to study testability of posets as special digraphs. By a poset we
mean a set equipped with a partial order that is anti-reflexive, asymmetric and transitive.

One can show that every property of posets closed under the removal of edges and
vertices is strongly testable, similarly to the proof of Alon and Shapira [3], using the poset
version of Szemerédi’s regularity lemma proved by Hladky, Máthé, Patel and Pikhurko
[14]). We show that properties of posets defined by forbidden subposets are easily testable.
This is equivalent to the following removal lemma with polynomial bound. The height of
a finite poset P is defined as the length of its longest chain, while the width is the size of
the largest antichain, denoted by h(P ) and w(P ), respectively. The chain of length h is
denoted by Ch.

Given two finite posets P,Q a mapping f : Q → P is a homomorphism if it is order-
preserving, i.e., f(x) ≺ f(y) for every x ≺ y. The probability that a uniform random
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mapping from Q to P is a homomorphism is denoted by t(Q,P ).

Theorem 1.1. For every ε > 0 and positive integers h,w there exists δ > 0 such that for
every finite poset Q of height h and width w and an arbitrary finite poset P , if t(Q,P ) < δ
then there exists a Q-free poset P ′ on the base set of P obtained by deleting at most ε|P |2
edges of P . Moreover, P ′ is Ch-free and the dependence of δ on ε is polynomial.

We use this theorem to prove testability for (not necessarily finite) classes of finite
posets. The height and width of P of a set of finite posets are

h(P) = min
P∈P

h(P ) w(P) = min
P∈P:

h(P )=h(P)

w(P ).

Theorem 1.2. For every family of finite posets P the property of not containing any
member of P as a subposet is easily testable. Moreover, the number of queries depends
only on h(P) and w(P).

We say that two properties Φ1 and Φ2 of posets are not distinguishable if for every
ε > 0 and i = 1, 2 there exists N such that for every poset P on at least N elements with
property Φi there exists a poset P ′ with property Φ3−i such that P ′ is obtained by deleting
at most ε|P |2 edges of P .

Theorem 1.3. For every family of finite posets P there exists an h such that the property
of not containing any member of P as a subposet is not distinguishable from the property
of not containing the chain Ch as a subposet.

Note that in our case it is meaningless to allow adding edges to the original poset, since
adding edges will not change whether the poset is P-free.

The comparability graph G corresponding to a poset P has vertex set V (G) = P and
edge set E(G) = {(x, y) : x ≺ y or y ≺ x}. Alon and Fox proved that it is hard to test if
a given graph is a comparability graph (or if it is perfect) [6]. Besides posets our results
apply to comparability graphs, too. Given a set of (possibly infinitely many) finite graphs
F we define the chromatic number χ(F) and the independence number α(F) as follows.

χ(F) = min
F∈F

χ(P ) α(F) = min
F∈F :

χ(F )=χ(F)

α(F ).

Theorem 1.4. For every family of finite graphs F the property of a given comparability
graph not containing any member of F as a subgraph is easily testable. Moreover, the
number of queries depends only on χ(F) and α(F).

Theorem 1.5. For every family of finite graphs F the property of being a comparability
graph and not containing any member of F as a subgraph is not distinguishable from the
property of being a comparability graph and having chromatic number at most χ(F)− 1.

The proofs are based on the same ideas as in case of posets, we do not include them.
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2 Density bounds
The complete h-partite poset with antichains of size w will be denoted byKh×w(= Kw,w,...,w).
In particular, Kh×1 is a chain of length h, but for this we will use the shorthand notation
Ch.

The next lemma provides a lower bound on the density of the complete h-partite poset
Kh×w in terms of the density of the chain of length h. The proof uses standard techniques
appearing in the solution to the Zarankiewicz problem. We will use the notation [n] :=
{1, 2, . . . , n}.

Lemma 2.1. For every poset P and positive integers h,w the inequality

t(Kh×w, P ) ≥ tw
2

(Ch, P )

holds.

Proof. The following two claims imply the lemma.
Claim 2.2.

t(Kh×w, P ) ≥ tw(Kw,1,w,1,..., P )

Proof. Let (xi,j)i∈[h],j∈[w] be chosen uniformly and independently at random.

t(Kh×w, P ) = P(xi,j)i∈[h],j∈[w]

(
∀i′ ∈ [h− 1], j, j′ ∈ [w] xi′,j ≺ xi′+1,j′

)
= E(xi,j)i∈[h],j∈[w]

i odd

[
P(xi,j)i∈[h],j∈[w]

i even

(
∀i′ ∈ [h− 1], j, j′ ∈ [w] xi′,j ≺ xi′+1,j′

∣∣∣ (xi,j)i∈[h],j∈[w] , i odd )] .
Here we split Kh×w into w edge-disjoint copies of Kw,1,w,1,.... Since the events corresponding
to elements in the same even layer are independent we obtain that this equals

E(xi,j)i∈[h],j∈[w]

i odd

[
Pw(xi,1)i∈[h]

i even

(
∀i′ ∈ [h− 1], j′ ∈ [w]

if i′ odd then xi′,j′≺xi′+1,1

if i′ even then xi′,1≺xi′+1,j′

∣∣∣ (xi,j)i∈[h],j∈[w] , i odd
)]

≥ Ew(xi,j)i∈[h],j∈[w]

i odd

[
P(xi,1)i∈[h]

i even

(
∀i′ ∈ [h− 1], j′ ∈ [w]

if i′ odd then xi′,j′≺xi′+1,1

if i′ even then xi′,1≺xi′+1,j′

∣∣∣ (xi,j)i∈[h],j∈[w] , i odd
)]

= Pw (xi,1)i∈[h] for i even
(xi,j)i∈[h],j∈[w] for i odd

(
∀i′ ∈ [h− 1], j′ ∈ [w]

if i′ odd then xi′,j′≺xi′+1,1

if i′ even then xi′,1≺xi′+1,j′

)
= tw(Kw,1,w,1,..., P ),

where we have applied Jensen’s inequality.

Claim 2.3.
t(Kw,1,w,1,..., P ) ≥ tw(Ch, P )

The proof of this Claim follows the same lines as the previous one, we do not include
it. The lemma follows.
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3 Removal lemmas with polynomial bounds
First we prove a removal lemma for chains.

Lemma 3.1. For every ε > 0 and positive integer h there exists a δ > 0 such that for
every finite poset P if t(Ch, P ) < δ then there exists a Ch-free poset P ′ on the base set of
P obtained by deleting at most ε|P |2 edges of P . Moreover, the dependence of δ on ε is
polynomial: δ =

⌈
3
ε

⌉−h.
Remark 3.2. For a fixed h the dependence of δ on ε is similar to that in the lemma. Consider
a random h-partite poset with classes S1, . . . , Sh of equal size large enough, where for two
element x ∈ Si, y ∈ Si+1 with probability h2ε < 1 we have x ≺ y. The expected value
of t(Ch, P ) is εh−1hh−2. On the other hand, it is not hard to see that we need to remove
essentially ε|P |2 edges to make the poset Ch-free. (This is the expected number of edges
between two consecutive classes.)

Proof. (of Lemma 3.1) Set γ =
⌈
3
ε

⌉−1. We partition the poset P into classes S1, . . . S1/γ of
size differing by at most one such that if x ≺ y holds for x ∈ Si and y ∈ Sj then i ≤ j.
This is possible, since every finite poset has a linear extension.

Now we will delete edges in order to get a Ch -free poset.
First, delete edges inside the classes – this way we delete at most γ|P |2 edges. The

remaining digraph is still a poset, denote it by P1.
We define a function r : P1 → [1/γ]. Given an element x ∈ Si the integer r(x) will be

the largest integer such that x is the maximal element of "many" chains with length r(x).
Set r(x) = 1 for every x ∈ S1.
Assume that for i < 1/γ the function r is defined on ∪ij=1Sj.
Given x ∈ Si+1 let r(x) be the largest integer such that

∣∣{y : y ≺ x in P1, r(y) =
r(x)− 1}

∣∣ ≥ γ|P |, and 1 if there is no such integer. Note that r(x) ≤ r(y) holds for every
x ≺ y. There are at least (γ|P |)r(x)−1 chains of length r(x) ending at x for every x ∈ Si+1

such that r is strictly increasing on these chains.

Once the function r is defined we delete every edge (x, y) in P1 for y ≺ x if r(x) = r(y).
This concerns at most γ|P |2 edges, otherwise r(x) would be larger. Note that the remaining
digraph P2 is still a poset and for every x there are still at least (γ|P |)r(x)−1 chains of length
r(x) ending at x such that r is strictly increasing on these chains.

There is no element, where r takes value (h + 1), since every such element would be
the end of at least (γ|P |)h chains of length at least (h+ 1), but we do not have that many
different chains of length h. By the same reason the number of elements, where r takes
value h, is at most γ|P |. We delete every edge adjacent to these elements: this way we
delete at most γ|P |2 edges, denote the remaining poset by P ′.

The total number of edges deleted is at most 3γ|P |2 < ε|P |2.
The poset P ′ does not contain any chain of length at least h, since edges where the

value of r at the end-vertex is at least h has been deleted, while edges where the value of
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r at the end-vertex is not greater than at the starting vertex have also been deleted. This
finishes the proof of the lemma.

Proof. (of Theorem 1.1) Set δ = d3
ε
e−hw2 . The poset Q is a subposet of Kh×w, hence

Lemma 2.1 implies δ > t(Q,P ) ≥ t(Kh×w, P ) ≥ tw
2
(Ch, P ). By Lemma 3.1 there exists a

Ch-free subposet P ′ of P obtained by deleting at most ε|P |2 edges.

Corollary 3.3. For every ε > 0 and positive integers h,w there exists δ > 0 such that for
every finite graph F of chromatic number h and independence number w and an arbitrary
finite comparability graph G if t(F,G) < δ then there exists an F -free comparability graph
G′ on the vertex set of G obtained by deleting at most ε|V (G)|2 edges of G. Moreover, G′

is Kh-free and the dependence on ε is polynomial: δ =
⌈
3
ε

⌉−hw2

.

Proof. The graph F is a subgraph of the multipartite Turán graph T with h classes each
of size w, hence t(F,G) ≥ t(T,G). Let P be one of the posets whose comparability graph
is G. Note that t(T,G) ≥ t(Kh×w, P ), since we may assume that T is the comparability
graph of Kh×w, hence every homomorphism of Kh×w to P is a comparability-preserving
map from T to G, i.e., a graph homomorphism.

We obtain by Lemma 2.1 that δ > t(F,G) ≥ t(Kh×w, P ) ≥ tw
2
(Ch, P ).

Lemma 3.1 implies that there exists a Ch-free subposet P ′ of P obtained by deleting at
most ε|P |2 edges, and its comparability graph G′ satisfies the conditions of the corollary.

4 Property testing
Proof. (of Theorem 1.2) Set h = h(P) and w = w(P). Consider an ε > 0 and a poset
P such that after removing ε|P |2 the resulting poset still contains a subposet in P . By
Corollary 3.3 the probability that hw elements chosen uniformly at random contain Kh×w,
and hence a poset in P as a subposet is at least

⌈
3
ε

⌉−hw2

. If we choose hw
⌈
3
ε

⌉hw2

elements
uniformly at random then the probability of finding a poset in P as subposet is more than
a half.

Proof. (of Theorem 1.3) If a poset does not contain the chain Ch(P) as a subposet then it
does not contain any poset from P .

In order to prove the other direction consider a poset Q ∈ P with height h(P). If
a poset P does not contain Q as a subposet then there is no injective homomorphism
from Q to P , hence t(Q,P ) ≤ |P |−1|Q|2. Theorem 1.1 shows that by the removal of
3|P |−1/(h(Q)w(Q)2)|Q|1/(2h(Q)w(Q)2)|P |2 edges from P one obtains a Ch(P)-free poset.

References
[1] Alon, Noga and Fischer, Eldar and Krivelevich, Michael and Szegedy, Mario (2000). Efficient testing

of large graphs. Combinatorica, 20(4), 451-476.



A polynomial removal lemma for posets 701

[2] Alon, Noga and Shapira, Asaf (2003). Testing subgraphs in directed graphs. In Proceedings of the
thirty-fifth annual ACM symposium on Theory of computing (pp. 700-709).

[3] Alon, Noga and Shapira, Asaf (2005). Every monotone graph property is testable. In Proceedings of
the thirty-seventh annual ACM symposium on Theory of computing (pp. 128-137).

[4] Alon, Noga and Shapira, Asaf (2006). A characterization of easily testable induced subgraphs. Com-
binatorics, Probability and Computing, 15(6), 791-805.

[5] Alon, Noga and Fox, Jacob (2011). Testing perfection is hard. arXiv preprint arXiv:1110.2828.

[6] Alon, Noga and Fox, Jacob (2015). Easily testable graph properties. Combinatorics, Probability and
Computing, 24(4), 646-657.

[7] Austin, Tim and Tao, Terence (2010). Testability and repair of hereditary hypergraph properties.
Random Structures & Algorithms, 36(4), 373-463.

[8] Behrend, Felix A (1946). On sets of integers which contain no three terms in arithmetical progression.
Proceedings of the National Academy of Sciences, 32(12), 331-332.

[9] Fox, Jacob (2011). A new proof of the graph removal lemma. Annals of Mathematics, 561-579.

[10] Fox, Jacob and Wei, Fan (2018). Fast property testing and metrics for permutations. Combinatorics,
Probability and Computing, 27(4), 539-579.

[11] Gishboliner, Lior and Tomon, István (2021). Polynomial removal lemmas for ordered graphs. arXiv
preprint arXiv:2110.03577.

[12] Goldreich, Oded and Goldwasser, Shari and Ron, Dana (1998). Property testing and its connection
to learning and approximation. Journal of the ACM (JACM), 45(4), 653-750.

[13] Green, Ben (2005). A Szemerédi-type regularity lemma in abelian groups, with applications. Geometric
& Functional Analysis GAFA, 15(2), 340-376.
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Abstract

There are three essentially necessary conditions for perfect tilings in hypergraphs,
which correspond to barriers in space, divisibility and covering. It is natural to ask
when these conditions are asymptotically sufficient. Our main result confirms this
for hypergraph families that are approximately closed under taking a typical induced
subgraph of constant order. As an application, we recover and extend a series of
well-known results for perfect tilings in hypergraphs and related settings involving
vertex orderings and rainbow structures.
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1 Introduction
A basic question in combinatorics is whether a combinatorial object on a ground set of
vertices contains a particular substructure that spans all vertices. Since the corresponding
decision problems are typically computationally intractable, the ‘extremal’ approach has
focused on identifying easily verifiable sufficient conditions, a classic example being mini-
mum degree conditions in the graph setting. Over the past decades, a robust literature has
developed around these problems [9, 13, 21, 22], yet many questions remain widely open.

More recently, efforts have increasingly been dedicated to formulating an axiomatic
approach. The idea is to identify a set of ‘simple’ conditions that are essentially neces-
sary for the existence of the desired substructure. One then aims to show that satisfying
these properties in a robust manner guarantees the substructure in question. Important
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milestones in this line of research are due to Keevash and Mycroft [10], Han [5] (perfect
matchings) and Keevash [8] (designs) in the hypergraph setting. For graphs, analogous
results have been obtained by Kühn, Osthus and Treglown [15] (Hamilton cycles), Knox
and Treglown [11], Lang and Sanhueza-Matamala [16] (easily separable graphs) as well as
Hurley, Joos and Lang [7] (perfect mixed tilings).

We continue this branch of research by introducing a framework for perfect tilings in
hypergraphs. The literature on this subject has identified three natural barriers that pre-
vent perfect tilings, which correspond to obstructions in space, divisibility and covering.
Freschi and Treglown [4] raised the ‘meta question’ whether this already includes all rel-
evant obstacles. We answer this in the affirmative for hypergraphs families (and related
structures) whose features are approximately replicated by a typical subgraph of constant
order. Our main contribution states that any hypergraph which robustly overcomes each
of the obstructions must already contain a perfect tiling.

As an application, we recover and extend the milestones for perfect tilings under mini-
mum degree conditions in graphs [12, 14] and hypergraphs [6, 19] as well as recent break-
throughs in the ordered setting [4], quasirandom setting [2] and the rainbow setting [1, 18].

2 A framework for hypergraph tiling
In the following, we formulate a simplified version of our main result. A k-uniform hyper-
graph (or k-graph for short) G consists of vertices V (G) and edges E(G), where each edge
is a set of k vertices. Given another k-graph F , our goal is to find a perfect F -tiling in G,
which is a collection of pairwise disjoint copies of F that together cover all vertices of G.
Note that the special case, when F is a single edge, corresponds to a perfect matching.
We denote by Hom(F ;G) the set of homomorphisms from F to G, meaning the functions
φ : V (F )→ V (G) that map edges of F to edges of G.

Obstacles for perfect tilings

Let us review three essentially necessary conditions for perfect tilings in hypergraphs.

Space. A first obstruction to perfect tilings involves space. For example, a simple in-
stance of the space barrier is obtained by taking a complete graph and deleting the edges
within a subset of more than half of the vertices. We formalise the corresponding space
property via a linear programming relaxation. A perfect fractional F -tiling G is a function
ω : Hom(F ;G)→ [0, 1] such that for all v ∈ V (G), we have

∑
φ∈Hom(F ;G) ω(φ)|φ−1(v)| = 1.

Let SpaF be the set of k-graphs with a perfect fractional F -tiling.

Divisibility. Another type of obstacle for perfect tilings arises from divisibility. For
instance, it is not possible to find a perfect matching in the union of two disjoint odd
cliques — a basic example of the divisibility barrier. We can capture this phenomenon as
follows. For a homomorphism φ ∈ Hom(F ;G), denote by 1φ ∈ NV (G) the indicator vector
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of the image of φ, which satisfies 1φ(v) = |φ−1(v)| for each v ∈ V (G). Similarly, for a
vertex u ∈ V (G), denote by 1u the indicator vector with 1u(u) = 1 and zero otherwise.
The F -lattice of G is the additive subgroup L(F ;G) ⊆ ZV (G) generated by the vectors 1φ
with φ ∈ Hom(F ;G). We say that L(F ;G) is complete if it contains all transferrals 1v−1u
with u, v ∈ V (G). Denote by DivF the set of k-graphs with complete F -lattice.

Cover. There are hypergraphs which satisfy the space and divisibility condition, but do
not contain a perfect tiling simply because some vertices are not on any copy of F at
all. Such a configuration is called a cover barrier. Motivated by this, we say that G is
F -covered if for every vertex v ∈ V (G), there is a homomorphism φ ∈ Hom(F ;G) such
that |φ−1(v)| = 1. We denote by CovF the set of F -covered k-graphs.

Necessity. The next claim confirms that the space, divisibility and cover properties are
essentially necessary for the existence of a perfect tiling. We abbreviate m = |V (F )|.

Observation 2.1. If G has more than m vertices and contains a perfect F -tiling after
deleting any choice of m vertices. Then G satisfies SpaF , DivF and CovF .

Proof. The cover property follows trivially. The space property can be obtained by aver-
aging over all fractional perfect F -tilings obtained after deleting m vertices. For the com-
pleteness of the lattice L(F ;G), let G′ ⊆ G be obtained by deletingm−1 arbitrary vertices,
and let u, v ∈ V (G′). By assumption, G′−u has a perfect F -tiling Fu, and G′−v has a per-
fect F -tiling Fv. We identify these tilings with the corresponding elements of Hom(F ;G).
It follows that L(F ;G) contains the transferral 1v − 1u =

∑
φ∈Fv

1φ −
∑

φ∈Fu
1φ, as de-

sired.

Sufficient conditions for perfect matchings. Now we are ready to formulate our main
result, which inverts the implication of Observation 2.1. It states that every hypergraph
which robustly overcomes the space, divisibility and cover barrier has a perfect tiling. Our
notion of robustness is formalised with the following key definition.

Definition 2.2 (Property graph). For a k-graph G and property P , the property graph,
denoted by P (s)(G;P), is the s-uniform hypergraph on vertex set V (G) with an edge
S ⊆ V (G) whenever the induced subgraph G[S] satisfies P .

Informally, we regard G as ‘robustly’ satisfying P if P (s)(G;P ′) has minimum degree
vertex 1 − exp(−Ω(s)) where P ≈ P ′. However, in practise a lower degree condition
suffices due the possibility of ‘boosting’. Let δ(s) be the minimum vertex degree threshold
for perfect s-uniform matchings, that is the least δ ∈ [0, 1] such that for all µ > 0 and
n large enough and divisible by s, every n-vertex s-graph P with δ1(P ) ≥ (δ + µ)

(
n−1
s−1

)
admits a perfect matching.

Theorem 2.3. For every k-graph F on m vertices, s ≥ 1 and µ > 0 there is n0 such that
for all n ≥ n0 divisible by m the following holds. Let G be a k-graph on n vertices with

δ1
(
P (s)(G; SpaF ∩DivF ∩CovF )

)
≥ (δ(s) + µ)

(
n−1
s−1

)
.
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Then G has a perfect F -tiling.

Keevash and Mycroft [10] as well as Han [5] investigated similar phenomena in the
setting of perfect matchings. These results differ in their notion of robustness and in their
proof techniques. In particular, Keevash and Mycroft [10] introduced the concept of com-
pleteness for lattices and used it to find a suitable allocation for the Hypergraph Blow-up
Lemma. Independently, Lo and Markström [17] developed an absorption-based approach
to hypergraph tiling using a (more restrictive) form of lattice completeness. Han [5] com-
bined and extended these ideas to give a simpler proof of the Keevash–Mycroft Theorem
avoiding the (Strong) Hypergraph Regularity Lemma.

Our main framework contributes to this line of research in two ways. Firstly, the inter-
face is simple but practical. For host graph families that are approximately closed under
taking typical induced subgraphs of constant order, Theorem 2.3 practically decomposes
the problem of finding perfect tilings into verifying the space, divisibility and cover prop-
erties separately, which greatly simplifies the analysis. The fact that the building blocks
of these properties are formulated in terms of homomorphisms adds a lot of flexility to
this approach. A more general result, which also applies to structures beyond hypergraphs
is proved in the full version of the paper. In combination, we obtain short and insightful
proofs of many old and new results.

The second important point about Theorem 2.3 is that the proof itself is quite short.
The argument is self-contained, after discounting classic insights from combinatorics, and
it does not involve the Regularity Lemma. The techniques can easily be extended to
other configurations involving exceptional vertices and the partite setting. Finally, our
framework can also be used to derive stability results via the theory of property testing.

Proof outline. Let us sketch the proof of Theorem 2.3. Consider a k-graph G which
robustly satisfies P := SpaF ∩DivF ∩CovF . Our goal is to find a perfect F -tiling in G. For
perfect matchings, this has been done by considering a partition V of V (G) together with
a reduced k-graph Γ on the clusters of V , whose edges track the local edge densities of G.
Under the right notion of robustness, this implies that Γ also satisfies P . This framework
allows to find a perfect matching in G either via a Hypergraph Blow-up Lemma [10] or
via an absorption argument plus some classic insights on matchings in sparse graphs [5].
The main idea of our proof is to replace the reduced graph Γ ∈ P , which approximates the
whole structure of G, with a family of reduced k-graphs R ⊆ P , that describe parts of the
local structure of G with higher accuracy.

To illustrate this, let us outline why G contains for some k-graph R ∈ P the blow-
up R∗.1 Recall that by assumption the property s-graph P := P (s)(G;P) is quite dense.
Thus, by an old result of Erdős [3], we may find a complete s-partite s-graph K ⊆ P with
parts of size b where b is much larger than s. Note that each edge S ∈ E(K) corresponds
to an element G[S] of P , but for distinct edges these elements might differ or not have
their vertices in the same parts of K. To deal with this, we give a colour to each of these

1Meaning that R∗ is obtained by replacing each vertex of R by constant number of vertices and replacing
the edges with complete partite subgraphs.
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configurations and apply Ramsey’s theorem. This results in a subgraph R∗ ⊆ K with
(somewhat smaller) parts of size b′ and an s-vertex k-graph R ∈ P such that every edge
S ∈ E(R∗) induces an k-graph isomorphic to R with its vertices in the ‘same’ parts; just
as desired. We informally call R∗ a ‘P-blow-up’ with ‘local reduced graph’ R.

Given this observation, the proof of Theorem 2.3 proceeds in two steps implementing
the Absorption Method [20]. First we match most of the vertices, then we incorporate the
leftover vertices. For the first step, we show that under the assumption that the property
graph has large minimum vertex degree one can partition most of the vertices of G with
P-blow-ups. We then find an almost perfect tiling in each of these blow-ups. For the
second step, we show that every set of m vertices is anchored in many P-blow-ups. This
allows us to reserve a small set of P-blow-ups beforehand to host a special structure, which
can be used to absorb the leftover vertices.

The remaining challenge of the proof then consists in spelling out the embedding ar-
guments into the blow-ups. This step is equivalent to an allocation in the context of a
Blow-up Lemma applied to a ‘global reduced graph’ Γ. However, in our context we allo-
cate to local reduced graph R. Since its blow-up R∗ is complete partite this immediately
results in the desired embedding. So in particular, we may avoid the technical details of
using a (Hypergraph) Blow-up Lemma.
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Abstract

For a given graph H, we say that a graph G has a perfect H-subdivision tiling
if G contains a collection of vertex-disjoint subdivisions of H covering all vertices of
G. Let δsub(n,H) be the smallest integer k such that any n-vertex graph G with
minimum degree at least k has a perfect H-subdivision tiling. For every graph
H, we asymptotically determined the value of δsub(n,H). More precisely, for ev-
ery graph H with at least one edge, there is a constant 1 < ξ∗(H) ≤ 2 such that
δsub(n,H) =

(
1− 1

ξ∗(H) + o(1)
)
n if H has a bipartite subdivision with two parts

having different parities. Otherwise, the threshold may depend on the parity of n.
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1 Introduction
Embedding a large sparse subgraph into a dense graph is one of the most central problems
in extremal graph theory. It is well-known that any graph G with minimum degree at least
⌊v(G)

2
⌋ has a Hamiltonian cycle, hence also a perfect matching if the number of vertices

v(G) of G is even. A natural generalization of a perfect matching is a perfect H-tiling,
for a general graph H. We say G has a perfect H-tiling if G contains a collection of
vertex-disjoint copies of H, whose union covers all vertices of G. For a positive integer n
divisible by v(H), we denote by δ(n,H) the minimum integer k such that any n-vertex
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graph G with minimum degree at least k has a perfect H-tiling. For any integer r ≥ 2, the
Hajnal-Szemerédi [11] theorem states that the number δ(n,Kr) is equal to

(
1− 1

r

)
n.

The minimum degree threshold of perfect tiling for general graph H was first proved
by Alon and Yuster [2]. They showed that if n is divisible by v(H), then δ(n,H) ≤(
1− 1

χ(H)

)
n + o(n), where χ(H) is a chromatic number of H. Komlós, Sárközy, and Sze-

merédi [18] improved the o(n) term in Alon-Yuster theorem to some constant C = C(H),
which settled the conjecture of Alon and Yuster [2]. Another direction for an asymptotic
extension of Hajnal-Szemerédi theorem was proved by Komlós [17]. We write the critical
chromatic number of H as χcr(H), which is defined as χcr(H) = (χ(H)−1)v(H)

v(H)−σ(H)
, where σ(H)

is the minimum possible size of color class in the optimal proper coloring of H. Komlós
showed that for any γ > 0, there exists n0 = n0(γ,H) such that if n ≥ n0, then for any
n-vertex graph G whose minimum degree is at least

(
1− 1

χcr(H)

)
n contains an H-tiling

which covers at least (1 − γ)n vertices of G. Komlós [17] conjectured that the number
of uncovered vertices can be reduced to a constant and this conjecture was confirmed by
Shokoufandeh and Zhao [30]. More precisely, the following holds.

Theorem 1.1 (Shokoufandeh and Zhao [30]). Let H be a graph. Then there exists a
constant C = C(H), which only depends on H such that any graph G on n-vertices with
minimum degree at least

(
1− 1

χcr(H)

)
n contains a H-tiling which covers all but at most C

vertices of G.

The almost exact value of δ(n,H) for every graph H was determined by Kühn and
Osthus [23] up to an additive constant depending only on H.

Theorem 1.2 (Kühn and Osthus [23]). Let H be a graph and n be a positive integer which
divisible by v(H). Then there exist a constant C = C(H) and χ(H)− 1 < χ∗(H) ≤ χ(H)
depending only on H such that(

1− 1

χ∗(H)

)
n− 1 ≤ δ(n,H) ≤

(
1− 1

χ∗(H)

)
n+ C.

Indeed, in [23], the authors stated how we can compute χ∗(H) for a given graph H.

1.1 Main results

Motivated by the Kühn-Osthus theorem on perfect H-tilings, several variations of Theo-
rem 1.2 were considered. For instances, see [5, 10, 12, 13, 14, 22, 26].

We consider a problem related to the concept of perfect H-tilings and subdivision
embeddings. Consider graphs G and H. We say for a graph H ′ is a subdivision of H if
H ′ is obtained from H by replacing edges of H to vertex-disjoint paths. Let H and G be
graphs. An H-subdivision tiling is a collection of disjoint union of subdivisions of H. We
say that G has a perfect H-subdivision tiling if G has an H-subdivision tiling which covers
all vertices of G. A natural question would be to determine the minimum degree threshold



On Perfect Subdivision Tilings 710

which ensures the existence of perfect H-subdivision tiling in any n-vertex graph G. We
define this minimum degree threshold as the following.

Definition 1.3. Let H be a graph. We denote the minimum degree threshold for perfect
H-subdivision tilings by δsub(n,H), which is the smallest integer k such that any n-vertex
graph G with minimum degree at least k has a perfect H-subdivision tiling.

If H has no edges, then perfect H-subdivision tiling exists if and only if v(G) is divisible
by v(H), regardless of the minimum degree δ(G) of G. Thus, from now on, we only consider
graphs with at least one edge.

Since embedding bipartite graphs generally requires less minimum degree than non-
bipartite graphs, we want to cover most of the vertices of the host graph with subdivisions
of H that are bipartite. Suppose every bipartite subdivision of H is in some sense balanced.
In that case, one cannot perfectly tile them in a highly unbalanced complete bipartite graph
which has a smaller minimum degree than a balanced complete bipartite graph. For this
reason, we need to measure how unbalanced bipartite subdivisions of H can be, as it poses
some space barriers on the problem.

For this purpose, we introduce the following two definitions.

Definition 1.4. Let H be a graph and X ⊆ V (H). We define a function fH : 2V (H) → R
as fH(X) = v(H)+e(H[X])+e(H[Y ])

|X|+e(H[Y ])
where Y = V (H) \X.

Definition 1.5. Let H be a graph. We define ξ(H) := min{fH(X) : X ⊆ V (H)}.

Note that we always have 1 < ξ(H) ≤ 2. Another crucial factor for perfect subdivision
tiling problem is the divisibility issue. Assume that all bipartite subdivisions of H have
bipartitions with both parts having the same parity. If G is a complete bipartite graph
Ka,b with a, b having different parities, then we cannot find a perfect H-subdivision tiling
in G, as it poses some divisibility barriers on the problem. Hence, we need to introduce
the following definitions concerning the difference between two parts in bipartitions of
subdivisions of H and their highest common factor.

Definition 1.6. Let H be a graph. We define C(H) := {(|X|+e(H[Y ]))−(|Y |+e(H[X])) :
X ⊆ V (H), Y = V (H) \ X}. We denote by hcfξ(H) the highest common factor of all
integers in C(H). (If C(H) = {0}, we define hcfξ(H) = ∞.)

By considering the space and divisibility barriers, we introduce the following parameter
measuring both obstacles for the problem. We will show that this is the determining factor
for δsub(n,H).

Definition 1.7. Let H be a graph. We define

ξ∗(H) :=


ξ(H) if hcfξ(H) = 1,

max{3
2
, ξ(H)} if hcfξ(H) = 2,

2 otherwise.
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We are now ready to state our main theorems. The following theorem gives an asymp-
totically exact value for δsub(n,H) except only one case, that is when hcfξ(H) = 2.

Theorem 1.8. Let H be a graph with hcfξ(H) ̸= 2. For every γ > 0, there exists an
integer n0 = n0(γ,H) such that the following holds. For every integer n ≥ n0,(

1− 1

ξ∗(H)

)
n− 1 ≤ δsub(n,H) ≤

(
1− 1

ξ∗(H)
+ γ

)
n

This theorem asymptotically determine δsub(n,H) as long as hcfξ(H) ̸= 2. If hcfξ(H) =
2, then the parity of n is also important. The following theorem asymptotically determines
δsub(n,H) for this case.

Theorem 1.9. Let H be a graph with hcfξ(H) = 2. For every γ > 0, there exists an
integer n0 = n0(γ,H) such that the following holds. For every integer n ≥ n0,

1

2
n− 1 ≤ δsub(n,H) ≤

(
1

2
+ γ

)
n if n is odd,(

1− 1

ξ∗(H)

)
n− 1 ≤ δsub(n,H) ≤

(
1− 1

ξ∗(H)
+ γ

)
n if n is even.

One consequence of Theorems 1.8 and 1.9 is that the value of δsub(n,Kr) behaves
unpredictably when r is small. Indeed, δsub(n,K2) =

(
1
3
+ o(1)

)
n and for each r ∈ {3, 4, 5},

we have δsub(n,Kr) =
(

2
r+1

+ o(1)
)
n. For the case r = 7, if n is even, we have δsub(n,K7) =(

1
3
+ o(1)

)
n otherwise, we have δsub(n,K7) =

(
1
2
+ o(1)

)
n. Finally, for every r ≥ 8 and r =

6, we have δsub(n,Kr) =
(
1
2
+ o(1)

)
n. This is contrasting to normal H-tiling problem. This

means determining factors for minimum degree thresholds of perfect H-tilings and perfect
H-subdivision tilings are essentially different. Probably, the most interesting difference
between the perfect H-tiling and the perfect H-subdivision tiling is that the monotonicity
does not hold for subdivision tiling. For a perfect tiling, if H2 is a spanning subgraph
of H1, then obviously δ(n,H2) ≤ δ(n,H1). However, for perfect subdivision tiling, this
does not hold in many cases. For example, our results implies δsub(n,K4) =

2
5
n + o(n) <

δsub(n,C4) =
1
2
n+ o(n).

As ξ∗(H) is the determining factor for the minimum degree threshold, it is convenient for
us to specify a bipartite subdivision achieving the value ξ∗(H). We introduce the following
definition.

Definition 1.10. Let H be a graph. We denote by XH a subset of V (H), where fH(XH) =
ξ(H). If there are multiple choices of XH , we fix one choice arbitrarily. We define a graph
H∗ obtained from H by replacing all edges in H[XH ] and H[V (H)\XH ] to paths of length
two.

Note that H∗ is a subdivision of H, which is a bipartite graph and v(H∗) = v(H) +
e(H[XH ]) + e(H[V (H) \XH ]).
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We observe that the inequality ξ(H) ≥ χ∗(H∗) holds. Hence, if hcfξ(H) ≤ 2, we may
use Theorem 1.1 to find an H∗-tiling that covers all but at most constant number of vertices
of G in a graph G with δ(G) ≥

(
1− 1

ξ(H)
+ γ

)
n. In order to cover the leftover vertices,

we use the absorption method. The absorption method was introduced in [28], and since
then, it has been used to solve various crucial problems in extremal combinatorics. The
main difficulty to apply the absorption method in our setting is that in many cases, the
host graph is not sufficiently dense to guarantee that any vertices can be absorbed in the
final step. To overcome this difficulty, we use the regularity lemma and an extremal result
on the domination number to obtain some control over the vertices that can be absorbed.

2 Proof overview

2.1 Lower bounds

It is easy to check that the following observation holds.

Observation 2.1. Let H be a graph and let F be a bipartite subdivision of H with bipar-
tition (A,B). Then |B|

|A| ≤
1

ξ(H)−1
.

This observation allows us to obtain the following proposition, which poses a lower
bound for δsub(n,H) when we do not care about hcfξ(H). Since ξ(H) measures how un-
balanced a bipartition of a subdivision of H can be, if the given host graph is a sufficiently
unbalanced complete bipartite graph, then we cannot perfectly tile it with the subdivisions
of H. Thus, we can deduce the following.

Proposition 2.2. For every integer n > 0 and every graph H, there is an n-vetex graph
G with minimum degree at least ⌊

(
1− 1

ξ(H)

)
n⌋ − 1 such that G does not have a perfect

H-subdivision tiling.

Now we cause the divisibility issue to construct a lower bound example. To obtain the
lower bound in Theorem 1.8 and the first case of Theorem 1.9, we prove that the following
proposition holds.

Proposition 2.3. Let H be a graph with hcfξ(H) ̸= 1. Then for every integer n > 0, there
is an n-vertex graph G with minimum degree at least ⌊n

2
⌋− 1 which does not have a perfect

H-subdivision tiling except for hcfξ(H) = 2 and n is even.

The remaining case is when hcfξ(H) = 2 and n is even. The lower bound of this case
can be obtained from the following.

Proposition 2.4. For every graph H with hcfξ(H) = 2 and for every even number n,
there is an n-vertex graph G with minimum degree at least ⌊1

3
n⌋ − 1 such that G does not

contain a perfect H-subdivision tiling.
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Both the proof of Propositions 2.3 and 2.4 rely on the observation that if the host
graph is a complete bipartite graph with the difference between two bipartitions are not
divisible by hcfξ(H), then there is no perfect H-subdivision tiling. This can be verified by
the definition of hcfξ(H).

2.2 Upper bounds

We now sketch the proof of our main results. We first start with the following observation.

Observation 2.5. δsub(n,H) ≤
(
1
2
+ o(1)

)
n.

Indeed, for every graph H, there is at least one bipartite subdivision of H. By us-
ing Erdős-Stone-Simonovits theorem and Theorem 1.2, we can deduce that δsub(n,H) ≤(
1
2
+ o(1)

)
n. As Propositions 2.2 to 2.4 provides desired lower bounds, Observation 2.5

implies that it suffices to prove the two following lemmas.

Lemma 2.6. Let hcfξ(H) = 1 and n be a sufficiently large number. If δ(G) ≥
(
1− 1

ξ(H)
+ o(1)

)
n,

then G has a perfect H-subdivision tiling.

Lemma 2.7. Let hcf(ξ)(H) = 2 and n be a sufficiently large even number. If δ(G) ≥(
max{1

3
, 1− 1

ξ(H)
}+ o(1)

)
n, then G has a perfect H-subdivision tiling.

In order to prove the above lemmas, we use the absorption method. Since we are
dealing with a subdivision embedding problem, we define our absorber as follows.

Definition 2.8. Let H and G be graphs and take two subsets A ⊆ V (G) and X ⊆ V (G)\A.
We say A is a Sub(H)-absorber for X if the both G[A] and G[A ∪ X] have perfect H-
subdivision tilings. If X = {v}, we say A is a Sub(H)-absorber for v.

For example, we consider an appropriate subdivision of H with an edge xy in it and
add two edges vx and vy to obtain a graph H ′. Then a copy of H ′ ensures that V (H ′)−{v}
is a Sub(H)-absorber for v. In order to establish robust absorption structures, we wish to
collect many vertices that belong to many copies of such graphs H ′. We will ensure this
using the concept of ε-regularity.

The following is the proof outline of Lemmas 2.6 and 2.7. We omit the details of the
argument as we provide them in the full version [25] of the paper.

Step 1: Preprocessing. In order to find many copies of H ′ containing a given vertex v,
we plan to utilize the concept of ε-regularity. For this, we apply the regularity lemma
and use it to obtain many disjoint ε-regular pairs covering almost all vertices. Note
that those ε-regular pairs are allowed to be somewhat asymmetric. By deleting a
small number of vertices, we can further ensure some minimum degree condition on
every ε-regular pair. Let Z be the small set of vertices not covered by the obtained
ε-regular pairs with the minimum degree condition.
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Step 2: Place the absorber. In each regular pair, the ε-regularity and the minimum
degree condition ensure that every vertex v in it belongs to many copies of H ′. Using
this property, we can find a small subset A ⊆ (V (G) \ Z) such that A is Sub(H)-
absorber for any small set X ⊆ V (G) \ (Z ∪ A).

Step 3: Cover almost all vertices. By considering a suitable bipartite subdivision H ′′

of H and applying Erdős-Stone-Simonovits theorem, we find copies of H ′′ disjoint
from A to cover all vertices of Z as well as a small set of additional vertices. Denote
the set of such vertices as W1. As |A∪W1| is small, the remaining graph G\ (A∪W1)
still has almost the same minimum degree as G. By applying Theorem 1.1, we can
find W2 ⊆ V (G) \ (A ∪W1) such that G[W2] has a perfect H-subdivision tiling and
|V (G) \ (A ∪W1 ∪W2)| is small.

Step 4: Absorb the uncovered vertices. Let X = V (G) \ (A ∪W1 ∪W2). Since X is
small, by our choice of A, the set A is Sub(H)-absorber for X. This means G[A∪X]
has a perfect H-subdivision tiling. Since A, W1, W2 and X are vertex-disjoint sets
and A ∪ W1 ∪ W2 ∪ X = V (G), we obtain a perfect H-subdivision tiling of G by
combining G[A ∪X], G[W1] and G[W2].
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results that establish (best-possible) conditions guaranteeing the existence of Hamilton
cycles in (directed) graphs. The seminal result of Dirac [5] states that every graph on
n ≥ 3 vertices with minimum degree at least n/2 is Hamiltonian. Ghouila-Houri [10]
showed the corresponding version in directed graphs (digraph for short), that is, every
digraph on n ≥ 3 vertices with minimum semidegree at least n/2 (i.e. every vertex has
in- and outdegree at least n/2) is Hamiltonian. These bounds are tight by taking e.g. the
disjoint union of two cliques (a regular extremal example) or a slightly imbalanced complete
bipartite graph (an irregular extremal example). Recall that an oriented graph is a digraph
that can have at most one edge between each pair of vertices (whereas a digraph can have
up to two, one in each direction). For oriented graphs, a more recent result of Keevash,
Kühn and Osthus [15] establishes a (tight) minimum degree threshold of d(3n− 4)/8e for
Hamiltonicity. In contrast to graphs and digraphs, there are no regular extremal examples
in the case of oriented graphs. Jackson [14] conjectured in 1981 that regularity actually
reduces the degree threshold significantly for oriented graphs:

Conjecture 1.1 (Jackson [14]). For each d > 2, every d-regular oriented graph on n ≤
4d+ 1 vertices has a Hamilton cycle.

The disjoint union of two regular tournaments shows that Jackson’s conjecture is best
possible.1 We note that the approximate version of Jackson’s conjecture was recently
verified by current authors in [23], that is for every ε > 0, there exists n0(ε) such that
every d-regular oriented graph on n ≥ n0(ε) vertices with d ≥ (1/4 + ε)n is Hamiltonian.
Here, we verify the exact version for large n.

Theorem 1.2. There exists an integer n0 such that every d-regular oriented graph on
n ≥ n0 vertices with n ≤ 4d+ 1 has a Hamilton cycle.

Generalizing questions about Hamilton cycles, one can consider the question of covering
the vertices of a (di)graph by as few vertex-disjoint cycles as possible. Indeed, we prove
Theorem 1.2 by showing a more general result about covering regular digraphs and oriented
graphs with few vertex-disjoint cycles.

Theorem 1.3. For all α > 0, there exists n0 = n0(α) such that every d-regular digraph G
on n vertices with d ≥ αn can be covered by at most n/(d + 1) vertex-disjoint cycles.
Moreover if G is an oriented graph, then n/(2d+ 1) cycles suffice.

This is best possible by considering the disjoint union of complete digraphs of order d+1
for digraphs and the disjoint union of regular tournaments of order 2d + 1 for oriented
graphs. Notice that we have n/(2d+1) < 2 when n ≤ 4d+1, so that Theorem 1.3 implies
Theorem 1.2. We also note that Theorem 1.3 generalizes the following result of Gruslys
and Letzter [11] from regular graphs to regular digraphs and oriented graphs.

Theorem 1.4 (Gruslys and Letzter [11]). For all α > 0, there exists n0 = n0(α) such that
every d-regular graph G on n ≥ n0 vertices with d ≥ αn can be covered by at most n/(d+1)
vertex-disjoint cycles.

1This example works for n ≡ 2 (mod 4). Similar examples can also be constructed when n 6≡ 2 (mod 4).
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Theorem 1.3 implies Theorem 1.4 by making every edge into a directed 2-cycle. Theo-
rem 1.3 also has connections with several well-studied problems in extremal graph theory:
here we mention some of them.

1.1 Path Cover

A weaker version of cycle cover is path cover. The path cover number π(G) of a (di)graph G
is the minimum number of vertex-disjoint (directed) paths needed to cover V (G). This was
introduced by Ore [25], and he showed that π(G) ≤ n− σ2(G) holds where σ2(G) denotes
the minimum sum of the degrees over all non-adjacent vertices. Magnant and Martin [24]
conjectured that regularity significantly reduces the upper bound for π(G):

Conjecture 1.5 (Magnant and Martin [24]). If G is a d-regular graph on n vertices, then
π(G) ≤ n/(d+ 1).

It is known that Conjecture 1.5 holds for small values of d (see [24] for d ≤ 5 and see [7]
for d = 6). Han [13] showed that, for dense graphs, it is enough to use 1+ n/(d+1) paths
to cover almost all vertices. Also, Theorem 1.4 verifies Conjecture 1.5 in the dense case.
It is worth noting that the Linear Arboricity Conjecture [2] implies Conjecture 1.5 for odd
values of d, and gives π(G) ≤ 2n/(d+ 2) for general d (see [7] for a detailed discussion).

For digraphs, the classical result of Gallai and Milgram [9] states that π(G) can be
bounded above by the size of maximum independent set (and Dilworth’s [4] theorem says
that the equality holds for the special case of posets). As our Theorem 1.3 generalizes
Theorem 1.4 from graphs digraphs and oriented graphs, we believe the following stronger
version of Conjecture 1.5 holds, which Theorem 1.3 establishes in the dense case.

Conjecture 1.6. If G is a d-regular digraph on n vertices, then π(G) ≤ n/(d+1). More-
over, π(G) ≤ n/(2d+ 1) holds if G is oriented.

Conjecture 1.6 implies Conjecture 1.5 by making every edge into a directed 2-cycle.

1.2 Edge-Disjoint Cycles

In a weaker version of the problem we consider, one is interested in finding edge-disjoint
cycles whose union covers all the vertices. As a generalization of Dirac’s theorem, it is
conjectured [6] that if a graph G on n vertices has minimum degree n/k, then V (G) can be
covered by k−1 edge-disjoint cycles. The case k = 3 was also proved in [6]. The conjecture
was proved for 2-connected graphs [16], and has been completely resolved in [17]. Later,
Balogh, Mousset and Skokan [3] obtained a stability result, showing that every graph on n
vertices with minimum degree nearly n/k has a special structure if it does not have k − 1
edge-disjoint cycles covering all vertices. One can ask the same question for digraphs as
a generalization of Ghoulia-Houri’s theorem, and Theorem 1.3 answers it affirmatively for
regular graphs:

Conjecture 1.7. If G is a digraph with minimum semi-degree n/k, then V (G) can be
covered by k − 1 edge-disjoint cycles.
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1.3 Extending Perfect Matchings

Gruslys and Letzter [11], as well as proving Theorem 1.4, proved that every large d-regular
bipartite graph G on n vertices with d linear in n can be covered by at most n/2d vertex-
disjoint paths. They mentioned that one should be able to replace paths by cycles. Indeed,
as a corollary of Theorem 1.3, the result below shows that those cycles can be found in
such a way that they even contain any prescribed perfect matching.

Corollary 1.8. For all α > 0, there exists n1 = n1(α) such that, for every d-regular
bipartite graph on n ≥ n1 vertices with d ≥ αn, any perfect matching can be extended to a
union of at most n/2d vertex-disjoint cycles.

Note that Corollary 1.8 is tight by considering the disjoint union of n/2d many Kd,d’s.
It also shows that d-regular bipartite graphs on n (sufficiently large) vertices with d > n/4
are examples of graphs in which every perfect matching can be extended into a Hamilton
cycle. This property is called the PMH-property in [1]. Häggkvist [12] initiated the study
of sufficient conditions for the PMH-property (using the name F -Hamiltonian where F is a
perfect matching) by showing σ2(G) ≥ n+1 is sufficient. Las Vergnas [21] proved a similar
condition for bipartite graphs, and Yang [27] gave minimum edge density conditions to
guarantee the PMH property in graphs and bipartite graphs. In the sparse setting, as a
special case of a conjecture of Ruskey and Savage [26], Fink [8] proved that the hypercube
has the PMH-property.

2 Sketch Proof
In this section, we sketch the proof of our main result Theorem 1.3. One of the key
ingredients of the proof is a structural result that allows us to partition dense regular
digraphs into (bipartite) robust expanders, which will be discussed in Section 2.1. In
Section 2.2 we explain how a weaker version of Theorem 1.3 can be quickly derived from
the structural result. In Sections 2.3, we briefly discuss some of the ingredients required
for the full version of Theorem 1.3.

2.1 Robust Expanders

Robust expansion is a notion introduced and used by Kühn and Osthus together with
several coauthors to obtain a number of breakthrough results on (di)graph decompositions
and Hamiltonicity (see [20, 19, 18]). Here we present only the aspects relevant to the sketch
proof and will suppress most parameters to ease exposition.

Informally, robust expanders are dense (di)graphs that are highly connected in some
sense, and one of their key properties is that they are Hamiltonian under suitable (mild)
degree conditions. If we could show that every d-regular digraph can be partitioned into
at most n/(qd + 1) robust expanders where q = 2 if G is oriented and q = 1 otherwise
(we use this definition of q throughout the rest of the sketch proof), it would be enough
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to prove Theorem 1.3. Unfortunately, it is not true, but a similar result can be obtained
by generalizing a structural result of Kühn, Lo, Osthus and Staden [18] about partitioning
undirected graphs into robust expanders.

In order to give the reader some sense of robust (bipartite) expansion, we give the formal
definition below but note that it will not be used in the sketch proof. Also the definition we
give is slightly different but equivalent to that used in other work. Let 0 < ν ≤ τ < 1 and
suppose G is a digraph with subsets of vertices A,B ⊆ V (G) (not necessarily disjoint) and
N := |A| + |B|. We define G[A,B] as the undirected bipartite graph on N vertices with
bipartition A,B where, for each a ∈ A and b ∈ B, ab is an (undirected) edge of G[A,B] if
and only if ab is a directed edge in E(G). We say that G[A,B] is a bipartite robust (ν, τ)-
expander if for every S ⊆ A with τ |A| ≤ |S| ≤ (1− τ)|A|, the set of vertices in B having
at least νN inneighbours in A (in the graph G) has size at least |S| + νN . Henceforth,
we suppress the parameters ν and τ and say simply that G[A,B] is a bipartite robust
expander.

For any d-regular n-vertex digraph G with d linear in n, we show that it is possible
to give two vertex partitions V (G) = V1∗ ∪ · · · ∪ Vk∗ and V (G) = V∗1 ∪ · · · ∪ V∗k with
k ≤ 1 + n/(qd+ 1) such that for each i, G[Vi∗, V∗i] is a bipartite robust expander. Letting
Vij = Vi∗ ∩ V∗j for all i, j ∈ [k], note that we actually give a k2-partition {Vij : i, j ∈ [k]}
of V (G). The following is a simplified informal version of our structural result.

Theorem 2.1. For any α > 0, there exists an integer n0 = n(α) such that for all d-regular
digraph graphs G on n ≥ n0 vertices with d ≥ αn, there is a partition P = {Vij : i, j ∈ [k]}
of V (G) satisfying, for all i ∈ [k],
(i) G[Vi∗, V∗i] is a bipartite robust expander with linear minimum degree;
(ii) |Vi∗| ≈ |V∗i|;
(iii) k ≤ 1 + n/(qd+ 1).

2.2 A Weaker Version of Theorem 1.3

LetG be as in Theorem 1.3, i.e. an n-vertex d-regular digraph with d ≥ αn and n sufficiently
large. In this subsection we describe how Theorem 2.1 can be used to show that almost all
vertices of G can be covered by at most 1 + n/(qd+ 1) vertex-disjoint cycles (so one more
cycle than stated in Theorem 1.3).

We apply Theorem 2.1 and obtain a partition {Vij : i, j ∈ [k]} of V (G) satisfying (i)–
(iii). By (ii), one can delete a small number of vertices in G so that |Vi∗| = |V∗i| holds
for each i ∈ [k] (for notational simplicity, we still write G and Vij after deletion). A key
property of bipartite robust expanders is that deleting any a small number of vertices only
slightly weakens the bipartite robust expansion and minimum degree properties of (i). The
following crucial observation shows that we can partition G into at most k vertex-disjoint
cycles, which establishes the weaker version of Theorem 1.3 since k ≤ 1+n/(qd+1) by (iii).

Fix i ∈ [k], and assume Vij = ∅ for all j ∈ [k] \ {i}, i.e. Vi∗ = Vii = V∗i. In this case,
one can use (i) to show that G[Vii] is a robust expander 2 with linear minimum degree; the

2Roughly speaking, G is a robust expander if G[V (G), V (G)] is a bipartite robust expander.
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result of [20] (see also [22]) then implies that G[Vii] is Hamiltonian. Now, assume Vij 6= ∅
for at least one j ∈ [k] \ {i}. As |Vi∗| = |V∗i|, we have |Vi∗ \ Vii| = |V∗i \ Vii| > 0, so
write Vi∗ \ Vii = {y1, . . . , ys} and V∗i \ Vii = {z1, . . . , zs}. Let φ : Vi∗ → V∗i be given by
φ(x) = x for all x ∈ Vii and φ(yr) = zr for all r ∈ [s]. Define G(i, φ) to be the digraph
whose vertices are Vi∗ and with directed edge uw present in G(i, φ) if and only if uφ(w) is
present in G. In other words, G(i, φ) is the digraph obtained from G[Vi∗, V∗i] by identifying
each u ∈ Vi∗ \Vii with φ(u) ∈ V∗i \Vii and deleting loops. By (i), one can show that G(i, φ)
is a robust expander with linear minimum degree and hence (again by [20, 22]) contains
a Hamilton cycle C. Without loss of generality, assume y1, . . . , ys lie on C in this order.
One can easily check that each path yrCyr+1 along C corresponds to a path in G[Vi∗ ∪V∗i]
from yr to zr+1 and that these are vertex-disjoint and their union is Vi∗ ∪ V∗i.

As a result, for each i ∈ [k], we can cover Vi∗ ∪ V∗i by either a cycle (if Vij = ∅ for
all j ∈ [k] \ {i}) or a set of vertex-disjoint paths Qi from Vi∗ \ Vii to V∗i \ Vii. Note
that the union of all these cycles and path systems gives a vertex-disjoint union of cycles
covering G; indeed the path systems Qi and Qj only intersect in Vij (where paths in Qi

start and paths in Qj end) and in Vji (where paths in Qj start and paths in Qi end). Our
freedom to choose φ gives us some control over which pairs of endpoints are connected by
paths in the Qi, and by choosing the φ’s carefully, we can guarantee that the number of
cycles in the union is at most k.

2.3 Balancing the Partition

We say P = {Vij : i, j ∈ [k]} is a balanced partition of G if |Vi∗| = |V∗i| holds for each
i ∈ [k]. Here we explain how to balance the partition P given in Theorem 2.1 in order that
we can apply the methods descirbed in the previous subsection. We use the idea of path
contraction: consider a directed path in a digraph G and contract it so that the in- and
outneighbours of the new vertex are respectively the inneighbours of the path’s start vertex
and the outneighbours of the path’s end vertex. If the resulting graph can be partitioned
into ` vertex-disjoint cycles, then so can G by simply uncontracting the path. Therefore,
we seek a path system Q such that the contraction of Q makes the partition P balanced
but also does not destroy the other properties of Theorem 2.1; the latter can (almost) be
guaranteed by ensuring the number of edges of Q is small. It turns out (and is not difficult
to show) that it suffices to find path systems Qij using edges of G from Vi∗ to V∗j satisfying∑

j 6=i

e(Qij)−
∑
j 6=i

e(Qji) = |Vi∗| − |V∗i|.

We use a flow argument to find such a path system Q.
Our argument up this point gives a collection of at most k ≤ 1 + n/(qd + 1) vertex-

disjoint cycles that cover G, which is one more than stated in Theorem 1.3. In fact, we only
get 1 + n/(qd+ 1) cycles if Theorem 2.1 gives us a partition with k = 1 + n/(qd+ 1) and
Vij = ∅ for all i 6= j. By carefully making use of the additional structure in this situation,
we can reduce the number of cycles by 1.
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A k-uniform tight cycle is a k-graph with a cyclic order of its vertices such that
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1 Introduction
Monochromatic partitioning is an area of combinatorics that has its origin in a remark of
Gerencsér and Gyárfás [9] that any 2-edge-colouring of the complete graph Kn contains a
spanning path that consists of a red1 path followed by a blue path. In particular, every
2-edge-coloured Kn admits a partition of its vertex set into a red path and a blue path. In
a subsequent paper, Gyárfás [10] proved the stronger result that every 2-edge-coloured Kn

contains a red cycle and a blue cycle that share at most one vertex and together cover
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all vertices. Lehel conjectured that every 2-edge-coloured Kn can be partitioned into a
red cycle and a blue cycle. Here the empty set, a single vertex, and a single edge are
considered to be cycles. Lehel’s conjecture was first proved for large enough n by Łuczak,
Rödl and Szemerédi [15] using the regularity lemma. Allen [1] later gave a different proof
of this that does not use the regularity lemma, thus improving the bound on n. Bessy and
Thomassé [3] finally gave a short and elegant proof of Lehel’s conjecture for all n.

Here our interest lies in generalisations of Lehel’s conjecture to hypergraphs and tight
cycles. For related problems in hypergraphs about other types of cycles see [12, 16, 6].
See [11] and [17, Sections 7.4 and 9.7] for surveys on monochromatic partitioning.

For k ≥ 2, a k-graph (or k-uniform hypergraph) H is a pair of sets (V (H), E(H)) such
that E(H) ⊆

(
V (H)

k

)
(where for a set X,

(
X
k

)
denotes the set of all subsets of X of size k).

A k-uniform tight cycle is a k-graph with a cyclic order of its vertices such that its edges
are exactly the sets of k consecutive vertices in the order. From now on, any set of at
most k vertices is also considered a tight cycle.

The problem we want to consider is how to cover almost all vertices of every 2-edge-
coloured complete k-graph with as few vertex-disjoint monochromatic tight cycles as pos-
sible. For k = 3, Bustamante, Hàn and Stein [5] proved that in every 2-edge-coloured
complete 3-graph almost all vertices can be partitioned into a red and a blue tight cycle.
Subsequently, Garbe, Mycroft, Lang, Lo, and Sanhueza-Matamala [8] showed that in fact
there is a partition of all the vertices into two monochromatic tight cycles. Here it is
necessary to allow the two monochromatic tight cycles to possibly have the same colour.
Indeed for every k ≥ 3, there exists a complete graph on arbitrarily many vertices that does
not admit a partition of its vertices into a red and a blue tight cycle [13, Proposition 1].
In an earlier paper [13], the authors proved that for k = 4 it is also possible to almost
partition the vertices of every 2-edge-coloured 4-graph into a red and a blue tight cycle. In
the same paper, the authors also showed a weaker result for k = 5, that 4 vertex-disjoint
monochromatic tight cycles suffice to cover almost all vertices of every 2-edge-coloured
complete 5-graph. The only bound for general k that was known is given by a result of
Bustamante, Corsten, Frankl, Pokrovskiy and Skokan [4]. They showed that every r-edge-
coloured complete k-graph on n vertices can be partitioned into c(r, k) monochromatic
tight cycles. However, the constant c(r, k) that can be obtained from their proof is very
large. Indeed to cover almost all vertices they simply repeatedly find a monochromatic
tight cycle using the fact that the Ramsey number for the k-uniform tight cycle on N
vertices is linear in N .

Our aim here is to show a reasonable general bound on the number of tight cycles that
are needed to almost partition a 2-edge-coloured complete k-graph. Indeed we show that k
tight cycles suffice. We remark that this result is probably not tight. The only known
lower bound on the number of tight cycles needed is the trivial lower bound of 2.

Theorem 1.1. For every ε > 0 and k ≥ 3, there exists an integer n0 such that every 2-edge-
coloured complete k-graph on n ≥ n0 vertices contains k vertex-disjoint monochromatic
tight cycles covering at least (1− ε)n vertices.
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2 Sketch proof of Theorem 1.1
Our proof is based on a hypergraph version of Łuczak’s connected matching method
(see [14] for the original method). Roughly speaking the idea is as follows. Let K be
a 2-edge-coloured complete k-graph on n vertices. We apply the Regular Slice Lemma (a
form of the Hypergraph Regularity Lemma that is due to Allen, Böttcher, Cooley and My-
croft [2]) to Kred.2 Since any regularity partition for a k-graph is also a regularity partition
for its complement, this gives rise to a reduced k-graph R that is a 2-edge-coloured almost
complete k-graph. So a red edge i1 . . . ik in R means that Kred is regular with respect to
the corresponding clusters Vi1 , . . . , Vik and at least half the edges of K with one vertex in
each Vij , j ∈ [k] are red.3 It can be shown that there is a red tight cycle in K that contains
almost all of the vertices in

⋃
j∈[k] Vij . The idea is now to combine a matching M of red

edges in R into an even longer red tight cycle that covers almost all the vertices in the
clusters that are covered by M . However, in order for this to work we will need to be able
to construct a red tight path4 that goes from the clusters corresponding to one edge of M
to the clusters corresponding to another edge of M . So we require our red matching M
in R to be ‘connected’ in some sense. To this end, we need the following definitions. A
tight pseudo-walk (of length m from e to e′) in a k-graph H is a sequence of edges e1 . . . em
in H such that |ei ∩ ei+1| = k− 1 (and (e1, em) = (e, e′)). A k-graph H is tightly connected
if for every pair of edges e, e′ ∈ H, there is a tight pseudo-walk from e to e′ in H. A
tight component in a k-graph H is a maximal tightly connected subgraph of H. Let H
be a 2-edge-coloured k-graph. A red or blue tight component in H is a tight component
in Hred or in Hblue, respectively. A monochromatic tight component in H is a red or a blue
tight component in H. The hypergraph version of Łuczak’s connected matching method
that we need now roughly says the following. If R contains a matching that covers almost
all vertices and uses edges from at most k monochromatic tight components, then there
exists k monochromatic tight cycles in K that are vertex-disjoint and together cover al-
most all vertices. The proof of Theorem 1.1 is now reduced to proving that every almost
complete 2-edge-coloured k-graph contains a matching that covers almost all vertices and
only uses edges from at most k monochromatic tight components.

For a set S ⊆ V (H) with |S| ≤ k−1, we let NH(S) = {S ′ ∈
(
V (H)
k−|S|

)
: S∪S ′ ∈ E(H)} and

dH(S) = |NH(S)|. A k-graph H on n vertices is called (µ, α)-dense if, for each i ∈ [k − 1],
we have dH(S) ≥ µ

(
n

k−i

)
for all but at most α

(
n
i

)
sets S ∈

(
V (H)

i

)
and dH(S) = 0 for all

other sets S ∈
(
V (H)

i

)
. Note that the reduced graph R will typically be (1− ε, ε)-dense.

Our discussion on a hypergraph version of Łuczak’s connected matching method is
encapsulated in the following corollary from our previous work. When we say that a
statement holds for constants a and b with 0 < a� b, we mean that the statement holds
provided that a is chosen sufficiently small in terms of b. Moreover, if 1/n appears in such

2For a 2-edge-coloured k-graph H, we denote by Hred and Hblue the subgraph induced by the red edges
and the subgraph induced by the blue edges of H, respectively.

3For n ∈ N, [n] = {1, . . . , n}.
4A tight path is a k-graph with a linear order of its vertices such that every k-consecutive vertices form

an edge. Or alternatively a tight path is a k-graph obtained by deleting a single vertex from a tight cycle.
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a hierarchy then we implicitly assume that n ∈ N.

Corollary 2.1 ([13, Corollary 20]). Let 1/n � 1/m � ε � η � γ, 1/k, 1/s with k ≥ 3.
Suppose that every 2-edge-coloured (1 − ε, ε)-dense k-graph H on m vertices contains a
matching in H that covers all but at most ηm vertices of H and only contains edges from
at most s monochromatic tight components of H. Then any 2-edge-coloured complete k-
graph on n vertices contains s vertex-disjoint monochromatic tight cycles covering at least
(1− γ)n vertices.

3 A large matching using edges from few monochro-
matic tight components

By Corollary 2.1, to prove Theorem 1.1, it suffices to prove the following lemma.

Lemma 3.1. Let 1/n� ε� η � 1/k ≤ 1/2. Let H be a 2-edge-coloured (1− ε, ε)-dense
k-graph on n vertices. Then there exists a matching in H that covers all but at most ηn
vertices of H and only contains edges from at most k monochromatic tight components
of H.

The cases when k = 3 is already proved in [5] (in which they showed that a red and
a blue tight component suffice). The first step of the proof is to find a red and a blue
tight component R and B, respectively, of H such that almost all 2-subsets of V (H) are
contained in some edge of R ∪ B. One then finds a large matching in R ∪ B. Thus a
natural first step of proving Lemma 3.1 is to find a constant number of monochromatic
tight components of H, such that almost all (k−1)-subsets of V (H) are contained in some
edge of these tight components. However this is not possible when k ≥ 4 as shown by the
following example. Let V1, . . . , V` be an equipartition of a set of n vertices. Consider the
2-edge-coloured complete k-graph on

⋃
i∈[`] Vi such that an edge e is red if |e ∩ Vi| > k/2,

and blue otherwise. Observe that there are ` blue tight components. Moreover, each
(

Vi

k−1

)
is “covered” by a distinct blue tight component.

Instead, we will enlarge our maximal matching as we choose tight components as follows.
Consider a monochromatic tight component F∗ in H and let G1 = {F∗}. We say that
two monochromatic tight components F1 and F2 of H are adjacent if they have opposite
colours and there are edges e1 ∈ F1 and e2 ∈ F2 such that |e1 ∩ e2| = k − 1. Now for
each i ≥ 2 in turn, let Gi be the set of monochromatic tight components that are adjacent
to a monochromatic tight component in Gi−1 and not already in

⋃
j∈[i−1] Gj. Moreover,

for each i ≥ 1, we let E(Gi) =
⋃

F∈Gi F , that is, E(Gi) is the set of edges that are in
some monochromatic tight component F ∈ Gi. It is easy to see that all edges of H are
in
⋃

j∈[2k] E(Gj). In fact, if our initial monochromatic tight component F∗ spans almost all
vertices (such an F ∗ exists), then almost all edges of H are in

⋃
j∈[k] E(Gj). For simplicity,

we assume that H =
⋃

j∈[k] E(Gj).
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We now set W0 = V (H) and for each i = 1, . . . , k in turn, we let Mi be a maximal
matching in H[Wi−1] ∩

⋃
j∈[i] E(Gj) and Wi = Wi−1 \ V (Mi). Since

⋃
j∈[k] E(Gj) = H is

(1− ε, ε)-dense,
⋃

j∈[k]Mj is a maximal matching in H covering almost all vertices of H.
It remains to show that

⋃
j∈[k]Mj is contained in at most k monochromatic tight com-

ponents. Note that, for each i ∈ [k + 1],

H[Wi−1] ∩
⋃

j∈[i−1]

E(Gj) = ∅ (3.1)

by our choices of Mi−1 and Wi−1. Hence Mi ⊆ H[Wi−1] ∩ E(Gi). Therefore, it suffices to
show that H[Wi−1] ∩ E(Gi) (and so Mi) consists of edges from one monochromatic tight
component.

Suppose for a contradiction that there are two edges e1 and e2 in H[Wi−1]∩ E(Gi) that
are in different monochromatic tight components. Suppose further that |Wi−1| ≥ ηn (or
else

⋃
j∈[i−1]Mj is already an almost perfect matching). In H[Wi−1], there exists a tight

pseudo-walk P from e1 to e2. Recall that
⋃

j∈[i] E(Gj) is tightly connected, so
⋃

j∈[i] E(Gj)
contains a tight pseudo-walk P ′ from e2 to e1. Thus PP ′ (the concatenation of P and P ′)
is a closed tight pseudo-walk. We then define a nearly triangulated plane graph5 D such
that every vertex of D corresponds to an edge in H, PP ′ is on the outer face and any
walk in D corresponds to a tight pseudo-walk in H. We colour each vertex of D with
the same colour of its corresponding edge in H. All edges in E(Gi) (including e1 and e2)
have the same colour, say red. Since e1 and e2 are not in the same red tight component,
there is no red walk in D from e1 to e2. By adapting the proof of Gale [7] of the fact that
the Hex game cannot end in a draw, one deduces that H contains a blue tight pseudo-
walk P ∗ from an edge of P to an edge of P ′. Since P ′ is contained in

⋃
j∈[i] E(Gj), we have

P ∗ ⊆
⋃

j∈[i−1] E(Gj). Therefore, ∅ 6= P ∩P ∗ ⊆ H[Wi−1]∩
⋃

j∈[i−1] E(Gj) contradicting (3.1).
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Abstract
For integers k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) has as vertices all

k-element subsets of an n-element ground set, and an edge between any two disjoint
sets. It has been conjectured since the 1970s that all Kneser graphs admit a Hamilton
cycle, with one notable exception, namely the Petersen graph K(5, 2). This problem
received considerable attention in the literature, including a recent solution for the
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jecture in full generality. We also extend this Hamiltonicity result to all connected
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graph J(n, k, s) has as vertices all k-element subsets of an n-element ground set,
and an edge between any two sets whose intersection has size exactly s. Clearly, we
have K(n, k) = J(n, k, 0), i.e., generalized Johnson graph include Kneser graphs as
a special case. Our results imply that all known families of vertex-transitive graphs
defined by intersecting set systems have a Hamilton cycle, which settles an interest-
ing special case of Lovász’ conjecture on Hamilton cycles in vertex-transitive graphs
from 1970. Our main technical innovation is to study cycles in Kneser graphs by a
kinetic system of multiple gliders that move at different speeds and that interact over
time, reminiscent of the gliders in Conway’s Game of Life, and to analyze this system
combinatorially and via linear algebra.
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1 Introduction

For integers k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) has as vertices all k-element
subsets of [n] := {1, 2, . . . , n}, and an edge between any two sets A and B that are disjoint,
i.e., A ∩ B = ∅. Kneser graphs were introduced by Lovász [Lov78] in his celebrated proof
of Kneser’s conjecture. Using the Borsuk-Ulam theorem, he proved that the chromatic
number of K(n, k) equals n − 2k + 2. Observe also that the maximum independent set
in K(n, k) has size

(
n−1
k−1

)
by the famous Erdős-Ko-Rado [EKR61] theorem. Furthermore,

the graph K(n, k) is vertex-transitive, i.e., it ‘looks the same’ from the point of view of
any vertex, and all vertices have degree

(
n−k
k

)
. Lastly, note that when n < ck, the Kneser

graph K(n, k) does not contain cliques of size c, whereas it does contain such cliques
when n ≥ ck.

2 Hamilton cycles in Kneser graphs

In this work we investigate Hamilton cycles in Kneser graphs, i.e., cycles that visit every
vertex exactly once. Kneser graphs have long been conjectured to have a Hamilton cycle,
with one notable exception, the Petersen graph K(5, 2), which only admits a Hamilton
path. As Kneser graphs are vertex-transitive, this is a special case of Lovász’ famous
conjecture [Lov70], which asserts that every connected vertex-transitive graph admits a
Hamilton path. So far, the conjecture for Hamilton cycles in Kneser graphs has been
tackled from two angles, namely for sufficiently dense Kneser graphs, and for the sparsest
Kneser graphs. From the aforementioned results about the degree and cliques in K(n, k),
we see that K(n, k) is relatively dense when n is large w.r.t. k, and relatively sparse
otherwise. The sparsest case is when n = 2k + 1, and the graphs Ok := K(2k + 1, k) are
also known as odd graphs. Intuitively, proving Hamiltonicity should be easier for the dense
cases, and harder for the sparse cases.

We first recap the known results for dense Kneser graphs. Heinrich and Wallis [HW78]
showed that K(n, k) has a Hamilton cycle if n ≥ 2k+k/( k

√
2−1) = (1+o(1))k2/ ln 2. This

was improved by B. Chen and Lih [CL87], whose results imply that K(n, k) has a Hamilton
cycle if n ≥ (1 + o(1))k2/ log k; see [CI96]. In another breakthrough, Y. Chen [Che00]
showed that K(n, k) is Hamiltonian when n ≥ 3k. A particularly nice and clean proof
for the cases where n = ck, c ∈ {3, 4, . . .}, was obtained by Y. Chen and Füredi [CF02],
later extended by Bellmann and Schülke to any n ≥ 4k [BS21]. The asymptotically best
result known to date, again due to Y. Chen [Che03], is that K(n, k) has a Hamilton cycle
if n ≥ (3k + 1 +

√
5k2 − 2k + 1)/2 = (1 + o(1))2.618 . . . · k. With the help of computers,

Shields and Savage [SS04] found Hamilton cycles in K(n, k) for all n ≤ 27 (except for the
Petersen graph).

We now briefly summarize the Hamiltonicity story of the sparsest Kneser graphs,
namely the odd graphs. Note that Ok = K(2k + 1, k) has degree k + 1, which is only
logarithmic in the number of vertices. The conjecture that Ok has a Hamilton cycle for
all k ≥ 3 originated in the 1970s, in papers by Meredith and Lloyd [ML72, ML73] and by
Biggs [Big79]. Already Balaban [Bal72] exhibited a Hamilton cycle for the cases k = 3
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and k = 4, and Meredith and Lloyd described one for k = 5 and k = 6. Later,
Mather [Mat76] solved the case k = 7. Mütze, Nummenpalo and Walczak [MNW21]
finally settled the problem for all odd graphs, proving that Ok has a Hamilton cycle for
every k ≥ 3. Already much earlier, Johnson [Joh11] provided an inductive argument
that establishes Hamiltonicity of K(n, k) provided that the existence of Hamilton cycles is
known for several smaller Kneser graphs. Combining his result with the unconditional re-
sults from [MNW21] yields that K(2k+2a, k) has a Hamilton cycle for all k ≥ 3 and a ≥ 0.
These results still leave infinitely many open cases, the sparsest one of which is the fam-
ily K(2k + 3, k) for k ≥ 1.

The main contribution of this paper is to settle the conjecture on Hamilton cycles in
Kneser graphs affirmatively in full generality.

Theorem 1. For all k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) has a Hamilton
cycle, unless it is the Petersen graph, i.e., (n, k) = (5, 2).

More generally, our work settles all known instances of Lovász’ conjecture for vertex-
transitive graphs defined by intersecting set systems. As we shall see, Kneser graphs are
the hardest cases among them to prove, i.e., with the help of Theorem 1 the Hamiltonicity
of the more general families of graphs can be settled easily.

3 Generalized Johnson graphs

The generalized Johnson graph J(n, k, s) has as vertices all k-element subsets of [n], and
an edge between any two sets A and B that satisfy |A ∩B| = s, i.e., the intersection of A
and B has size exactly s. To ensure that the graph is connected, we assume that s < k and
n ≥ 2k− s+1[s=0], where 1[s=0] denotes the indicator function that equals 1 if s = 0 and 0
otherwise. Generalized Johnson graphs are sometimes called ‘uniform subset graphs’ in
the literature, and they are also vertex-transitive. Furthermore, by taking complements,
we see that J(n, k, s) is isomorphic to J(n, n− k, n− 2k + s). Clearly, Kneser graphs are
special generalized Johnson graphs obtained for s = 0. On the other hand, the graphs
obtained for s = k − 1 are known as (ordinary) Johnson graphs J(n, k) := J(n, k, k − 1).

Chen and Lih [CL87] conjectured that all graphs J(n, k, s) admit a Hamilton cycle
except the Petersen graph J(5, 2, 0) = J(5, 3, 1), and this problem was reiterated in Gould’s
survey [Gou91]. In their original paper, Chen and Lih settled the cases s ∈ {k − 1, k −
2, k− 3}. For the Johnson graphs J(n, k) = J(n, k, k− 1), strong Hamiltonicity properties
are known [TL73, JR94, Kno94].

We generalize Theorem 1 further, by showing that all connected generalized Johnson
graphs admit a Hamilton cycle. This resolves Chen and Lih’s conjecture affirmatively in
full generality.

Theorem 2. For all k ≥ 1, 0 ≤ s < k, and n ≥ 2k − s + 1[s=0] the generalized Johnson
graph J(n, k, s) has a Hamilton cycle, unless it is the Petersen graph, i.e., (n, k, s) ∈
{(5, 2, 0), (5, 3, 1)}.
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4 Bipartite Kneser graphs and the middle levels problem

For integers k ≥ 1 and n ≥ 2k + 1, the bipartite Kneser graph H(n, k) has as vertices all
k-element and (n− k)-element subsets of [n], and an edge between any two sets A and B
that satisfy A ⊆ B. It is easy to see that bipartite Kneser graphs are also vertex-transitive.
As H(n, k) is the bipartite double cover of K(n, k), Hamiltonicity of K(n, k) is harder than
the Hamiltonicity of H(n, k).

Lemma 3. If K(n, k) admits a Hamilton cycle, then H(n, k) admits a Hamilton cycle or
path.

The sparsest bipartite Kneser graphs Mk := H(2k + 1, k) are known as middle levels
graphs, as they are isomorphic to the subgraph of the (2k + 1)-dimensional hypercube in-
duced by the middle two levels. The well-known middle levels conjecture asserts that Mk

has a Hamilton cycle for all k ≥ 1. This conjecture was raised in the 1980s, settled affir-
matively in [Müt16], and a short proof was given in [GMN18]. More generally, all bipartite
Kneser graphs H(n, k) were shown to have a Hamilton cycle in [MS17]. Via Lemma 3,
our Theorem 1 thus also yields a new alternative proof for the Hamiltonicity of bipartite
Kneser graphs. Consequently, our results in this paper settle Lovász’ conjecture for all
known families of vertex-transitive graphs that are defined by intersecting set systems.

5 Proof ideas

It turns out that Theorem 1 can be used to establish Theorem 2 by a simple inductive
construction. Consequently, the main work in this paper is to prove Theorem 1. In this
extended abstract, we only sketch the main ideas for this proof, for details see [MMN22].

As mentioned before, Mütze, Nummenpalo and Walczak [MNW21] proved that K(n, k)
has a Hamilton cycle for n = 2k + 1 and all k ≥ 3. Combining this result with Johnson’s
construction [Joh11] shows that K(n, k) has a Hamilton cycle for n = 2k+2a and all k ≥ 3
and a ≥ 0, in particular for n = 2k + 2. The techniques developed in this paper work
whenever n ≥ 2k + 3, and thus they settle all remaining cases of Theorem 1. Our proof
does not work in the cases n = 2k + 1 and n = 2k + 2, so the two earlier constructions do
not become obsolete.

We follow a two-step approach to construct a Hamilton cycle in K(n, k) for n ≥ 2k+ 3.
In the first step, we construct a cycle factor in the graph, i.e., a collection of disjoint cycles
that together visit all vertices. In the second step, we join the cycles of the factor to a
single cycle.

5.1 Cycle factor construction

The starting point is to consider the characteristic vectors of the vertices of K(n, k). For
every k-element subset of [n], this is a bitstring of length n with exactly k many 1s at
the positions corresponding to the elements of the set. For example, the vertex {1, 7, 9}
of K(9, 3) is represented by the bitstring 100000101. Clearly, two sets A and B that are
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vertices of K(n, k) are disjoint if and only if the corresponding bitstrings have no 1s at the
same positions.

Our construction of a cycle factor in the Kneser graph K(n, k) uses the following simple
rule based on parenthesis matching, a technique pioneered by Greene and Kleitman [GK76]:
Given a vertex represented by a bitstring x, we interpret the 1s in x as opening brackets
and the 0s as closing brackets, and we match closest pairs of opening and closing brackets
in the natural way, which will leave some 0s unmatched. This matching is done cyclically
across the boundary of x, i.e., x is considered as a cyclic string. We write f(x) for the
vertex obtained from x by complementing all matched bits, leaving the unmatched bits
unchanged. For example, x = 100000101 is interpreted as x = ()))))()( = ())---()(, where
each - denotes an unmatched closing bracket, and then complementing matched bits (the
first three and last three in this case) yields the vertex f(x) = 011000010. Repeatedly ap-
plying f to every vertex partitions the vertices of the Kneser graph into cycles, and we write
C(x) := (x, f(x), f 2(x), . . .) for the cycle containing x. For example, for x from before we
obtain C(x) = (100000101, 011000010, 000110001, 100001100, 010000011, . . . , 000011010).
Figure 1 shows several more examples of cycles generated by this parenthesis matching
rule.

5.2 Analysis via gliders

The next key step is to understand the structure of the cycles generated by f . We describe
the evolution of a bitstring x under repeated applications of f by a kinetic system of
multiple gliders that move at different speeds and that interact over time, reminiscent of
the gliders in Conway’s Game of Life. This physical interpretation and its analysis are one
of the main innovations of this paper. Specifically, we view each application of f as one unit
of time moving forward. Furthermore, we partition the matched bits of x into groups, and
each of these groups is called a glider. A glider has a speed associated to it, which is given
by the number of 1s in its group. For example, in the cycle shown in Figure 1 (a), there is
a single matched 1 and the corresponding matched 0, and together these two bits form a
glider of speed 1 that moves one step to the right in every time step. Applying f means
going down to the next row in the picture, so the time axis points downwards. Similarly, in
Figure 1 (b), there are two matched 1s and the corresponding two matched 0s, and together
these four bits form a glider of speed 2 that moves two steps to the right in every time
step. As we see from these examples, a single glider of speed v simply moves uniformly,
following the basic physics law s(t) = s(0) + v · t, where t is the time (i.e., the number of
applications of f) and s(t) is the position of the glider in the bitstring as a function of time
(modulo n). The situation gets more interesting and complicated when gliders of different
speeds interact with each other. For example, in Figure 1 (c), there is one glider of speed 2
and one glider of speed 1. As long as these groups of bits are separated, each glider moves
uniformly as before. However, when the speed 2 glider catches up with the speed 1 glider,
an overtaking occurs. During an overtaking, the faster glider receives a boost, whereas the
slower glider is delayed. This can be captured by augmenting the corresponding equations
of motion by introducing an additional term that involves a variable counting the number of
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overtakings, making the equations non-uniform. For more than two gliders, the equations
of motion can be generalized accordingly, by introducing such overtaking counters between
any pair of gliders. Nevertheless, as the reader may appreciate from Figure 1 (d), in general
it is highly nontrivial to recognize from an arbitrary bitstring x which of its matched bits
belong to which glider, and consequently which glider is currently overtaking which other
glider. Note that in general the gliders will not be nicely separated, but will be involved in
simultaneous interactions, so that the groups of bits forming the gliders will be interleaved
in complicated ways.

From the aforementioned physics interpretation we obtain that the number of gliders
and their speeds are invariant along each cycle. For example, in Figure 1 (d), every bitstring
along this cycle has three gliders of speeds 1, 2 and 3. From the equations of motion we
also derive another crucial property, namely that no glider stands still forever, but will
move eventually. Note that the speed 1 glider in Figure 1 (d) stands still between time

x = 1 0 -
C(x)

(a)

x = 1 0 0 -
C(x)

(b)
-1

x = 1 0 0 0 -
C(x)

...

(c)
-1 1-- - ------ ----

- - - -- -- --

- - - -- -

x = 1 0 0 0
C(x)

...

(d)
-1 1- - 1 0 01 01

f

f

f

f

(n, k) = (15, 1)

(n, k) = (15, 2)

(n, k) = (15, 3)

(n, k) = (15, 6)

speed 1

speed 2

speed 1speed 2

speed 1speed 2 speed 3

tim
e

tim
e
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e
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Figure 1: Cycles of our factor in different Kneser graphs K(n, k). The cycles in (a) and (b)
are shown completely, whereas in (c) and (d) only the first 15 vertices are shown. Vertices
are represented by characteristic vectors, with 1s and 0s shown as black and white squares,
resp. In each pair of figures, the right hand side shows the interpretation of certain groups
of bits as gliders, and their movement over time. Matched bits belonging to the same
glider are colored in the same color, 1-bits filled opaquely, and 0-bits filled transparently.
(a) one glider of speed 1; (b) one glider of speed 2; (c) two gliders with speeds 1 and 2
that participate in an overtaking; (d) three gliders of speeds 1, 2 and 3 that participate in
multiple overtakings. Animations of these examples are available at [Müt23].
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steps 2–8, as during those steps it is overtaken once by the speed 2 glider, and twice by the
speed 3 glider (wrapping around the boundary). We establish this fact by linear algebra,
by showing that the determinant of the linear systems of equations that governs the gliders’
movements is non-singular.

For the reader’s entertainment, we programmed an interactive animation of gliders over
time, and we encourage experimentation with this code, which can be found at [Müt23].

5.3 Gluing the cycles together

To join the cycles of our factor to a single Hamilton cycle, we consider a 4-cycle D that
shares two opposite edges with two cycles C,C ′ from our factor. Clearly, the symmetric
difference of the edge sets (C∪C ′)∆D yields a single cycle on the same vertex set as C∪C ′.
We may repeatedly apply such gluing operations until all cycles are joined to a single
Hamilton cycle. The two main technical obstacles here are: (a) All of the 4-cycles used
for the gluing must be edge-disjoint, so that none of the gluings interfere with each other.
(b) The gluings must achieve connectivity, i.e., every cycle must be connected to every
other cycle via a sequence of gluings. To control the gluing, we consider the speeds of
gliders in a bitstring x in non-increasing order. As the sum of speeds equals k, this
sequence forms a number partition of k. To establish (b) we choose gluings that guarantee
a lexicographic increase in those number partitions. Specifically, we glue cycles C(x)
and C(y) for which the glider speeds in y are obtained from those in x by decreasing the
speed of a glider of minimum speed by 1, and by increasing the speed of another glider by 1.
This ensures that the number partition of k associated with y is lexicographically larger
than that of x. Unfortunately, it is not always possible to use gluings that guarantee such
immediate lexicographic improvement. In some cases we have to use gluings where a small
lexicographic decrease occurs. We then argue that subsequent gluings compensate for this
defect such that the overall effect is again a lexicographic improvement. For example, from
a vertex with associated number partition (4, 4), the first gluing may lead to a vertex with
number partition (4, 3, 1), and the next gluing may lead to (5, 3). While (4, 4) → (4, 3, 1)
is a lexicographic decrease instead of an increase, overall (4, 4) → (4, 3, 1) → (5, 3) is a
lexicographic increase.
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Abstract

In 1964 Vizing proved that starting from any k-edge-coloring of a graph G one can
reach, using only Kempe swaps, a (∆+1)-edge-coloring of G where ∆ is the maximum
degree of G. One year later he conjectured that one can also reach a ∆-edge-coloring
of G if there exists one. Bonamy et. al proved that the conjecture is true for the case
of triangle-free graphs. In this paper we prove the conjecture for all simple graphs.
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1 Introduction
In 1964 Vizing [6] proved that the chromatic index of a graph G (i.e.the minimum number
of colors needed to properly colors the edges of G), denoted by χ′(G), is at most ∆(G) + 1
colors, where ∆(G) is the maximum degree of G.

Theorem 1. Any simple graph G satisfy χ′(G) 6 ∆(G) + 1.

The proof heavily relies on the use of Kempe changes. Kempe changes were introduced
by Kempe in his unsuccessful attempt to prove the 4-color theorem, but it turns out that
this concept became one of the most fruitful tool in graph coloring. Throughout this paper,
we will mostly focus on simple graphs (with no multiple edges), and thus, except stated
explicitly, the graphs we consider are never multigraphs.

Moreover, we only consider proper edge-colorings, and so we will only write colorings
to denote proper edge-colorings. Given a graph G and a coloring β, a Kempe chains C is

∗The author is supported by National Science Center of Poland grant 2019/34/E/ST6/00443.
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a maximal bichromatic component (Kempe chains were invented in the context of vertex-
coloring, but the principle remains the same for edge-coloring). Applying a Kempe swap
(or Kempe change) on C consists in switching the two colors in this component. Since
C is maximal, the coloring obtained after the swap is guaranteed to be a proper coloring,
and if C is not the unique maximal bichromatic component containing these two colors,
the coloring obtained after the swap is a coloring different from β, as the partition of the
edges is different.

The Kempe swaps induce an equivalence relation on the set of colorings of a graph
G; two colorings β and β′ are equivalent if one can find a sequence of Kempe swaps to
transform β into β′. In 1964, Vizing actually proved a stronger statement, he proved that
any k-coloring of a graph G (with k > ∆(G)) is equivalent to a (∆(G) + 1)-coloring of G.

Theorem 2. Let G be a graph and β a k-coloring of G (with k > ∆(G)). Then there
exists a (∆(G) + 1)-coloring β′ equivalent to β.

Note that some graphs only need ∆ colors to be properly colored and thus the exis-
tence of an equivalent optimal coloring is not guaranteed by the theorem. One year later,
Vizing [7] proved that this result is generalizable to multigraphs, and states the following
conjecture (see [5] for more on the history of this conjecture):

Conjecture 3 (Vizing’s Interchange Conjecture). For any multigraph G and for any k-
coloring β of G, is there always an optimal coloring equivalent to β ?

Note that both in Theorem 1 and in Conjecture 3 we do not have the choice in the
target coloring. If we can choose a specific target optimal coloring, then the question can
be reformulated as a reconfiguration question.

Question 4. For any multigraph G and for any k-coloring β, is any optimal coloring always
equivalent to β ?

If true, Question 4 would imply the following conjecture, as it suffices to take the
optimal target coloring as an intermediate between the two non-optimal colorings.

Conjecture 5. Let G be a graph and let k > χ′(G). Then any two k-colorings are equiv-
alent.

Mohar proved the case where we have at least two more colors than the optimal [4].

Theorem 6 ([4]). Let G be a graph. Then all (χ′(G) + 2)-colorings are equivalent.

When considering case where we only have more color than the optimal (k = χ′(G)+1),
McDonald & al. proved Conjecture 5 for graphs with maximum degree 3 [3], Asratian and
Casselgren proved it for graphs with maximum degree 4 [1], and Bonamy & al. proved that
the conjecture is true for triangle-free graphs. In this paper, we prove that the conjecture
is true for all graphs.

Theorem 7. Let G be a graph. Then all its (χ′(G) + 1)-colorings are Kempe-equivalent.
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Theorem 7 is a direct consequence of the following Lemma which is the main result of this
paper.

Lemma 8. Let G be a graph. Then any (χ′(G) + 1)-coloring of G is equivalent to any
χ′(G)-coloring of G.

Note that Lemma 8 together with Theorem 1 directly imply Conjecture 3 for (simple)
graphs. Indeed, if G is a graph and β is a k-coloring of G with k > χ′(G), by Theorem 1,
the coloring β is equivalent to a (∆(G) + 1)-coloring of G, and thus it is equivalent to a
(χ′(G) + 1)-coloring β′ of G. Apply Lemma 8 to this coloring β′ gives an optimal coloring
equivalent to β, and thus proves Conjecture 3.

2 General setting of the proof
The proof inherits the technical setup of [2], in this section, we introduce this setting, and
give the general outline of the proof of the main result. The majority of the proofs have
been deferred to the appendices.

2.1 Reduction to χ′(G)-regular graphs

The general setting of the proof follows that of [2] which itself follows that of [3] and of [1].
We first show that we can reduce the problem to the class of regular graphs.

Lemma 9. Let G be a graph. Then there exists a graph χ′(G)-regular graph G′ such that:

• G is an induced subgraph of G,

• any (χ′(G) + 1)-coloring of G can be completed into a (χ′(G) + 1)-coloring of G′, and

• if two (χ′(G) + 1)-colorings of G′ are equivalent, then their restrictions to G are also
equivalent.

Note that colorings in regular graphs are easier to handle due to the following two
properties:

• for any (∆(G))-coloring of a χ′(G)-regular graph G, every vertex v is incident to
exactly one edge of each color, and each color class is a perfect matching, and

• for any (∆(G) + 1)-coloring α of a χ′(G)-regular graph G, every vertex v is incident
to all but one color, we call this color the missing color at v, and denote it by mα(v)
(we often drop the α when the coloring is clear from the context).

From now on, in the rest of the paper, we only consider χ′-regular graphs.
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2.2 The good, the bad, and the ugly

The general approach to Lemma 8 is an induction on the chromatic index. Given a graph
G, a ∆(G)-coloring α and a (∆(G)+1)-coloring β, our goal is to find a sequence of Kempe
swaps to transform β into α. To do so, we will “allign” α and β using the following lemma.

Lemma 10. Let G be a regular graph, β be a (∆(G)+1)-coloring of G, α be a ∆(G)-coloring
of G, and let c be a color of α. Then the coloring β is equivalent to a (∆(G) + 1)-coloring
β′ where for any edge e we have β′(e) = c⇔ α(e) = c.

For any color class c in α, say c = 1, the edges colored 1 induce a perfect matchingM in
G. So once we obtain the coloring β′ using Lemma 10 for the color 1, we can then proceed
by induction of G′ = G \M . Remark that χ′(G′) = χ′(G) − 1, and that the restrictions
of α and β′ to G′ only use ∆(G)− 1, and ∆(G) colors respectively since the color 1 is not
used anymore.

Given a (∆(G) + 1)-coloring β of G and a color, say the color 1. Let M be the perfect
matching induced by the edges colored 1. We can partition the edges of G into three sets,
an edge e is called:

• good, if e ∈M and β(e) = 1,

• bad, if e ∈M and β(e) 6= 1, and

• ugly, if e 6∈M and β(e) = 1.

A vertex missing the color 1 is called a free vertex. Toward contradiction, we assume
that β is not equivalent to α, and we consider a (∆(G)+1)-coloring β′ equivalent to β which
minimizes the number of ugly edges among the colorings equivalent to β that minimize the
number of bad edges, we call such a coloring minimal. Observe that in a minimal coloring
there exists a bad edge. Thus, if we can find a coloring β′′ equivalent to β′ where the
number of bad edges is strictly lower than in β′, or with the same number of bad edges,
and strictly fewer ugly edges, we get a contradiction. In a minimal coloring, we first have
the following property.

Lemma 11. In a minimal coloring, there exists a bad edge adjacent to an ugly edge and
incident with a free vertex.

2.3 Fan-like tools

In his proof of Theorem 1, Vizing introduced a technical tool to apply Kempe swaps on
a coloring in very controlled way: Vizing fans. To define them, we will use an auxiliary
digraph. Vizing did not use a digraph to define the fans, but this definition will prove to
be suitable for our method of proof. Given a graph G, a (∆(G) + 1)-coloring β of G and
a vertex v, the directed graph Dv is defined as follows:

• the vertex set of Dv is the set of edges incident with v, and
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• we put an arc between two vertices vv1 and vv2 of Dv, if the edge vv2 is colored with
the missing color at v1.

The fan around v starting at the edge e, denoted by Xv(e), is the maximal sequence of
vertices of Dv reachable from the edge e. It is sometimes more convenient to speak about
the color of the starting edge of a fan: If c is a color, then Xv(c) denotes the fan around
v starting at the edge colored c incident with v. Note that since the graph G is χ′(G)-
regular, each vertex misses exactly one color, and thus, in the digraph Dv, each vertex has
outdegree at most 1. Hence a fan X is well-defined and we only have three possibilities for
the fan X :

• X is a path,

• X is a cycle, or

• X is a comet (i.e., a path with an additional arc between the last vertex of the path
and an internal vertex of the path).

If X = (vv1, · · · , vvk) is a fan, v is called the central vertex of the fan, and vv1 and vvk
are respectively called the first and the last edge of the fan (similarly, v1 and vk are the first
and last vertex of X respectively). For any fan V = (vv1, · · · , vvk) in a coloring β, V (V)
denotes the set of vertices {v1, · · · vk}, and E(V) denotes the set of edges {vv1, · · · vvk}. We
denote by β(V) the set of colors involved in V (i.e. β(V) = β(E(V)) ∪m(V (V)) ∪m(v));
if V involves the color c, M(X, c) denotes the vertex of V (V) missing the color c if this
vertex is unique.

Given a (∆(G)+1)-coloring β of G, and fan X = (vv1, · · · , vvk) which is a cycle around
a vertex v, where each vertex vi misses the color i (and so each edge vvi is colored (i− 1)),
we can define the coloring β′ = X−1(β) as follows:

• for any edge vvi not in X , β′(vvi) = β(vvi), and

• for any edge vvi in X , β′(vvi) = i and m(vi) = i− 1

The coloring X−1(β) is called the invert of X , and we say that X is invertible if X
and X−1(β) are equivalent. If the cycle X is invertible, inverting X in β means applying a
sequence of Kempe swaps to obtain X−1(β) from the coloring β. In this paper, we prove
that in any coloring, any cycle is invertible. This is the key ingredient of the proof of
Lemma 10.

Lemma 12. In any (χ′(G)+1)-coloring of a χ′(G)-regular graph G, any cycle is invertible.

The proof of Lemma 12 is an induction on the size of the cycles. Towards contradiction,
assume that there exist non-invertible cycles. A minimum cycle V is a non-invertible cycle
of minimum size (i.e., in any coloring, any smaller cycle is invertible).

A cycle of size 2 is clearly invertible as it only consists of a single Kempe chain com-
posed of exactly two edges: to invert the cycle, it suffices to apply a Kempe swap on this
component; so the size of a minimum cycle is at least 3. To prove the lemma, we need the
two following results.
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Lemma 13. Let V be a minimum cycle around a vertex v. For any color c different from
m(v), the fan Xv(c) is a cycle.

Lemma 14. Let V be a minimum cycle around a vertex v, and X and Y be two cycles
around v. For any pair of vertices (z, z′) in (V ∪X ∪Y)2, the fan Z = Xz(m(z′)) is a cycle
containing z′.

Proof of Lemma 12. To prove the Lemma, we prove that the graph G only consists of an
even clique where each vertex misses a different color. This is a contradiction since in any
(∆(G) + 1)-coloring of an even clique, for any color c, the number of vertices missing the
color c is always even. By Lemma 13, all the fans around v are cycles, so each neighbor of
v misses a different color. Moreover, by Lemma 14, there is an edge between each pair of
neighbors of v, so G = N [v] = K∆(G)+1. By construction, G is ∆(G)-colorable, so G is an
even clique and each vertex misses a different color as desired.

The key ingredient of the proof of Lemma 13 is the notion of entangleness between
two fans. Let X and X ′ be two fans, the fans X and X ′ are called entangled if for any
color c ∈ β(X )∩ β(X ′), we have M(X , c) = M(X ′, c). Thus if two fans that are entangled
and share a color, then their central vertices have a common neighbor. Note that if G is
a triangle free graph, and uv is an edge of G, then a fan around v cannot be entangled
with a fan around u if these two fans share a color. To prove Lemma 13 we need the two
following lemmas.

Lemma 15. Let V be a minimum cycle in a coloring β and let u and u′ be two vertices of
V. Then fan U = Xu(m(u′)) = (uu1, · · · , uul) is a cycle entangled with V.

Lemma 16. Let V be a minimum cycle in a coloring β, u and u′ be two vertices of V, and
U = Xu(m(u′)) = (uu1, · · · , uul). Then for any j 6 l, the fan Xv(β(uuj)) is a cycle.

Note that by Lemma 15, we can directly conclude that N [v] is a clique. The proof of
Lemma 16 is pretty involved and technical and consists of finding a sequence of Kempe
swaps to invert a minimum cycle V and thus reaching a contradiction. To do so we will use
two meta-operations based on Kempe swaps, namely the inversion of fans that are paths,
and the inversion of fans that are cycles smaller that the cycle V . The key ingredient of the
proof is to consider a whole equivalence class of colorings where the cycle V is minimum.

Let X ⊆ E(G) ∪ V (G), β a coloring and β′ a coloring obtained from β by swapping a
component C. The component is called X-stable if :

• for any v ∈ X, mβ(v) = mβ′
(v), and

• for any e ∈ X, β(e) = β′(e).

In this case, the coloring β′ is called X-identical to β.
If S = (C1, · · · , Ck) is a sequence of swaps to transform a coloring β into a coloring β′

where each Cj is a Kempe swap. The sequence S−1 is defined as the sequence of swaps
(Ck, · · · , C1). Such a sequence is called X-stable if each Cj is X-stable. If a sequence
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S is X-stable, then the coloring obtained after apply S to β is called X-equivalent to β.
Note that the notion of X-equivalence is stronger than the notion of X-identity. Since two
colorings β and β′ may be X-identical but not X-equivalent if there exists a coloring β′′ in
the sequence between β and β′ that is not X-identical to β.

The following observation gives a relation between X-equivalence and (G \X)-identity
between colorings.

Observation 17. Let β be a coloring, X ⊆ V (G) ∪ E(G), β1 a coloring X-equivalent to
β, and β2 a coloring (G \X)-identical to β1. Then, there exists a coloring β3 equivalent to
β2 that is X-identical to β2 and (G \X)-identical to β.

If X is a fan, when two colorings are (V (X ) ∪ E(X ))-identical (respectively (V (X ) ∪
E(X ))-equivalent), we simply write that the two colorings are X -identical (respectively
X -equivalent). Similarly, if two colorings are ((V (G) ∪ E(G)) \X)-identical (respectively
((V (G)∪E(G))\X)-equivalent), we simply write that the two colorings are (G\X)-identical
(respectively (G \X)-equivalent).

Remark that if V is a cycle in a coloring β, then the coloring V−1(β) is (G\V)-identical
to β. So from the previous observation we have the following corollary.

Corollary 18. Let V be a cycle in a coloring β. If there exists a coloring β′ V-equivalent
to β where V is invertible, then V is invertible in β.

From the previous corollary, we derive the following observation.

Observation 19. Let V be a minimum cycle in coloring β, and β′ a coloring V-equivalent
to β. Then in the coloring β′, the sequence V is also a minimum cycle such that for any
e ∈ E(V), β(e) = β′(e), and for any v ∈ V (V), mβ(v) = mβ′

(v).

We simply say that the cycle V is the same minimum cycle in the coloring β′. And thus
it suffices to find a coloring V-equivalent to β where V is invertible to reach a contradiction.
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Abstract

We prove that product-free sets of the free group over a finite alphabet have max-
imum density 1/2 with respect to the natural measure that assigns total weight one
to each set of irreducible words of a given length. This confirms a conjecture of
Leader, Letzter, Narayanan and Walters. In more general terms, we actually prove
that strongly k-product-free sets have maximum density 1/k in terms of the said
measure. The bounds are tight.
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1 Introduction
A subset S of a group is said to be product-free if there do not exist x, y, z ∈ S (not
necessarily distinct) such that z = x ·y. Much has been studied about product-free subsets
of finite groups, particularly so in the abelian case, where they are usually called sum-free
subsets (see, for example, the survey by Tao and Vu [8]). The study of product–free subsets
in nonabelian groups can be traced back to Babai and Sós [1], see the survey by Kedlaya
[3]. Interest on the problem was prompted by the seminal work of Gowers on quasirandom
groups [2].

The study of product-free sets in discrete infinite structures is more recent. As a first
approach to the study of the infinite case, Leader, Letzter, Narayanan, and Walters in
[4] proved that product-free subsets of the free semigroup on the finite alphabet A have
maximum density 1/2 with respect to the measure that assigns a weight of |A|−n to every
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word of length n. They conjectured that this is also true for the analogous measure on the
free group. The main purpose of the present paper is to provide a proof of this conjecture.

More precisely, let us write F for the free group over a finite alphabet A. For n ≥ 1
and A ⊆ F , we write A(n) = {w ∈ A : |w| = n} for the set of elements of A whose reduced
words have length n, and A≤n for those that have length smaller or equal than n. We define
a measure µ on F such that µ({w}) = 1/|F(|w|)| for all w ∈ F , so that every layer of words
of a given length has the same total weight. Finally, we write d̄(A) = lim supn→∞

µ(A≤n)

µ(F≤n)

for the upper asymptotic density of A. Our main result can be phrased as follows.

Theorem 1. Let S ⊆ F be a product-free subset. Then

d̄(S) ≤ 1

2
. (1)

We actually study a generalisation of this result. Following the notion by Łuczak
and Schoen [6] we call a subset S of a semigroup k-product-free for k ≥ 2 if there are no
x1, . . . , xk, y ∈ S such that x1 . . . xk = y and, furthermore, we call S strongly k-product-free
if it is l-product-free for all l with 2 ≤ l ≤ k. We are able to prove the following.

Theorem 2. Let S ⊆ F be a strongly k-product-free subset for k ≥ 2. Then

d̄(S) ≤ 1

k
. (2)

Fixing an arbitrary x ∈ A, the natural example of the set S ⊆ F consisting of words
such that the number of x minus the number of x−1 in its reduced form is congruent to 1
modulo k, which is strongly k–product–free and has upper asymptotic density d̄(S) = 1/k,
shows that the upper bound in Theorem 2 is best possible.

We split the proof of Theorem 2 in two steps. The first step consists in reducing the
problem to an analogous one over a particular semigroup. The second step consists in
proving the theorem over this semigroup, where we may use similar arguments to those
of [4]. However, their argument seems to break when considering strongly k-product-free
subsets for k > 3. We avoid the obstruction we encounter by restricting our analysis to
a subsemigroup where S is at least as dense and pseudorandom in a certain weak sense.
This is achieved via a density increment argument.

To conclude, we also want to remark that the statement of Theorem 2 also holds in the
free semigroup, which actually was the model where we first worked out the proof, and it
is a generalisation of the main theorem in [4].

Theorem 3. For any finite alphabet A, a strongly k-product-free of the free semigroup
over A has upper asymptotic density at most 1/k.

Details of the proofs not included here can be found in [7].
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2 Reduction to a semigroup
We write Fxy ⊆ F for the subset of words that begin with x and end in y (with x, y ∈
A ∪ A−1). The first step of the proof consists in reducing the proof of Theorem 2 to
an analogous statement over Fxy with x 6= y−1. This ambient space has the advantage
of having no cancellation when multiplying, so it is much closer to the case of the free
semigroup, and we are then be able to use ideas similar in spirit to those of [4].

For a given family H ⊆ F and a subset A ⊆ H, we define the relative upper density of
A as

d̄H(A) = lim sup
n→∞

µ(A≤n)

µ(H≤n)
.

The analogous result to Theorem 2 then reads as follows.

Proposition 1. Let S ⊆ Fxy be a strongly k-product-free with k ≥ 2 and x 6= y−1. Then

d̄Fxy(S) ≤ 1

k
.

The proof of Theorem 2 starts by splitting the elements of S ⊂ F according to their
initial and final letter. If these are not opposite, then we may apply Proposition 1. If they
are opposite, the crucial observation is that we are conjugating by a certain letter, and
hence the property of being product-free is preserved. We may then split again according
to the second and next to last letters. Iterating this argument, the increase in density
over 1/k must come from words of the form wαw−1 for w of large length, which have
exponentially low total mass.

3 Proof over a semigroup
Let us give a brief overview of the proof of Proposition 1. Assume fixed x, y ∈ A ∪ A−1
such that x 6= y−1 and write G = Fxy ⊆ F . Also write K = 2|A|

2|A|−1 for a constant that
appears in several arguments, due to the fact that |F(i)||F(j)| = |F(i+j)|

K
.

We first prove a version of Proposition 1 that depends on the construction of certain
subsets of S with appropriate properties. We sayH ⊆ F is dense if µ(H≤n) > δµ(F≤n) > 0
for a fixed δ and all large enough n. Furthermore, it is a subsemigroup if H · H ⊆ H, i.e.
αβ ∈ H for all α, β ∈ H. Finally, a subset W ⊆ H has unique products in H if the map

(W,H)→ H
(w, h) 7→ w · h

is injective.
For W and H ⊆ G satisfying the above properties, we prove a version of Proposition 1

conditional on µ(W ) being close to K.
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Lemma 1. Let H ⊆ G be a dense subsemigroup. For any strongly k-product free set S ⊆ H
and finite subset W ⊆ S with unique products it holds that

d̄H(S) ≤ 1

1 + µ(W )
K

+ · · ·+
(
µ(W )
K

)k−1
The previous lemma is proved, essentially, through a counting argument. Since S is

k-product free, the sets W i ·S will all be disjoint, and hence they cannot be too large. The
properties of W allow us to lower bound the size of W · S in terms of the sizes of W and
S. We phrase the argument in a probabilistic manner.

In order to prove Proposition 1, we need to build a subset W large enough to apply
the previous lemma. We do so in two different ways. We first present a proof for the
case 2 ≤ k ≤ 3, where we can use a similar argument to the one in [4]. In this case, we
may exploit the fact that S is product-free to construct W in a relatively straightforward
manner.

The straightforward argument fails for k > 3. Thus, we must find another way of
building the subset W ⊆ S necessary to apply Lemma 1. To do so, instead of finding
such a set directly in G, we find a subset of G where S is regularly distributed, where the
existence of W ⊆ S as we are interested in is much easier to prove and does not depend
on S being product-free.

Concretely, we are interested in studying S when we restrict ourselves to words which
are divisible in G by a given factor. For a given w ∈ G, we write wG ⊆ G for the set
of words belonging to G which may be written as wα for α ∈ G. We then define the
following pseudorandomness condition, which measures whether S is evenly distributed
when restricted to such sets.

Definition 1. Given w ∈ G, a subset S ⊂ wG is ε-regular in wG if

d̄ww′G((S ∩ (ww′G)) < d̄wG(S) + ε (3)

for all words w′ ∈ G.

We then prove the analogous statement to Theorem 2 under pseudorandomness as-
sumptions. In particular, the following Lemma implies Theorem 2 when S is ε-regular for
all ε > 0.

Lemma 2. Let S ⊂ wG be a strongly k-product free set that is ε-regular in wG, with w ∈ G,
and let d = d̄wG(S) be its relative upper density. Then

d

(
1 +

d

d+ 2ε
+ · · ·+

(
d

d+ 2ε

)k)
≤ 1, (4)

Finally, we use a density-increment strategy, where failure of pseudorandomness implies
an increase in density, to find w such that S∩wG is pseudorandom, and apply the previous
lemma in this setting.
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4 Final remarks
The proof of Theorem 3 is done following the arguments from the previous section, by only
replacing the role played by Fxy for FA, and by replacing K by 1. It is also worth noting
that the results in [4] concern the upper Banach density of sum-free subsets, which gives
slightly stronger results, since the upper Banach density is an upper bound for the upper
asymptotic density we consider. For the sake of simplicity, we have not attempted to write
down our results for this case, although all arguments go through.

Finally, it would also be interesting to consider the case of k-product-free sets. To state
the natural conjecture for this case, define ρ as

ρ(l) = min ({l ∈ N : l - k − 1}) .

Then we believe the following to be true.

Conjecture 1. Let S ⊆ F be a k-product-free subset for k ≥ 2. Then

d̄(S) ≤ 1

ρ(k)
(5)

This is analogous to a result of Łuczak and Schoen [5], which proves the corresponding
statement over the integers.
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Abstract

In 1995, Komlós, Sárközy and Szemerédi showed that for large n, every n-vertex
graph with minimum degree at least (1/2+γ)n contains all spanning trees of bounded
degree. We consider a generalization of this result to loose spanning hypertrees, that
is, linear hypergraphs obtained by successively appending edges sharing a single ver-
tex with a previous edge, in 3-graphs. We show that for all γ and ∆, and n large,
every n-vertex 3-uniform hypergraph of minimum vertex degree (5/9+γ)

(
n
2

)
contains

every loose spanning tree with maximum vertex degree ∆. This bound is asymptoti-
cally tight, since some loose trees contain perfect matchings.
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1 Introduction
A classical result of Komlós, Sárközy and Szemerédi [4] states that for large n, any n-vertex
graph with minimum degree (1/2 + ε)n contains every spanning tree of bounded degree.
Since a Hamilton path is a tree of bounded degree, the constant 1/2 is best possible by
any construction showing that Dirac’s theorem is best possible.
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Figure 1: The complete binary loose tree with 4 levels. A perfect matching is shown in
red.

We consider the corresponding problem for hypergraphs. We work with a combinatorial
definition of a k-uniform `-tree – a k-uniform hypergraph admitting an edge ordering
e1, ..., em such that each ei shares ` vertices with one previous edge in the ordering1. Such
orderings we call valid, and the edges which can be last in a valid ordering we call leaves.
We will call 1-trees loose (also known in the literature as linear). Similarly, a (k − 1)-tree
is also called a tight tree. We denote by δ`(H) the minimum `-degree of a k-graph H, that
is, the minimum number of edges containing a set of ` vertices of H. Maximum degree is
defined accordingly.

Not much is known about extensions of Komlós, Sárközy and Szemerédi’s result to
general k-uniform `-trees, apart from a recent result of Pavez-Signé, Sanhueza-Matamala
and Stein [5, 6] which shows that minimum δk−1(H) > (1/2 + γ)n forces the existence of
any tight spanning tree T with ∆1(T ) 6 ∆.

Buß, Hàn and Schacht [1] showed that if δ1(H) >
(

7
16

+ ε
) (

n
2

)
, then H contains a loose

Hamilton cycle – a cycle whose adjacent edges share exactly one vertex. The constant 7/16
is best possible, and in a later paper Han and Zhao [3] gave the exact threshold.

In light of this, one may conjecture that 3-graphs with minimum vertex degree
(

7
16

+ ε
) (

n
2

)
also contain every loose tree of bounded degree. However, this is not the case. Consider
the complete binary loose tree as shown in Figure 1. A complete binary loose tree Tb with
an even number of levels contains a perfect matching, so any 3-graph without a perfect
matching will also not contain Tb. The asymptotic minimum degree threshold for perfect
matchings in 3-graphs was shown to be 5/9 by Hàn, Person and Schacht [2]. Their asymp-
totic bound was later made exact by Treglown, Kühn and Osthus [8]. This is tight as
witnessed by the hypergraph on vertex set A ∪ B with |A| = n/3− 1 and |B| = 2n/3 + 1
consisting of all edges with at least one vertex in A. Therefore, the minimum vertex degree
threshold for the existence of bounded degree loose spanning trees must be at least 5/9.
We show that this is in fact the correct threshold.

Theorem 1.1. For all γ > 0 and ∆ ∈ N there exists n0 ∈ N such that any 3-graph H on
n > n0 vertices with n odd and δ1(H) >

(
5
9

+ γ
) (

n
2

)
contains every n-vertex loose tree T

with ∆1(T ) 6 ∆.
1More formally, for each i > 2 there exists j < i such that ei ∩

⋃
j′<i ej′ ⊆ ej and |ei ∩ ej | = `.
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2 Proof of Theorem 1.1
Our proof employs a classic recipe prescribed by the absorbing method.

Step 1. Find an absorbing set A in our host graph. In Absorbing set lemma we show
existence and in Absorbing lemma we show its absorbing properties.

Step 2. Embed a small proportion of our tree T in a way that covers the relevant vertices
of A. This is Covering lemma.

Step 3. Use the regularity method to extend this embedding to almost all of T . This is
Approximate embedding lemma.

Step 4. Use A to extend the embedding to all of T .

As an expansion of this sketch we give statements and proof ideas of the four lemmas
used above, and show how they imply Theorem 1.1.

The proof of the following lemma is analogous to [6, Proposition 9.4 and Lemma 9.5].
It uses the fact that in a graph with minimum vertex degree

(
1
2

+ o(1)
) (

n
2

)
every triple of

vertices (w1, w2, w3) has a positive density of absorbing pairs of ∆-stars (see Figure 2). We
denote the set of such star-pairs by A∆(w1, w2, w3). Subsampling these over all triples of
vertices with the appropriate probability gives a large absorbing set.

Absorbing set lemma. Let 1/n � α � β � γ, 1/∆. Let H be a 3-graph on n ver-
tices with δ1(H) >

(
1
2

+ γ
) (

n
2

)
. Then there exists a set A of at most βn vertex-disjoint

pairs of ∆-stars such that for every triple (w1, w2, w3) of distinct vertices in H we have
|A∆(w1, w2, w3) ∩ A| ≥ αn.

The following lemma shows that the set A in fact absorbs – given a partial embedding
of a tree which covers A, we can use A to find a full embedding. Intuitively, this is possible
because given a triple (w1, w2, w3) and one of its absorbing star-pairs (Su2 , Su3), we can
add the edge {w1, u2, u3} to the partial embedding by switching u2 for w2 and u3 for w3

(see Figure 2). Repeating this switch enough times gives a full embedding of T .

Absorbing lemma. Let 1/n � η < α < 1/∆. Let T be a loose 3-tree on n vertices
of maximum degree ∆ with a valid ordering of the edges e1, . . . , e(n−1)/2 and let T0 =
{e1, . . . , e(n′−1)/2} be a subtree of T on n′ ≥ (1 − η)n vertices. Let H be a 3-graph on n
vertices, and φ be an embedding φ : V (T0)→ V (H). Suppose A is a family of vertex-disjoint
pairs of ∆-stars such that every tuple in A is covered by φ and |A∆(w1, w2, w3) ∩A| ≥ αn
for every triple (w1, w2, w3) of distinct vertices of H. Then there is an embedding of T into
H.

The proof of the following covering lemma is analogous to [6, Lemma 9.7].

Covering lemma. Let 1/n � β � ν � γ, 1/∆. Let H be a 3-graph on n vertices with
minimum degree

(
1
2

+ γ
) (

n
2

)
and let T be a loose tree on νn vertices with maximum degree
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w1

w2

v2 v3

w3

Figure 2: A pair (Sv2 , Sv3) of 3-stars which is absorbing for (w1, w2, w3) and covered by an
embedding φ. Images of edges under φ are shown in green. The crucial property of this
structure is that the two green stars in φ can be switched for the two orange stars plus an
extra edge at w1, thus extending the embedding.

∆. Let A be a set of at most βn pairwise vertex-disjoint absorbing star-pairs in H. Then
there is an embedding φ : V (T ) → V (H) such that every absorbing tuple in A is covered
by φ.

In the following lemma we show that a bounded-degree tree T of size almost n can be
embedded in our host graph H. To prove this, we first apply the weak regularity lemma to
H to obtain an ε-regular partition of H. The cluster graph inherits the minimum degree
of H, and so by the main result in [7] it contains a tight Hamilton cycle C = (V1, ..., Vt).
The properties of the regular partition give an embedding of T as long as we can produce
what we call a valid assignment a : V (T )→ [t] of its vertices to the clusters of C. A valid
assignment satisfies the following two properties:

• the total number of vertices assigned to each Vj does not exceed (1 − η)|Vj|, where
η � ε,

• all edges of T are assigned to edges of C.

Our key idea for finding a valid assignment is to break down the almost-spanning tree into
linear-sized pieces, assign these pieces to different edges of C, and then ‘wrap’ around the
tight Hamilton cycle C to connect the pieces to each other. When assigning a piece of
our tree to an edge of C, we always make sure to leave approximately the same number
of vertices unused in each cluster of that edge of C, so that there is always at least one
edge with the capacity to assign an extra piece to it. Since C has constantly many edges,
wrapping around it to connect the pieces only uses up constantly many vertices and so
does not interfere with our balance invariant.

Approximate embedding lemma. Let 1/n� η � γ, 1/∆, and let H be a 3-graph on n
vertices with δ1(H) ≥

(
5
9

+ γ
) (

n
2

)
. Let T be a loose tree of maximum degree ∆ on at least

(1− η)n vertices. Then for every x ∈ V (T ) and z ∈ V (H), there exists an embedding of T
into H that maps x to z.
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We are now ready to put these five lemmas together to prove our main result.

Proof of Theorem 1.1. Let 1/n� η < α� β � ν � γ, 1/∆, where n is odd.
We first apply Absorbing set lemma to get a set A of at most βn pairwise vertex-

disjoint pairs of stars, such that for every triple (w1, w2, w3) of vertices in H we have that
|A∆(w1, w2, w3) ∩ A| ≥ αn.

Next, root T arbitrarily at some vertex r and find a subtree Tx ⊂ T of size νn 6
v(Tx) 6 2∆νn. This can be done by setting x := r and, until x has a child y whose
subtree has at least νn vertices, set x := y. At some point this process reaches a vertex
x whose subtree Tx has at least νn vertices, but all its children’s subtrees have fewer than
νn vertices, implying that v(Tx) 6 2∆νn. Let ν ′ := v(Tx)/n and apply Covering lemma
with ν := ν ′ and T := Tx to find an embedding φ1 : V (Tx) → V (H) such that every pair
of stars in A is covered by φ1. Denote φ1(x) = z.

Now let H1 := (H \ φ1(Tx)) ∪ {z} and note that δ1(H1) ≥
(

5
9

+ γ
2

) (|H1|
2

)
. Let T1 :=

(T \ Tx)∪ {x} and root T1 at x. Remove leaf edges from T1 repeatedly to get T2 such that
v(T1)− v(T2) = η|H1|. Apply Approximate embedding lemma with H := H1 and T := T2

to find an embedding φ2 of T2 into H1 with φ2(x) = z.
Finally, let T3 := Tx∪T2 and note that v(T3) = n−η|H1| > (1−η)n. Combine φ1 and φ2

into an embedding φ3 of T3 intoH, which can be done since φ1(Tx)∩φ2(T2) = φ1(x) = φ2(x).
Then the tree T3, the embedding φ3, and the set of absorbing tuplesA satisfy the conditions
of Absorbing lemma, which we can apply to get an embedding of T in H.
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1 Introduction

1.1 Graph (re)colouring

Given a graph G = (V,E), a k-colouring of G is a function c : V −→ {1, . . . , k} such that,
for every edge xy ∈ E, we have c(x) 6= c(y). The chromatic number of G, denoted by χ(G),
is the smallest k such that G admits a k-colouring. The maximum degree of G, denoted
by ∆(G), is the degree of the vertex with the greatest number of edges incident to it. A
simple greedy procedure shows that, for any graph G, χ(G) ≤ ∆(G) + 1. The celebrated
theorem of Brooks [6] characterizes the graphs for which equality holds.

Theorem 1 ([6]). A connected graph G satisfies χ(G) = ∆(G) + 1 if and only if G is an
odd cycle or a complete graph.

For any k ≥ χ(G), the k-colouring graph of G, denoted by Ck(G), is the graph whose
vertices are the k-colourings ofG and in which two k-colourings are adjacent if they differ by
the colour of exactly one vertex. A path between two given colourings in Ck(G) corresponds
to a recolouring sequence. In the last fifteen years, since the papers of Bonsma, Cereceda,
van den Heuvel and Johnson [7, 3, 8, 9], graph recolouring has been studied by many
researchers in graph theory. Feghali, Johnson and Paulusma [10] proved the following
analogue of Brooks’ Theorem for graphs recolouring.

Theorem 2 ([10]). Let G = (V,E) be a connected graph with ∆(G) = ∆ ≥ 3, k ≥ ∆ + 1,
and α, β two k-colourings of G. Then at least one of the following holds:

• α or β is an isolated vertex in Ck(G), or

• there is a recolouring sequence of length at most c∆|V |2 between α and β, where
c∆ = O(∆) is a constant depending on ∆.

Considering graphs of bounded maximum degree, Theorem 2 has been very recently
improved by Bousquet, Feuilloley, Heinrich and Rabie (see [4]). They prove that there is
a recolouring sequence between α and β of length at most f(∆)|V | for some computable
function f , except if α or β is an isolated vertex in Ck(G).

1.2 Digraph (re)dicolouring

In this paper, we are looking for extensions of the previous results on graphs colouring and
recolouring to digraphs.

Let D be a digraph. A digon is a pair of arcs in opposite directions between the same
vertices. An oriented graph is a digraph with no digon. The bidirected graph associated
to a graph G, denoted by

←→
G , is the digraph obtained from G, by replacing every edge by

a digon. The underlying graph of D, denoted by UG(D), is the undirected graph G with
vertex set V (D) in which uv is an edge if and only if uv or vu is an arc of D.

Let v be a vertex of a digraph D. The out-degree (resp. in-degree) of v, denoted by
d+(v) (resp. d−(v)), is the number of arcs leaving (resp. entering) v. We define the
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maximum degree of v as dmax(v) = max{d+(v), d−(v)}, and the minimum degree of v as
dmin(v) = min{d+(v), d−(v)}. We can then define the corresponding maximum degrees of
D: ∆max(D) = maxv∈V (D)(dmax(v)) and ∆min(D) = maxv∈V (D)(dmin(v)). A digraph D is
∆-diregular if, for every vertex v ∈ V (D), d−(v) = d+(v) = ∆. The directed join of D1

and D2, denoted by D1 ⇒ D2, is the digraph obtained from disjoint copies of D1 and D2

by adding all arcs from the copy of D1 to the copy of D2.
In 1982, Neumann-Lara [12] introduced the notions of dicolouring and dichromatic

number, which generalize the ones of colouring and chromatic number. A k-dicolouring of
D is a function c : V (D)→ {1, . . . , k} such that c−1(i) induces an acyclic subdigraph in D
for each i ∈ {1, . . . , k}. The dichromatic number of D, denoted by ~χ(D), is the smallest
k such that D admits a k-dicolouring. There is a one-to-one correspondence between the
k-colourings of a graph G and the k-dicolourings of the associated bidirected graph

←→
G ,

and in particular χ(G) = ~χ(
←→
G ). Hence every result on graph colourings can be seen as a

result on dicolourings of bidirected graphs, and it is natural to study whether the result
can be extended to all digraphs.

The directed version of Brooks’ Theorem was first proved by Harutyunyan and Mohar
in [11] (see also [1]).

Theorem 3 (Directed Brooks’ Theorem). Let D be a connected digraph. Then
~χ(D) ≤ ∆max(D) + 1 and equality holds if and only if D is a directed cycle, a bidirected
odd cycle or a bidirected complete graph of order at least 4.

It is easy to prove, by a simple greedy procedure, that every digraphD can be dicoloured
with ∆min(D) + 1 colours. Hence, one can wonder if Brooks’ Theorem can be extended to
digraphs using ∆min(D) instead of ∆max(D). Our main result is the following.

Theorem 4. Let D be a digraph. If ~χ(D) = ∆min(D) + 1, then one of the following holds:

• ∆min(D) ≤ 1, or

• ∆min(D) = 2 and D contains
←→
K2, or

• ∆min(D) ≥ 3 and D contains
←→
Kr ⇒

←→
Ks, for some r, s ≥ 0 such that r + s =

∆min(D) + 1.

In particular, the following is a direct consequence of Theorem 4.

Corollary 5. Let D be a digraph. If ~χ(D) = ∆min(D) + 1, then D contains the complete
bidirected graph on

⌈
∆min(D)+1

2

⌉
vertices as a subdigraph.

Corollary 5 is best possible: if we restrictD to not contain the complete bidirected graph
on

⌈
∆min(D)+1

2

⌉
+1 vertices, then deciding ~χ(D) ≤ ∆min(D) is NP-complete (see [13]). Since

an oriented graph does not contain any digon, Corollary 5 directly implies the following.

Corollary 6. Let ~G be an oriented graph. If ∆min(~G) ≥ 2, then ~χ(~G) ≤ ∆min(~G).
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For any k ≥ ~χ(D), the k-dicolouring graph of D, denoted by Dk(D), is the graph whose
vertices are the k-dicolourings of D and in which two k-dicolourings are adjacent if they
differ by the colour of exactly one vertex. Observe that Ck(G) = Dk(

←→
G ) for any bidirected

graph
←→
G . A redicolouring sequence between two dicolourings is a path between these

dicolourings in Dk(D).
Digraph redicolouring was first introduced in [5], where the authors generalized different

results on graph recolouring to digraphs, and proved some specific results when restricted
to oriented graphs. In particular, they studied the k-dicolouring graph of digraphs with
bounded degeneracy or bounded maximum average degree, and they show that finding a
redicolouring sequence between two given k-dicolourings of a digraph is PSPACE-complete
for every fixed k ≥ 2. Dealing with the maximum degree of a digraph, they proved that,
given an orientation of a subcubic graph ~G on n vertices, its 2-dicolouring graph D2(~G)
is connected and has diameter at most 2n and they asked if this bound can be improved.
We answer this question by proving the following theorem.

Theorem 7. Let ~G be an oriented graph of order n such that ∆min(~G) ≤ 1. Then D2(~G)
is connected and has diameter exactly n.

In particular, if ~G is an orientation of a subcubic graph, then ∆min(~G) ≤ 1 (because
d+(v) + d−(v) ≤ 3 for every vertex v), and so D2(~G) has diameter exactly n. Furthermore,
we prove the following as a consequence of Corollary 6 and Theorem 7.

Corollary 8. Let ~G be an oriented graph of order n with ∆min(~G) = ∆ ≥ 1, and let
k ≥ ∆ + 1. Then Dk(~G) is connected and has diameter at most 2∆n.

Corollary 8 does not hold for digraphs in general: indeed,
←→
Pn , the bidirected path on n

vertices, satisfies ∆min(
←→
Pn) = 2 and D3(

←→
Pn) = C3(Pn) has diameter Ω(n2), as proved in [2].

Our last result is the following extension of Theorem 2 to digraphs.

Theorem 9. Let D = (V,A) be a connected digraph with ∆max(D) = ∆ ≥ 3, k ≥ ∆ + 1,
and α, β two k-dicolourings of D. Then at least one of the following holds:

• α or β is an isolated vertex in Dk(G), or

• there is a redicolouring sequence of length at most c∆|V |2 between α and β, where
c∆ = O(∆2) is a constant depending only on ∆.

Furthermore we prove that Dk(D) has an isolated vertex if and only if D is bidirected
and its underlying graph has one. Thus, an obstruction in Theorem 9 is exactly the
bidirected graph of an obstruction in Theorem 2.

In the next section we prove Theorem 4. The integrality of the proofs of the results in
this extended abstract can be found in [13].
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2 Proof of Theorem 4
A digraph D is k-dicritical if ~χ(D) = k and for every vertex v ∈ V (D), ~χ(D − v) < k.
Observe that every digraph with dichromatic number at least k contains a k-dicritical
subdigraph. Let F2 be {

←→
K2}, and for each ∆ ≥ 3, we define F∆ = {

←→
Kr ⇒

←→
Ks | r, s ≥

0 and r + s = ∆ + 1}. A digraph D is F∆-free if it does not contain F as a subdigraph,
for any F ∈ F∆. Theorem 4 can then be reformulated as follows.

Theorem 4. Let D be a digraph with ∆min(D) = ∆ ≥ 2. If D is F∆-free, then ~χ(D) ≤ ∆.

Proof. Let D be a digraph such that ∆min(D) = ∆ ≥ 2 and ~χ(D) = ∆ + 1. We will show
that D contains some F ∈ F∆ as a subdigraph.

Let (X, Y ) be a partition of V (D) such that for each x ∈ X, d+(x) ≤ ∆, and for each
y ∈ Y , d−(y) ≤ ∆. We define the digraph D̃ as follows:

• V (D̃) = V (D),

• A(D̃) = A(D〈X〉) ∪ A(D〈Y 〉) ∪ {xy, yx | xy ∈ A(D), x ∈ X, y ∈ Y }.

Let us first prove that ~χ(D̃) ≥ ∆ + 1. Assume for a contradiction that there exists a
∆-dicolouring c of D̃. Then D, coloured with c, must contain a monochromatic directed
cycle C. Now C is not contained in X nor Y , for otherwise C would be a monochromatic
directed cycle of D〈X〉 or D〈Y 〉 and so a monochromatic directed cycle of D̃. Thus C
contains an arc xy from X to Y . But then, {xy, yx} is a monochromatic digon in D̃, a
contradiction.

Since ~χ(D̃) ≥ ∆ + 1, there is a (∆ + 1)-dicritical subdigraph H of D̃. By dicriticality of
H, for every vertex v ∈ V (H), d+

H(v) ≥ ∆ and d−H(v) ≥ ∆, for otherwise a ∆-dicolouring
of H − v could be extended to H by choosing for v a colour which is not appearing in
its out-neighbourhood or in its in-neighbourhood. We define XH as X ∩ V (H) and YH as
Y ∩ V (H). Note that both H〈XH〉 and H〈YH〉 are subdigraphs of D.

We will now prove that H is ∆-diregular. Let ` be the number of digons between XH

and YH in H. Observe that, by definition of X and H, for each vertex x ∈ XH , d+
H(x) = ∆.

Note also that, in H, ` is exactly the number of arcs leaving XH and exactly the number
of arcs entering XH . We get:

∆|XH | =
∑
x∈XH

d+
H(x) = `+ |A(H〈XH〉)| =

∑
x∈XH

d−H(x)

which implies, since H is dicritical, d+
H(x) = d−H(x) = ∆ for every vertex x ∈ XH . Using a

symmetric argument, we prove that ∆|YH | =
∑

y∈YH
d+
H(y), implying d+

H(y) = d−H(y) = ∆
for every vertex y ∈ YH .

SinceH is ∆-diregular, then in particular ∆max(H) = ∆. Hence, because ~χ(H) = ∆+1,
by Theorem 3, either ∆ = 2 and H is a bidirected odd cycle, or ∆ ≥ 3 and H is the
bidirected complete graph on ∆ + 1 vertices. In both cases, D〈V (H)〉 contains a digraph
of F∆ as a subdigraph.
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Abstract

We call a multigraph irregular if it has pairwise distinct vertex degrees. No non-
trivial (simple) graph is thus irregular. The irregularity strength of a graph G, s(G),
is a specific measure of the “level of irregularity” of G. It might be defined as the
least k such that one may obtain an irregular multigraph of G by multiplying any
selected edges of G, each into at most k its copies. In other words, s(G) is the least
k admitting a {1, 2, . . . , k}-weighting of the edges of G assuring distinct weighted
degrees for all the vertices, where the weighted degree of a vertex is the sum of its
incident weights. The most well-known open problem concerning this graph invariant
is the conjecture posed in 1987 by Faudree and Lehel that there exists an absolute
constant C such that s(G) ≤ n

d + C for each d-regular graph G with n vertices and
d ≥ 2, whereas a straightforward counting argument implies that s(G) ≥ n

d + d−1
d .

Until very recently this conjecture had remained widely open. We shall discuss recent
results confirming it asymptotically, up to a lower order term. If time permits we shall
also mention a few related problems, such as the 1–2–3 Conjecture or the concept of
irregular subgraphs, introduced recently by Alon and Wei, and progress in research
concerning these.
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1 Introduction
One of the most basic facts in graph theory is that every simple graph of order at least
two contains a pair of vertices with equal degrees. Thus it cannot be irregular, where
by irregular we mean: containing pairwise distinct vertex degrees. There are irregular
multigraphs, though. In fact any (simple) graph G = (V,E) can be turned into an irregular
multigraph throughout multiplying some of its edges, as long as G has no isolated edge
and at most one isolated vertex. The least k such that it is feasible using at most k
copies of every edge is called the irregularity strength of G and denoted s(G); we set
s(G) = ∞ if this is not possible at all. Note that equivalently, s(G) may be defined
as the least positive integer k for which there is an edge k-weighting, that is a function
ω : E → {1, 2, . . . , k} such that each vertex v ∈ V is attributed a distinct weighted degree
dω(v) :=

∑
u∈N(v) ω(uv). This graph invariant was introduced in the 80s by Chartrand et

al. [11] in relation to research on the concept of irregular graphs of Chartrand, Erdős and
Oellermann [10]. In general it is known that s(G) ≤ n−1 for all graphs with n vertices for
which the parameter is finite except K3 [3, 31], and this upper bound is tight, e.g. for the
family of stars. It can however be significantly decreased for graphs without small degree
vertices. In particular, it is easy to verify that s(G) ≥ n

d
+ d−1

d
for d-regular graphs, while

the central open problem of this field is the following conjecture of Faudree and Lehel [17]
from 1987 (posed first as a question by Jacobson, see [29]).

Conjecture 1. There exists a constant C such that s(G) ≤ n
d

+ C for every d-regular
graph G with d ≥ 2 and order n.

This problem “energized the study of the irregularity strength”, as Cuckler and Lazebnik
stated in [12], and still remains open. A significant step forward towards solving it was
achieved in 2002 by Frieze, Gould, Karoński, and Pfender [20], who used the probabilistic
method to prove the first linear bound s(G) ≤ 48(n/d) + 1 for d ≤

√
n, and a super-

linear one s(G) ≤ 240(log n)(n/d) + 1 in the remaining cases. They also proved similar
bounds for general graphs, with d replaced by the minimum degree δ. For example, they
showed that s(G) = O(n/δ) for the maximum degree ∆ ≤ n1/2. The linear bounds in
n/δ was further extended to the case when d ≥ 104/3n2/3 log1/3 n and δ ≥ 10n3/4 log1/4 n,
respectively, by Cuckler and Lazebnik [12]. The first general and unified linear bound
in n/δ for the full spectrum of (n, δ) was delivered by Przybyło [34, 35], who used a
constructive approach to prove that s(G) ≤ 16(n/d) + 6 and s(G) ≤ 112(n/δ) + 28,
respectively. Since then several attempts based on inventive new algorithms have been
conducted in pursuit towards improvement of the multiplicative constant in front of n/δ,
see e.g. [23, 24, 30]. The best result among these is due to Kalkowski, Karoński, and
Pfender [24], who invented a deterministic algorithm implying that in general, s(G) ≤
6dn/δe for graphs with minimum degree δ ≥ 1 and without isolated edges. Conjecture 1
throughout more than 35 years since its formulation was an inspiration for many results,
see e.g. [3, 5, 8, 12, 13, 15, 16, 17, 18, 20, 22, 24, 30, 31, 33, 34, 35], and various related
problems and concepts, giving rise to a reach and vital branch of graph theory, see [21, 29]
for surveys devoted to some of them. Only just recently it was proved by Przybyło [32] that
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the Faudree-Lehel Conjecture holds asymptotically almost surely for random graphsG(n, p)
(which are typically “close to” regular graphs), for any constant p, and holds asymptotically
for a wide spectrum of values of d [33].

2 Main Results
Developing research from [33], we managed to confirm asymptotically, up to a lower order
term, an extension of Conjecture 1 towards the setting of general graphs.

Theorem 2 ([38]). For every ε ∈ (0, 0.25), there are absolute constants C1, C2 such that
for each graph G with n vertices and minimum degree δ > 0 which does not contain isolated
edges, s(G) ≤ n

δ
(1 + C1

δε
) + C2.

We also confirmed that the generalization of Faudree-Lehel Conjecture holds, not only
asymptotically, for relatively dense graphs.

Theorem 3 ([38]). For every 0.8 < α ≤ 1, there is an absolute constant C such that for
each graph G with n vertices and minimum degree δ ≥ nα, s(G) ≤ n

δ
+ C.

In the case of regular graphs exclusively, we also provided a much shorter argument,
implying a more specific result directly related with Conjecture 1.

Theorem 4 ([39]). Given any ε ∈ (0, 0.25), for every d-regular graph G with n vertices,
if d is sufficiently large in terms of ε, s(G) < n

d
(1 + 14

dε
) + 28.

Theorem 5 ([39]). Given any 0.8 < α ≤ 1, for every d-regular graph G on n vertices with
d ≥ nα, if d is sufficiently large in terms of α, then s(G) < n

d
+ 28.

3 Main Ideas

3.1 General Graphs

A very vague general idea behind our construction yielding Theorems 2 and 3 is to randomly
partition V into a big set B and a small set S, where |S| = (n/δ) · o(δ), in a special and
controlled manner. We then first randomly modify the edge weights so that almost all
vertices in B have distinct weighted degrees. Finally, we locally adjust weighted degrees of
the rest of the vertices in order to differentiate them in entire G.

Our approach can be divided into three main steps.
Step 1 relies on a random construction assuring relatively sparse distribution of weighted

degrees of the vertices in B, i.e. without too many vertex weights in any of the predefined
intervals partitioning positive integers. A general, yet still imprecise idea here is to assign
to every vertex v a random variable Xv ∼ U [0, 1], and then attribute an edge uv a small
weight if Xu + Xv is small, and a large weight, otherwise. This way a small value of Xv
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pulls the weighted degree of v downwards, while a large value of Xv pushes its weighted
degree up.

Step 2 concentrates around modifications of weights of the edges between B and S,
resulting in relatively small weights’ shifts, attributing pairwise distinct weighted degrees
to all but a small set of “bad vertices” in B. Note that in order to be able to achieve
our goal, we must assure that the (randomly chosen) set S is large enough to guarantee
sufficiently many edges between B and S.

In Step 3 we modify mainly weights of the edges within S (and a small fraction of the
edges outside S) in order to differentiate weighted degrees in S mostly. For this purpose
we associate to these vertices special weighted degrees, which were earlier deliberately not
used within step 2. While distinguishing weighted degrees in S we in particular benefit
from the fact that S is small in comparison to B, and thus vertices in S have on average
large fraction of their incident edges in E(S,B) (statistically much larger than the fraction
of edges in S). This allows taking on essential preparatory measures prior to step 3 (in step
1) assuring sparse weighted degrees’ distribution within S and facilitating the mentioned
final cleanup in this set. Throughout the construction we moreover specify several types
of “bad vertices”, which do not fulfill one of a list of certain conditions and cannot be
distinguished according to major procedures. The aggregated set of these is however small
enough to be taken care of in a special manner within step 3.

3.2 Regular Graphs

In order to provide much shorter proof of more specific results in the case of regular
graphs, i.e. Theorems 4 and 5 (directly referring to Conjecture 1), we use in a way similar
general 3-step approach, exploiting in particular random variables Xv ∼ U [0, 1] associated
with vertices. We however phrase our construction differently, using quantization and the
Lovász Local Lemma, which was redundant in the construction above. This time we may
guarantee that weighted degrees of the vertices in the big set B are arranged very tightly,
in fact these form a sequence of |B| consecutive integers. We moreover again benefit from
S being small compared to B, this time by assigning heavy weights between S and B, thus
guaranteeing that weighted degrees of vertices in (the small set) S are all larger than those
in B (as random choice of S and B results, with positive probability, in many edges joining
vertices in S with those in B). Still particular preparatory measures need to be undertaken
within our special initial random vertex and edge partitions, in order to facilitate later final
weighted degrees distinction within S. We refer the reader to [38, 39] for more details of
our randomized constructions.

4 Related Concepts
One of the most well known variants of the irregularity strength is its local correspondent,
within which one confines to requiring distinct weighted degrees only for adjacent vertices.
This concept was introduced in 2004 by Karoński, Łuczak and Thomason [26] together with
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an intriguing conjecture that just weights 1, 2 and 3 are sufficient for every graphs without
isolated edges within such a setting. This so-called 1–2–3 Conjecture swiftly became yet
another central problem of this field, and gained considerable attention, comparable to the
Conjecture of Faudree and Lehel, cf. in particular [1, 2, 6, 7, 9, 14, 25, 26, 27, 28, 36, 37,
40, 41, 42, 43, 44]. In 2021 the 1–2–3 Conjecture was proven to hold for regular graphs
with large enough degrees [36], while in 2022 also for general graphs with minimum degree
δ = Ω(log ∆) [37]. Lately Keusch [28] proved that actually weights 1, 2, 3, 4 always suffice,
whereas very recently the same author announced [27] to finally resolve the conjecture in
the affirmative.

Also recently yet another related concept was proposed by Alon and Wei [4]. Roughly
speaking they posed a conjecture that every graph contains a spanning subgraph which
is (globally) almost as irregular as possible. More precisely they asked if any d-regular
graph on n vertices contains a spanning subgraph in which the number of vertices of each
degree between 0 and d deviates from n

d+1
by at most 2, and similarly, if every graph on n

vertices, not necessarily regular, with minimum degree δ contains a spanning subgraph in
which the number of vertices of each degree does not exceed n

δ+1
+ 2. They also supported

the conjectures by showing in particular that if d3 log n ≤ o(n) then every d-regular graph
with n vertices contains a spanning subgraph in which the number of vertices of each degree
between 0 and d is (1 + o(1)) n

d+1
, and a similar result for general graphs. Some of these

results were also later significantly strengthened by Fox, Luo and Pham [19].
The mentioned problems are just the tip of the iceberg of related concepts. An extensive

list of other related issues can in particular be found in Gallian’s survey [21].
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Abstract

Let H = (X, E) be a hypergraph. A support is a graph Q on X such that for
each E ∈ E , the subgraph of Q on the elements in E is connected. We consider
hypergraphs defined on a host graph. Given a graph G = (V,E), with c : V → {r,b}
and a collection of connected subgraphs H of G, a primal support is a graph Q on
b(V ) such that for each H ∈ H, the subgraph Q[b(H)] on vertices b(H) = H∩c−1(b)
is connected. A dual support is a graph Q∗ on H s.t. for each v ∈ X, the subgraph
Q∗[Hv] is connected, where Hv = {H ∈ H : v ∈ H}. We present sufficient conditions
on the host graph and hyperedges so that the resulting support comes from a restricted
family.

We primarily study two classes of graphs: (1) If the host graph has genus g and the
hypergraphs satisfy a topological condition of being cross-free, then there is a primal
and a dual support of genus at most g. (2) If the host graph has treewidth t and the
hyperedges satisfy a combinatorial condition of being non-piercing, then there exist
primal and dual supports of treewidth O(2t). We show that this exponential blow-up
is sometimes necessary. As an intermediate case, we also study the case when the
host graph is outerplanar. Finally, we show applications of our results to packing and
covering, and coloring problems on geometric hypergraphs.
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1 Introduction
A hypergraph (X, E) is defined by a set X of elements and a collection E of subsets of X.
A support is a graph Q on X s.t. ∀ E ∈ E , the subgraph Q[E] induced by the vertices of
E is connected. The notion of a support was introduced by Voloshina and Feinberg [28] in
the context of VLSI circuits. Since then, this notion has found wide applicability in several
areas, such as visualizing hypergraphs [7, 8, 9, 10, 11, 16, 18], in the design of networks
[2, 4, 5, 12, 17, 22, 25], and similar notions have been used in the analysis of local search
algorithms for geometric problems [3, 6, 13, 23, 24, 27].

Any hypergraph clearly has a support: a complete graph on X is a support. The
problem becomes interesting if we introduce a global constraint on the graph that is in
tension with the local connectivity requirement for each hyperedge. In particular, we are
interested in restrictions on the hypergraph that guarantees the existence of a support from
a sparse family of graphs, namely a family with sub-linear sized separators1. A support
from a family G of graphs is called a G support.

Our motivation to study the existence of such supports comes primarily from the analy-
sis of local search algorithms for several packing and covering problems defined by geometric
objects in the Euclidean plane. With the aim of extending the analysis techniques from
the plane to other surfaces, we study hypergraphs defined on a sparse host graph.

A geometric hypergraph is defined by a set P of points in R2, and a set D of regions,
or subsets of R2, where the hyperedges are defined by D ∩P for each D ∈ D. We call this
hypergraph a primal hypergraph to distinguish it from other hypergraphs we will define
shortly.

If D is a collection of pseudodisks,2 Pyrga and Ray [26] showed that the hypergraph
(P,D) admits a planar support. Raman and Ray in [27] generalized this result to show
that if the regions in a geometric hypergraph are non-piercing3, then the hypergraph (P,D)
admits a planar support. The authors also show that the dual hypergraph (D, {Dp}p∈P ),
where for each p ∈ P , Dp = {D ∈ D : D 3 p} admits a planar support.

For an arrangement D of pseudodisks in the plane in general position4, let G denote
the dual arrangement graph, whose vertices are the cells in the arrangement, and two cells
are adjacent if they share an arc of the boundary of a pseudodisk. It is easy to see that
the dual arrangement graph G is a plane graph, and each pseudodisk D corresponds to a
connected subgraph HD of G. Further, for any pair of subgraphs HD, HD′ corresponding to

1A graph has a sublinear sized separator if there is some constant ε > 0, and c > 0 such that there is
a set S of size O(|V |1−ε) such that G \ S can be partitioned into two subgraphs A and B s.t. there is no
edge in G \ S between a vertex in A and a vertex in B, and s.t. |V (A)|, |V (B)| ≤ c|V (G)|.

2A collection of simple Jordan curves define a set of pseudocircles if each pair intersects either 0 or
twice. A collection of bounded regions whose boundaries are a collection pseudocircles are a collection of
pseudodisks.

3a collection of regions H, where each H ∈ H is a path-connected region bounded by a simple Jordan
curve (possibly with holes) is non-piercing if both H \H ′ and H ′ \H are connected.

4An arrangement D of pseudodisks in the plane is in general position if there are no three pseudodisks
whose boundaries pass through a common point, and at each intersection point, the boundaries of the pair
of pseudodisks defining the intersection point properly cross.
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pseudodisksD andD′, respectively, the graphs G[HD\HD′ ] and G[HD′\HD] are connected,
i.e., H = {HD : D ∈ D} is a collection of non-piercing subgraphs of G. This motivates the
following definition:

Definition 1 (Non-piercing). For a graph G, a collection of connected subgraphs H of G
is non-piercing if for any two subgraphs H,H ′ ∈ H, both G[H \ H ′] and G[H ′ \ H] are
connected.

For each cell c in the arrangement D, let vc denote the vertex in the dual arrangement
graph G corresponding to this cell. If c ∩ P 6= ∅, set color(vc) = b, and if c ∩ P = ∅, set
color(vc) = r. Let b(V ) and r(V ) denote respectively, the subsets of vertices in color−1(b)
and color−1(r). The result of Pyrga and Ray [26] translated in this context says that for
a plane graph G with color : V → {r,b}, and a collection of connected subgraphs H s.t.
H is non-piercing, there is a planar support on color−1(b), i.e., a planar graph Q on the
vertices color−1(b) s.t. the subgraph Q[H] is connected for each H ∈ H.

Our goal is to generalize the results above to the setting where the host graph comes
from a non-trivial graph class. If the host graph G has bounded genus and H is a collection
of connected non-piercing subgraphs of G, we may expect, as in the case of pseudodisk
hypergraphs above, that there exist bounded genus supports for the primal and dual hy-
pergraphs. While the statement may be true for primal hypergraphs. However, for the
dual hypergraph, this is not true: Let G be the torus grid graph Tn,n = Cn�Cn[29]. The
subgraphs are the n non-contractible cycles perpendicular to the hole, and the n non-
contractible cycles parallel to the hole. Each vertex of the graph belongs to exactly two
subgraphs forcing them to be adjacent in the dual support, and thus the dual support is
Kn,n which is not embeddable on the torus for large enough n.

For bounded genus graphs, we show that if the subgraphs satisfy a condition of being
cross-free, then there exists bounded genus supports for the primal as well as the dual hy-
pergraphs. In the plane, the cross-free condition is weaker than the non-piercing condition,
but these two conditions are incomparable on higher genus surfaces.

If we restrict attention to host graphs of bounded treewidth, we show that if the sub-
graphs are non-piercing then both the primal and dual supports have bounded treewidth.
However, the treewidth of the support could be exponentially larger than the treewidth of
the host graph. Along the way, we also consider outerplanar graphs, which have treewidth
2. Here, we show a distinction between the primal and dual settings. For the primal setting,
the cross-free condition on the hypergraphs is sufficient to obtain an outerplanar support,
while in the dual setting, we show that restricting the subgraphs to be non-piercing is a
sufficient condition to obtain a dual outerplanar support.

2 Preliminaries
Let H be a collection of connected subgraphs of a graph G = (V,E). This defines a
hypergraph (V,H). We call the pair (G,H) a graph system. If G comes from a class G of
graphs, and H satisfies property P we say that (G,H) is a P -G system. Further, if G has
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genus g, we say that (G,H) has genus g. In particular, if G is planar, we say that (G,H)
is a planar system. Let c : V → {r,b} be a coloring of V with two colors. Let b(V ) and
r(V ) denote respectively c−1(b) and c−1(r).

For a graph system (G,H), a primal support is a graph Q on b(V ) s.t. ∀ H ∈ H,
Q[b(H)] is connected5, i.e., a support for the primal hypergraph (V,H). A dual support
is a graph Q∗ on H s.t. ∀ v ∈ V , Q∗[Hv] is connected6, where Hv = {H ∈ H : H 3 v},
i.e., a support for the dual hypergraph (H, {Hv}v∈V (G)). For a graph G and two families of
connected subgraphsH and K of G, let the 3-tuple (G,H,K) denote an intersection system.
An intersection support is a graph Q̃ that is a support for the intersection hypergraph
(H, {HK}K∈K), where HK = {H ∈ H : K ∩ H 6= ∅}. The notion of an intersection
hypergraph generalizes both the primal and dual hypergraphs defined above.

3 Bounded genus graphs
Let (G,H) be a graph system of genus g. Consider a cellular7 embedding of G in an
oriented surface of genus g. For a pair of subgraphs H,H ′ ∈ H, we define the notion of a
reduced graph that is required for the definition of a cross-free system.

Definition 2 (Reduced graph). Let (G,H) be a graph system with G cellularly embedded
in an oriented surface. For any two subgraphs H,H ′ ∈ H, the reduced graph R(H,H ′) is
the embedded graph obtained from G by contracting all edges, both of whose end-points lie
in H ∩H ′, where multi-edges and self-loops are retained.

Note that if G can be embedded in a surface Σ, then so can be R(H,H ′).

Definition 3 (Cross-free at v). A graph system (G,H) with G cellularly embedded in an
oriented surface, is cross-free at a vertex v ∈ V (G) if for any two subgraphs H,H ′ ∈ Hv,
the following holds: Let ṽ be the image of v in the reduced graph R(H,H ′). Then, there
are no 4 edges ei = {ṽ, vi} in R(H,H ′), i = 1, . . . , 4 incident to ṽ in cyclic order around
ṽ, s.t. v1, v3 ∈ H \H ′, and v2, v4 ∈ H ′ \H.

If there is an embedding of G s.t. (G,H) is cross-free at every vertex of G, we say that
(G,H) is cross-free.

By the Jordan curve theorem, it follows that if (G,H) is a non-piercing planar system,
then the graph system (G,H) is cross-free. It is easy to construct examples to show that
the reverse direction does not hold in the plane.

5Note that we cannot simply project each H on b(V ) as the resulting subgraphs may not be connected
in G.

6To make the definition symmetric, we could have considered a coloring c : H → {r,b}, and required
that Q∗[Hbv ] be connected for each v ∈ V , where Hbv = {H ∈ H : H 3 v and c(H) = b}. However, this
problem reduces to constructing a dual support restricted to the hypergraphs Hb = {H ∈ H : c(H) = b}.
Therefore, in the dual setting, it is sufficient to study the uncolored version of the problem.

7A cellular, or 2-cell embedding of a graph G on a surface is an embedding where the edges are non-
crossing, and each face is homeomorphic to a disk.
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Theorem 4. Let (G,H) be a cross-free system of genus g, with c : V → {r,b}. Then,
there is a support Q of genus at most g on b(V ) i.e., Q[b(H)] is connected for each H ∈ H.

Theorem 5. Let (G,H) be a cross-free system of genus g, then, there is a support Q∗ on
H of genus at most g i.e., Q∗[Hv] is connected for each v ∈ V .

Theorem 6. Let (G,H,K) be a cross-free intersection system of genus g. Then, there
exists an intersection support Q̃ on H of genus at most g.

In all the results above, we use the notion of Vertex Bypassing defined below:

Definition 7. Let G be embedded in an oriented surface Σ. Let N(v) = (v1, . . . , vk, v1) be
the cyclic order of vertices around v. The Vertex Bypassing of v is defined as follows:

1. Subdivide each edge {v, vi} by a vertex ui. Construct a cycle C = (u1, . . . , uk, u1) by
joining consecutive vertices ui, ui+1 (with indices taken mod k) by a simple arc not
intersecting the edges of G s.t. the resulting graph remains embedded in Σ. Remove
the vertex v. Let G′′ denote the resulting graph.

2. ∀ H ∈ Hv, s.t. {v, vi} ∈ H, let H ′′ denote the subgraph of G′′ on (H \ {v}) ∪
{∪vi∈H′′ui} Let H′′v = {H ′′ : H ∈ Hv}. Let H′′ = (H \ Hv) ∪ H′′v (Note that the
subgraphs in H′v may not be connected).

3. Add a set D of non-intersecting chords8 in C so that ∀ H ∈ H′′, H induces a
connected subgraph in C ∪D, and the resulting subgraphs remain cross-free.

Let (G′,H′) be the resulting system.

The heart of the proof is in showing that Step 3 can be done, i.e., there exists a set of
non-intersecting chords that we can add in C so that the resulting subgraphs are connected,
and the system remains cross-free. Assuming we can apply vertex bypassing, the proof of
Theorem 5 follows by repeatedly applying vertex bypassing to a vertex of maximum depth
in G, i.e., to a vertex v in G maximizing |{H ∈ H : H 3 v}|, until each vertex of the graph
is in at most one subgraph. We can then obtain a support by contracting the edges in each
subgraph. The proof of Theorem 6 follows by using Theorem 5 and techniques from the
proof of Theorem 4.

4 Bounded Treewidth graphs
We show that if (G,H) is a graph system, and H is a collection of non-piercing subgraphs
then both the primal and dual supports have treewidth O(2tw(G)) and this exponential
blow-up in the treewidth of the support is sometimes necessary.

8We use the term non-intersecting to mean internally non-intersecting.
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Theorem 8. Let (G,H) be a non-piercing graph system. Let c : V (G) → {r,b} be a
2-coloring of the vertices V (G) of G. Then, there is a support Q on b(V ) s.t. tw(Q) ≤
3 · 2tw(G). Further, Q can be computed in time polynomial in |G|, |H| if G has bounded
treewidth. There exist non-piercing graph systems (G,H) where any support has size
Ω(2tw(G)).

Theorem 9. Let (G,H) be a non-piercing graph system. There is a dual support Q∗ on
H s.t. tw(Q∗) ≤ 4 · 2tw(G). Further, Q∗ can be computed in time polynomial in |G|, |H| if
G has bounded treewidth. There exist non-piercing graph systems (G,H) where any dual
support has size Ω(2tw(G)).

5 Outerplanar Graphs
Let (G,H) be an outerplanar graph system. In the setting of outerplanar graphs, there is
a difference between the primal and dual settings. In the primal setting, if the subgraphs
are cross-free, then there is a primal support that is also outerplanar. In the dual setting,
the cross-free condition is not sufficient. We show an example below. However, restricting
the subgraphs to be non-piercing is sufficient for the system to admit a dual outerplanar
support.

Consider a triangle drawn in the plane (with straight-line segments) with vertices
{1, 2, 3}. Subdivide the segments {1, 2}, {2, 3} and {1, 3} by points 4, 5, and 6 respectively.
Add a triangle on the points 4, 5 and 6. This defines an embedding of an asteroid-triple
G. The subgraphs H are those by the points {1, 4, 2}, {2, 5, 3}, {1, 6, 3} and {4, 5, 6}. It
is easy to check that (G,H) is cross free, and the support for the dual is K4 which is not
outerplanar.

Theorem 10. Let (G,H) be an outerplanar cross-free system, with c : V (G) → {r,b}, a
2-coloring of the vertices V (G) of G. Then, there is an outerplanar support Q on b(V )
i.e., Q[b(H)] is connected for each H ∈ H.

Theorem 11. Let (G,H) be a non-piercing outerplanar system. Then, there is an outer-
planar dual support Q∗ on H.

6 Applications
In this section, we describe some applications of the existence of supports. Raman and
Ray [27] showed that for an intersection hypergraph defined on a set of non-piercing regions
in the plane, there is a planar support (See [27] for precise definitions), which implies a
support for both the primal and dual settings for the hypergraphs defined by points and
non-piercing regions in the plane.

Since graphs of genus g admit separators of size O(
√
gn) [15], all the algorithmic con-

sequence of [27] generalize to cross-free systems on bounded genus graphs. Instead of
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describing a long sequence of results that follow from the existence of supports, we high-
light just three results that follow as a consequence of Theorem 6.

Theorem 12. Let (G,H) be a cross-free system of genus g, then there exists

1. a PTAS for the Dominating Set problem, i.e., find H′ ⊆ H of minimum cardinality
s.t. for each H ∈ H, either H ∈ H′ or H ∩H ′ 6= ∅ for some H ′ ∈ H′.

2. a PTAS for the problem of packing points when each subgraph H ∈ H has capacity DH

bounded by a constant, i.e., find V ′ ⊆ V of maximum cardinality s.t. |H ∩ V ′| ≤ DH

for each H ∈ H.

3. a PTAS for the problem of packing subgraphs when each vertex v ∈ V has capacity
Dv bounded by a constant, i.e., find H′ ⊆ H of maximum cardinality s.t. |{H ∈ H′ :
H 3 v}| ≤ Dv for each v ∈ V .

Keller and Smorodinsky [19] showed that the intersection hypergraph of disks in the
plane can be colored with 4 colors, and this was generalized by Keszegh [20] for pseudodisks,
which was further generalized in [27] to show that the intersection hypergraph of non-
piercing regions is 4-colorable. As a consequence of Theorem 6, we obtain the following.

Theorem 13. Let (G,H,K) be a cross-free intersection system of genus g. Then, H can
be colored with at most 7+

√
1+24g
2

colors such that no hyperedge HK is monochromatic.

Proof. By Theorem 6, (G,H,K) has a support Q̃ of genus at most g. Now, χ(Q̃) ≤ 7+
√
1+24g
2

[14]. Since Q̃ is a support, for each K ∈ K, there is an edge between some two subgraphs
H,H ′ ∈ HK . Therefore, no hyperedge HK is monochromatic.

Keszegh and Pàlvölgyi [21] introduced the notion of ABAB-free hypergraphs. Acker-
man et al., [1] show that these are equivalent to hypergraphs with a stabbed pseudo-disk
representation, i.e., each S ∈ S is mapped to a closed and bounded region DS containing
the origin whose boundary is a simple Jordan curve, each x ∈ X is mapped to a point px
in R2 s.t. px ∈ DS iff x ∈ S. The regions D = {DS : S ∈ S} form a stabbed pseudodisk
arrangement. Let (P,D) denote the embedding of the hypergraph where P = {px : x ∈ X}.

The authors show that to any stabbed pseudodisk arrangement D and a set P of points,
we can add additional pseudodisks D′ s.t. (i) each D′ ∈ D′ contains exactly 2 points of
P , (ii) D ∪ D′ is a pseudodisk arrangement, and (iii) Each D ∈ D s.t. |D ∩ P | ≥ 3
contains a pseudodisk D′ ∈ D′. The graph on P whose edges are defined by D′ is called
the delaunay graph of the arrangement. They show that ABAB -free hypergaphs are 3
colorable by showing that the delaunay graph is outerplanar. This result follows from
Theorem 10 since a support for cross-free outerplanar graph system satisfies the properties
of delaunay graph above.
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We study an analogue of the Ramsey multiplicity problem for additive structures,
establishing the minimum number of monochromatic 3-APs in 3-colorings of Fn3 and
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In 1959 Goodman [7] proved that asymptotically at least a quarter of all vertex triples in
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15, 2]. Recently there has been an increased interest in studying the arithmetic analogue
of this type of question, originally initiated when Graham, Rödl, and Ruczinsky [8] gave
an asymptotic lower bound for the minimum number of monochromatic Schur triples in
2-colorings of the first n integers in 1996, see also [12, 14, 4, 1].

In this extended abstract, we focus on the analogue of the Ramsey multiplicity problem
for specific additive structures in vector spaces over finite fields of small order. Let q ∈
N be a fixed prime power throughout and write Fq for the finite field with q elements.
Given a subset T ⊆ Fnq and a linear map L defined by some matrix A ∈ Mr×m(Z)
with integer entries co-prime to q, we are interested in studying the set SL(T ) = {s =
(s1, . . . , sm) ∈ Tm : L(s) = 0 and si 6= sj for i 6= j} of solutions with all-distinct entries in
T . Throughout, we will assume that A is of full rank and that SL(Fnq ) 6= ∅. We will also
write sL(T ) = |SL(T )|/|SL(Fnq )|. Writing [c] = {1, . . . , c} for some given number of colors
c ∈ N, we call γ : Fnq → [c] a c-coloring of dimension dim(γ) = n and let γ(i) denote the
set of elements colored with color 1 ≤ i ≤ c as well as Γc(q, n) for the set of all c-colorings
of Fnq . The Rado multiplicity problem is concerned with determining

mc(L, q) = lim
n→∞

min
γ∈Γc(q,n)

sL(γ(1)) + . . .+ sL(γ(c)). (1)

The limit exists by monotonicity and we have 0 ≤ mc(L, q) ≤ 1 by definition. Rado’s
theorem establishes that mc(L, q) > 0 and we say that L is c-common for q if mc(L, q) =
c1−m, that is if the minimum number of monochromatic solutions is attained in expectation
by a uniform random coloring. For r = 1 a result of Cameron, Cilleruelo, and Serra [1]
establishes that any L is 2-common ifm is odd. Whenm is even, Saad and Wolf [13] showed
that any L where the coefficients can be partitioned into pairs, with each pair summing to
zero, is 2-common. Fox, Pham, and Zhao [6] showed that this sufficient condition is in fact
also necessary. The case when r > 1 is much less understood, with Kamčev, Liebenau, and
Morrison [9] recently characterizing a large family of non-common linear maps by showing
that any L that ‘induces’ some smaller 2×4 linear map is uncommon. Focusing on specific
values of q, Král, Lamaison, and Pach [10] also recently characterized the 2-common L
for q = 2 when r = 2 and m is assumed to be odd. When q = 5, the most relevant
additive structures to study is that of 4-APs. Saad and Wolf [13] showed that they are
not 2-common by establishing an upper bound of 1/8 − 7 · 210 · 5−2 ≈ 0.1247 < 2−4. We
establish the first non-trivial lower bound for this problem and an improved upper bound.

Proposition 1.1. We have 1/10 < m(L4-AP, 5) ≤ 13/126 = 0.1031746.

Going beyond 4-APs, we can also show thatm(L5-AP, 5) ≤ 1/26 < 2−4, establishing that
5-APs are likewise not 2-common in F5, but in this case did not obtain any meaningful lower
bound. The study of monochromatic structures in colorings with more than two colors has
also proven relevant in extremal graph theory. Most notably, Cummings et al. [3] extended
the results of Goodman [7] by establishing the exact Ramsey multiplicity of triangles in
3-colorings and showing that they are not 3-common despite being 2-common. We consider
a similar question and establish the exact multiplicity of 3-APs in 3-colorings of Fn3 .
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Theorem 1.2. We have m3(L3-AP, 3) = 1/27.

We can also show that 0.04486 ≤ m3(LSchur, 2) ≤ 1/16 as well as m3(LSchur, 3) ≤ 7/81,
establishing that Schur triples are also not 3-common for q = 2 and q = 3. Upper bounds
of all results are obtained through explicit blowup-type constructions. Lower bounds in
the graph theoretic setting have recently been obtained through a computational approach
relying on flag algebras due to Razborov [11]. This approach has been extended to different
contexts, but so far seems to not have been explored in the arithmetic setting.

2 The correct notion of isomorphism
Let us omit q and c from notation, so in particular we write Γ(n) = Γc(q, n) for the set of
all c-colorings of dimension n as well as Γ =

⋃∞
n=0 Γ(n). The 0-dimensional vector space

consist of a single point, that is F0
q = {0}, and we write ej for the j-th canonical unit basis

vector of Fnq for 1 ≤ j ≤ n as well as e0 for the zero vector.

Definition 2.1. We refer to an affine linear map ϕ : Fkq → Fnq as a morphism and say that
it is t-fixed for some t ≥ 0 if ϕ(ej) = ej for all 0 ≤ j ≤ t. A morphism is a monomorphism
whenever it is injective and a monomorphism is an isomorphism whenever n = k.

Out of notational convenience, we extend the range of t to −1 in order to include unfixed
morphisms and will always use t+ to denote max{t, 0}. For a given t ≥ −1 and n ≥ k ≥ t+,
we let Mt(k;n) denote the set of t-fixed morphisms from Fkq to Fnq up to t-fixed isomorphism
of Fkq . We likewise write Mont(k;n) for the set of monomorphisms with the same properties.
Given k1, . . . , km ≥ t+ and n ≥ k1 + . . .+km−(m−1) t+, we let Mont(k1, . . . , km;n) denote
the set of all tuples of monomorphisms (ϕ1, . . . , ϕm) ∈ Mont(k1;n) × . . . × Mont(km;n)
overlapping only in the t-fixed subspace.

Using these notions, we say two colorings γ1, γ2 ∈ Γ(n) are t-fixed isomorphic for
some t ≥ −1, denoted by γ1

∼=t γ2, if there exists a t-fixed isomorphism ϕ : Fnq → Fnq
satisfying γ1 ≡ γ2 ◦ ϕ. We let Γt(n) = Γ(n)/ ∼=t denote the set of all c-colorings of
Fnq up to t-fixed isomorphism and also write Γt =

⋃
n≥t+ Γt(n). Given k1, . . . , km ≥ t+

and n ≥ k1 + . . . + km − (m − 1) t+, the density pt(δ1, . . . , δm; γ) of some colorings δ1 ∈
Γt(k1), ..., δm ∈ Γt(km) in γ ∈ Γt(n) is defined as the probability that a a tuple of t-
fixed monomorphism chosen uniformly at random from Mont(k1, . . . , km;n) induces copies
of δ1, . . . , δm in γ. For n ≥ k ≥ t+, we also let the degenerate density pdt (δ; γ) of some
δ ∈ Γt(k) in γ denote the probability that a not-necessarily-injective t-fixed morphism
does the same.

3 The correct notion of solution
In order to develop the flag algebra approach, the density of solutions needs to be repre-
sentable as the weighted density of particular colorings, motivating the following definition.
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Definition 3.1. For any t ≥ −1 and n ≥ t+, the t-fixed dimension dimt(s) of s ∈ SL(Fnq )
is the smallest k ≥ t+ for which there exists a t-fixed k-dim. subspace of Fnq containing s.

We will only need the unfixed and 0-fixed dimension and denote by dimt(L) the largest
t-fixed dimension of any solution to a given linear map L. In general, dimt(L) = m− r+ t
for any linear map L when t ≥ 0 as well as dim−1(L) = m − r − 1 when L is invariant ,
that is if for any solution s = (x1, . . . , xm) ∈ SL(Fnq ) and element a ∈ Fnq we have a + s =
(a + x1, . . . , a + xm) ∈ S ′L(Fnq ). We say that L is admissible if t ≥ 0 or if t = −1 and L is
invariant. A solution s ∈ SL(Fnq ) for some admissible L is t-fixed fully dimensional if dimt(s)
attains the respective upper bound. For a given set T ⊆ Fnq , we denote the set of fully
dimensional solutions to some admissible L by StL(T ) and write stL(T ) = |StL(T )| / |StL(Fnq )|.

The important property that we make use of is that each fully-dimensional solution
defines a unique dim(L)-dimensional t-fixed subspace in which it lies and that for any
t ≥ −1, admissible L, and n ≥ t ≥ 0, the number of solutions in a subset of Fnq is invariant
under t-fixed isomorphism. The same would not hold for t = −1 if L was not invariant.

4 The flag algebras for additive structures
For any t ≥ 0, we refer to elements of Γt(t) = Γ(t) as types of dimension t. We also
introduce a unique empty type, denoted by ∅, of dimension t = −1. For a given type τ
of dimension t, we refer to a coloring F ∈ Γt(n) satisfying F ◦ idt,n ≡ τ as a flag of type
τ , where idt,n denotes the unique t-fixed isomorphism from Ftq to Fnq and the requirement
is vacantly true for t = −1. We will write F τn for the set of all flags of given type τ and
dimension n as well as F τ =

⋃
nF τn .

Definition 4.1. The flag algebra Aτ of type τ is given by equipping RF τ/Kτ , where
Kτ = {F −

∑
F ′∈Fτn

pt(F ;F ′)F ′ : F ∈ F τ , n ≥ dim(F )}, with the product given by the
the bilinear extension of F1 · F2 =

∑
H∈Fτn

pt(F1, F2;H)H + Kτ defined for any two flags
F1, F2 ∈ F τ and arbitrary n ≥ dim(F1) + dim(F2)− dim(τ).

Assume we are given a parameter λ : Γ → R that is invariant under tλ-fixed isomor-
phisms for some tλ ≥ −1 and that satisfies λ(γ) =

∑
β∈Γtλ (n) λ(β) ptλ(β, γ) for some nλ ∈ N

and all γ ∈ Γtλ , where nλ ≤ n ≤ dim(γ). Monochromatic fully-dimensional solutions to
a given linear map L define such a parameter with tλ = 0 for general L and tλ = −1 for
invariant ones, where in either case nλ = dimtλ(L). We are interested in determining

λ? = lim
n→∞

min
γ∈Γtλ (n)

λ(γ). (2)

Writing Cτ
λ =

∑
β∈Fτnλ

λ(β) β for any type τ of dimension tλ, our problem of determining
λ? can be restated through the conic optimization problem

λ? = max{λ′ ∈ R : Cτ
λ ≥ λ′ for all types τ of dimension tλ}, (3)
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where we write Hom+(Aτ ,R) for the set of positive homomorphisms, that is algebra ho-
momorphisms φ ∈ Hom(Aτ ,R) satisfying φ(F ) ≥ 0 for any F ∈ F τ , and Sτ = {f ∈ Aτ :
φ(f) ≥ 0 for all φ ∈ Hom+(Aτ ,R)} for the semantic cone of type τ . Noting that we can
define a linear downward operator [[·]]tλ: Aτ → Aτλ for any type τ of dimension t ≥ tλ that
satisfies [[Sτ ]]tλ ⊆ Sτλ , we can derive a lower bound by defining a set of types T as well as
sets of algebra elements Bτ ′ ⊂ Aτ

′ and establishing that

Cτ
λ ≥ λ′ +

∑
τ ′∈T

∑
f∈Bτ ′

[[f 2]]tλ . (4)
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Abstract

In [Fleurat, Salvy 2023], we introduced a model of block-weighted random maps
that undergoes a phase transition as the density of separating elements changes.
The purpose of this note is to demonstrate that the methodology we developed can
be extended to many other families of maps. We prove that a phase transition ex-
ists and provide detailed information about the size of the largest blocks in each regime.
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1 Introduction
A planar map m is the proper embedding into the two-dimensional sphere of a connected
planar finite multigraph, considered up to homeomorphisms. Maps exhibit very rich
combinatorial and probabilistic properties, which have been the focus of an extensive
literature. Many families of planar maps have very nice counting formulas [Tut63]. A key
aspect of planar maps is that they can be decomposed, typically into components of higher
connectivity degree. Such decompositions typically relate one family of planar maps to
another and gives an equation between their generating series.

Theses types of decompositions were initially introduced by Tutte [Tut63] to obtain
some enumerative results about planar maps. But they also play a major role in the
enumerative study of planar graphs [GN09]. They allow to study certain models of discrete
metric spaces in theoretical physics [Bon16]. In view of applications to random generation
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[Sch99], the decomposition of planar maps has been systematised in [BFSS01], where a
uniform treatment via analytic combinatorics is developed. A probabilistic approach was
later derived using encoding of maps via enriched trees [Stu18, AB19].

Planar map models exhibit universality, meaning that many natural classes of random
maps show similar behavior as their size grows to infinity. When taking an object of size n
uniformly at random among all objects in a class and appropriately rescaling its distance,
the sequence of random objects converges to a certain metric space. This was first proved
for uniform quadrangulations by Miermont [Mie13] and Le Gall [LG13], and since then,
results have been extended to other families of maps, including uniform triangulations and
uniform 2q-angulations (q ⩾ 2) [LG13], uniform simple triangulations and uniform simple
quadrangulations [ABA17], bipartite planar maps with a prescribed face-degree sequence
[Mar18], (2q + 1)-angulations [ABA21] and Eulerian triangulations [Car21].

In a previous article [FS23], together with Fleurat, we studied a model of random
maps, depending on a parameter u which controls the density of separating elements. We
proved that this model exhibits a phase transition as u varies, and that it interpolates
between the Brownian sphere and the Brownian tree of Aldous [Ald91]. This approach —
which we detailed in [FS23] for general maps and their 2-connected cores and for general
quadrangulations and their simple cores — can be applied to other decompositions, such
as those in [BFSS01, Table 3] (which is partially reproduced in Table 1), and this is the
focus of this note. We restrict our study to decomposition schemes without “coreless” maps
(the decompositions involving coreless maps, such as 2-connected maps into 3-connected
components, bring further difficulties, which we expect to handle with some more work).

Let us give some formalism for decompositions. A map is said to be loopless if it does
not contain any loop; 2-connected if it does not contain any cut vertex (i.e. a vertex whose
removal deconnects the map) and simple if it has neither loops nor multiple edges. Planar
maps can be decomposed into loopless (or 2-connected, or simple, or 2-connected simple...)
components, which are the so-called “blocks”. It is also the case for bipartite maps, whose
vertices can be properly bicolored in black and white; and for triangulations, whose faces
all have degree 3. The latter can be decomposed into irreducible components, in which
every 3-cycle defines a face. We consider eight models here (see Table 1):

1. Loopless maps decomposed into simple blocks;

2. General maps decomposed into 2-connected blocks;

3. 2-connected maps decomposed into 2-connected simple blocks;

4. Bipartite maps decomposed into bipartite simple blocks;

5. Bipartite maps decomposed into bipartite 2-connected blocks;

6. Bipartite 2-connected maps decomposed into bipartite 2-connected simple blocks;

7. Loopless triangulations decomposed into triangular simple blocks;

8. Simple triangulations decomposed into triangular irreducible blocks.
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In general, the size |m| of a planar map m is its number of edges. In a decomposition
scheme, we let M(z) =

∑
n∈Z⩾0

mnz
n be the generating series of the class of maps to be

decomposed and similarly B(z) =
∑

n∈Z⩾0
bnz

n be the generating series of the class of
“blocks” into which the maps are decomposed.

Setting M(z, u) =
∑

m∈M z|m|ub(m), where b(m) is the number of blocks of positive size
in m, all the models we consider — which are listed in Table 1 — satisfy

M(z, u) = uB(H(z,M(z, u))), (1)

or, for the last one,

M(z, u) = (1 +M(z, u))× uB(H(z,M(z, u))). (2)

For example, for the decomposition of general maps into 2-connected ones (which is the
case studied in [FS23]), one has

M(z, u) = uB(z(1 +M(z, u))2).

For u > 0, denote by ρ(u) the radius of convergence of z 7→ M(z, u). In view of the
form of Equations (1) and (2) and in particular that they are non-linear, it holds that
M(ρ(u), u) < ∞.

In the following, M and Mn are random variables drawn according to the following
probability distributions. For u ∈ R>0, n ∈ Z>0 and m ∈ M, we set

Pu (m) =
ρ(u)|m|ub(m)

M(ρ(u), u)
and Pn,u (m) =

ub(m)

[zn]M(z, u)
1|m|=n.

Regarding enumeration in our setting, we show the following by analytic methods
(details are omitted in this short note).

Theorem 1. For any model described in Table 1, where maps are decomposed into blocks
weighted with a weight u > 0, there exists a critical value uC at which the model undergoes
a phase transition. As u varies, there exists c(u) > 0 such that

[zn]M(z, u) ∼


c(u)n−5/2ρ(u)−n if u < uC

c(uC)n
−5/3ρ(uC)

−n if u = uC

c(u)n−3/2ρ(u)−n if u > uC

.

All the constants involved in Theorem 1 are explicit. Table 2 gives the expressions for uC ,
ρ(u) and M(ρ(u), u) when u ⩽ uC .

The polynomial correction for u < uC (subcritical case) is the same than for planar maps,
whereas when u > uC (supercritical case) it is the same than for plane trees. Moreover, at
u = uC , a new asymptotic behaviour appears with a polynomial correction in n−5/3.

In this note, we also focus on another aspect of the phase transition, namely the size of
the largest blocks. We show that if u < uC , a condensation phenomenon occurs and the



Unified study of the phase transition for block-weighted random planar maps 793

Scheme maps, M(z) blocks, B(z) submaps, H(z,M)
1 loopless, M2(z) simple, M3(z) z(1 +M)
2 all, M1(z) 2-connected, M4(z) z(1 +M)2

3 2-connected M4(z)− z 2-connected simple, M5(z) z(1 +M)
4 bipartite, B1(z) bipartite simple, B2(z) z(1 +M)
5 bipartite, B1(z) bipartite 2-connected, B4(z) z(1 +M)2

6 bipartite 2-connected, B4(z) bipartite 2-connected simple B5(z) z(1 +M)
7 loopless triangulations, T1(z) simple triangulations, z + zT2(z) z(1 +M)3

8 simple triangulations, T2(z) irreducible triangulations, T3(z) z(1 +M)2

Table 1: Partial reproduction of [BFSS01, Table 3], which describes composition schemas
of the form M = B ◦H except the last one where M = (1+M)×B ◦H. The terminology
and notation were slightly changed. For all i, [zn]Mi(z) and [zn]Bi(z) is the number of such
maps with n edges. [zn]T1(z) (resp. [zn]T2(z) and [zn]T3(z)) is the number of loopless (resp.
simple or irreducible) triangulations with n+ 2 (resp. n+ 3) vertices.

largest block is of size Θ(n); when u > uC , the largest block is of size Θ(log(n)); for u = uC ,
the largest block is of size Θ(n2/3) (Theorem 3). For the subcritical case, as in [FS23], we
follow the probabilistic approach of [AB19] (whereas [BFSS01] gives an analytic approach).

These results further support that the scaling limits should be the Brownian sphere
when u < uC , the Brownian tree when u > uC and the stable tree of parameter 3/2 when
u = uC . This was proved for the decomposition of quadrangulations into simple components
[FS23], and we expect this phenomenon to be generic. For model 2, the critical scaling
limit was established in [FS23] and the supercritcal one in [Stu20a]. For model 5, the
supercritical case was also established [Stu20a].

2 Tree structure
We explain here how an underlying tree structure can be associated to each of the models of
Table 1. As a first step, we rewrite the decomposition equations in the standard Lagrangian
form M(z) = z × Φ(M(z)) for some function Φ, taking the weight u into account. (Beware
that Equations (1) and (2) are not of this form as the products by z are inside H.)

Proposition 1. For all models listed in Table 1, there exists a generating function Φ
with nonnegative coefficients such that

M(z, u) = z × Φ(M(z, u), u). (3)

Proof sketch. We discuss how the rewriting is done for two cases: general maps into
2-connected components, and simple triangulations into irreducible components.
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Figure 1: A simple triangulation, its classical tree of (irreducible) blocks, the adapted tree
where some blocks are grouped into sequences.

We start by maps decomposed into 2-connected components. In order to do the rewriting,
we need to change the size parameter, which we take as the number of half-edges plus one.
Accordingly, we set M̂(z, u) = z(1 +M(z2, u)). The equation then becomes

M̂(z, u) = z
(
1 + uB(M̂(z, u)2)

)
,

which is of the desired form.
The second case we discuss is the decomposition of simple triangulations into irreducible

components. We also need to change the size parameter, taking here the number of inner
faces instead of the number of vertices. A further ingredient compared to the first case is that
we need to group the components into sequences to obtain an equation in Lagrangian form.
Let ẑ count internal faces. The generating series of simple (resp. irreducible) triangulations
counted by internal faces T̂2(ẑ, u) (resp. T̃3(ẑ)) is closely related to T2(z, u) (resp. T3(z))
since a triangulation with n+ 3 vertices has 2n+ 2 faces so 2n+ 1 internal faces. Then,
denoting T̂3(ẑ) = T̃3(ẑ)/ẑ, It holds that

T̂2(ẑ, u) = ẑ + uT̂2(ẑ, u)T̂3(T̂2(ẑ, u)), so T̂2(ẑ, u) =
ẑ

1− uT̂3(T̂2(ẑ, u))
.

Therefore, we set Φ(M,u) = 1

1−uT̂3(M)
. This corresponds to the vertices of the tree encoding

a sequence of irreducible triangulations, which is represented on Fig. 11.

The block tree Tm of a map m is the tree associated to the the decomposition of m as
expressed in Proposition 1. Each node of the tree correspond to an object φ counted by Φ.
The subtrees hanging at a node (corresponding to some φ) are the trees of the components
substituted into φ.

1With additional work, one can do the same for simple quadrangulations decomposed into irreducible
ones.
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Scheme uC ρ(u) M(ρ(u), u) E(u) 1− E(1)

1 81
17

27
8(5u+27)

5u
27

32u
3(5u+27)

2
3

2 9
5

4
3(u2+6u+9)

u
3

8u
3(u+3)

1
3

3 135
7

128
27(5u+27)

25u2+135u+128
27(5u+27)

32u
5(5u+27)

4
5

4 36
11

5
8(u+4)

u
4

20u
9(u+4)

5
9

5 52
27

25
8(u2+8u+16)

u
4

40u
13(u+4)

5
13

6 68
3

125
128(u+4)

u
4

20u
17(u+4)

13
17

7 16
7

54
u3+24u2+192u+512

u
8

9u
2(u+8)

1
2

8 64
37

25
6912

u2 − 5
108

u+ 4
27

5u
32−5u

27u
2(32−5u)

1
2

Table 2: Values of uC , ρ(u), M(ρ(u), u) and E(u) when u ⩽ uC for all the decomposition schemes
of Table 1.

As a consequence of (3), if we set a probability measure µu such that, for k ∈ Z⩾0,

µu(k) =
[Xk]Φ(X, u)y(u)k

Φ(y(u), u)

for y(u) = M(ρ(u), u) (using the definition of M given in (3)); then, using the fact that Tm

and the decoration of its vertices are bijectively linked to m, we have the following result
(again stated in terms of the M of (3)):

Theorem 2. For all u > 0, TM follows the law of a Galton-Watson tree of reproduction
law µu. Moreover, TMn follows the law of a Galton-Watson tree of reproduction law µu

conditioned to have n vertices.

The decomposition tree of a random map of “Lagrangian size” n is a Galton-Watson tree
of reproduction law µu conditioned to have n vertices. For instance, for maps decomposed
into 2-connected components, the tree of a random map with n edges is a Galton-Watson
tree conditioned to have 2n+ 1 vertices. This enables to put into light a phase transition
on the tree structure, using the usual phase transition for Galton-Watson trees [Nev86].

Proposition 2. The expectation E(u) of µu is written down in Table 2.

3 Results on the size of the largest blocks
Starting from Equations (1) and (2) and Theorem 2, we use the same techniques as in [FS23]
to obtain results on decomposition schemes. However, simple triangulations decomposed
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into irreducible blocks present a challenge, as the vertices of the block trees are not decorated
with a single block (or none) but with a sequence of blocks. Hence, the size of the blocks
cannot be immediately read from the degrees in the block tree. However, an extreme
condensation phenomenon occurs, concentrating mass in only one element of the sequence
(as in [Gou98, Th1]), resulting in a similar behaviour.

Denote by Ln,j the size of the j-th largest block of Mn. By Theorem 2, the same
arguments as in [FS23] apply and the following holds.

Theorem 3. Models described in Table 1, where maps are decomposed into blocks
weighted with a weight u > 0, satisfy the following.

Subcritical case For all u < uC, we have

Ln,1 = (1− E(u))n+OP(n
2/3) and Ln,2 = OP(n

2/3).

Moreover, there exists an explicit constant c̃(u) > 0 such that the following joint
convergence holds:(

1

nc̃(u)

)2/3

((1− E(u))n− Ln,1, (Ln,j, j ⩾ 2))
(d)−−−→

n→∞

(
L1,

(
∆L(j−1), j ⩾ 2

))
(4)

where (Lt)t∈[0,1] is a Stable process of parameter 3/2 such that E
[
e−sL1

]
= eΓ(−3/2)s3/2

and ∆L(1) ⩾ ∆L(2) ⩾ . . . is the ranked sequence of its jumps.

Supercritical case For all u > uC , there exist explicit values F (u), G(u) > 0 such that,
for all fixed j ⩾ 1,

Ln,j = F (u) ln(n)−G(u) ln(ln(n)) +OP(1).

Critical case If u = uC, then(
Ln,j

n2/3
, j ⩾ 1

)
(d)−−−→

n→∞

(
E(j), j ⩾ 1

)
,

where the
(
E(j)

)
are the ordered atoms of an explicite Point Process, specified in

[Jan12, Ex19.27, Rk19.28].

As mentioned in [FS23], for u = 1, we retrieve by a probabilistic method the results of
[BFSS01, Table 4], established by analytic techniques: indeed, our 1− E(1) corresponds to
their α0. The probabilistic approach we follow was first developed by [AB19] and has the
advantage that we obtain a joint limit law for the largest block and the subsequent ones.
It can also yield local limit theorems for the size of the largest block, as is discussed by
Stufler in [Stu20b].
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Abstract

We show that there is a constant c such that any 3-uniform hypergraph H with n
vertices and at least cn5/2 edges contains a triangulation of the real projective plane
as a sub-hypergraph. This resolves a conjecture of Kupavskii, Polyanskii, Tomon,
and Zakharov. Furthermore, our work, combined with prior results, asymptotically
determines the Turán number of all surfaces.
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1 Introduction
Turán-type questions are fundamental in the study of extremal combinatorics. Given a
fixed r-uniform hypergraph F , its Turán number ex(n,F) is the maximum number of
edges in an r-uniform hypergraph H on n vertices which does not contain F as a sub-
hypergraph. Estimating Turán numbers for hypergraphs remains a largely open problem;
we refer the reader to the surveys [1, 3, 9] for a general overview.

In this paper, we investigate a topological variant of this problem. Any r-uniform
hypergraph H may be viewed as an (r − 1)-dimensional simplicial complex whose facets
are the edges of H. Similarly, one may ask if any sub-hypergraph of H is homeomorphic
to a given (r − 1)-dimensional simplicial complex X. This topological perspective yields
many natural generalizations of graph properties to higher dimensions. For example, one
analogue of Hamiltonian cycles in 3-uniform hypergraphs that has received some attention
(see [2, 8]) is a spanning sub-hypergraph homeomorphic to the 2-sphere. Additionally,
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one is naturally interested in the following extremal quantity. Let X be a closed (r − 1)-
dimensional manifold. Denote by exhom(n,X) the maximum number of edges in a r-uniform
hypergraph H on n vertices such that no sub-hypergraph of H is homeomorphic (as a
simplicial complex) to X. This is the Turán number of the topological space X.

As part of his program in high-dimensional combinatorics, Linial [7] asked for the
asymptotics of exhom(n,X) when r ≥ 3. Linial’s question was partially motivated by the
work of Sós, Erdős, and Brown [11] some decades prior, which showed that exhom(n,X) =
Θ(n5/2) when X is the 2-sphere S2. Linial [7] sketched a new proof of the lower bound
exhom(n,S2) = Ω(n5/2) which generalized to all closed, connected 2-manifolds X; this proof
is given rigorously in [5, §2]. We call such a 2-manifold a surface.

All surfaces fall into one of three categories: the sphere S2, the connected sum of
g ≥ 1 tori, or the connected sum of k ≥ 1 real projective planes. Until recently, it was
unknown if the lower bound of n5/2 was asymptotically tight for the latter two classes.
Indeed, Linial [6, 7] repeatedly conjectured a matching upper bound for the torus T2, i.e.
that exhom(n,T2) = O(n5/2). Kupavskii, Polyanskii, Tomon, and Zakharov [5] proved
Linial’s conjecture in 2020. Additionally, they showed that if two surfaces X1, X2 satisfy
exhom(n,Xi) = O(n5/2), their connected sum X1#X2 also satisfies exhom(n,X1#X2) =
O(n5/2), thereby extending the upper bound exhom(n,X) = O(n5/2) to orientable surfaces
of the form X = T2# · · ·#T2. They were unable to derive the corresponding result for
any non-orientable surfaces, but conjectured that the same bound applies to all surfaces.

Our main result is the resolution of this conjecture. We show that Linial’s lower bound
is asymptotically tight for the real projective plane RP2.

Theorem 1.1. We have exhom(n,RP2) = O(n5/2).

By Kupavskii, Polyanskii, Tomon, and Zakharov’s result on connected sums, this bound
generalizes to all non-orientable surfaces X = RP2# · · ·#RP2. Combining our work with
the results of Sós, Erdős, and Brown [11] for the sphere and Kupavskii, Polyanskii, Tomon,
and Zakharov [5] for all other orientable surfaces, we completely determine the asymptotics
of exhom(n,X) for any surface X.

Theorem 1.2. Let X be any surface. Then exhom(n,X) = Θ(n5/2), where the constant
coefficients may depend on the surface X.

In the remaining two sections, we sketch the proof of Theorem 1.1. We first describe
how to build a hypergraph homeomorphic to RP2 out of smaller substructures. Then, we
give an overview of the probabilistic techniques required to locate these substructures.

2 Deconstructing RP2

Our proof of Theorem 1.1 begins by identifying conditions under which a 3-uniform hyper-
graph H contains a sub-hypergraph homeomorphic to RP2.

We decompose RP2 as two copies of D2 attached to S1 ∨ S1. Consider the standard
representation of RP2 as a disk with boundary glued to itself antipodally — this is pictured
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a ab

v0

v0

Figure 1: Two loops a and b in RP2 based at the point v0. Here, RP2 is depicted
as a disk with boundary points identified antipodally.

ba v0

Figure 2: Two loops a and b in S1 ∨ S1 sharing the same basepoint v0.

in Fig. 1. Let a and b be the loops in RP2 depicted, with a traversing half the boundary of
the disk and b a diameter of the disk. The union of a and b, shown in Fig. 2, is a subspace
of RP2 homeomorphic to S1 ∨ S1. Moreover, RP2 can be recovered from this subspace by
attaching two copies of D2 — one corresponding to each semicircular region of Fig. 1 — to
the concatenated loops ab and a−1b. This is summarized in the following proposition.

Proposition 2.1. Let a and b be the two loops in S1 ∨ S1 shown in Fig. 2. Form a CW
complex from S1∨S1 by attaching one disk to the loop ab and another disk to the loop a−1b.
The resulting topological space is homeomorphic to RP2.

Let D2− be the quotient of D2 obtained by gluing together two points x, y on the bound-
ary of D2. Proposition 2.1 decomposes RP2 as a union of two copies of D2− intersecting on
their shared boundary, a subspace of RP2 homeomorphic to S1 ∨ S1.

Now, suppose H is a 3-uniform hypergraph. For a vertex u ∈ V (H), we denote by Hu

its link graph, the graph on V (H)\{u} whose edges vw correspond to 3-edges uvw ∈ E(H).
For distinct vertices u and u′ of H, we write Hu,u′ = Hu ∩ Hu′ ; that is, Hu,u′ is the graph
on V (H) \ {u, u′} with edge set E(Hu) ∩ E(Hu′).

One might attempt to build RP2 using the following naïve approach. Choose vertices
u, u′ and cycles C,C ′ ⊆ Hu,u′ so that C and C ′ intersect in a single vertex v0, implying
that C∪C ′ is homeomorphic to S1∨S1. Let A,A′ ⊆ H be sub-hypergraphs induced by the
edge sets E(A) = {ue : e ∈ E(C) ∪ E(C ′)} and E(A′) = {u′e : e ∈ E(C) ∪ E(C ′)}. One
hopes that A and A′ are copies of D2− whose union is homeomorphic to RP2, and indeed
this is almost true. However, the 1-simplex uv0 (resp. u′v0) is contained in four different
edges of A (resp. A′), so neither A nor A′ is homeomorphic to D2−.

To obtain a homeomorphic copy of RP2, we alter the hypergraphs A and A′ to avoid
these four-way intersections. The resulting construction is pictured in Fig. 3. Let v1, v2
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v0
v1

v2

v3

v4

u

u′

D

D′

C

C ′

Figure 3: Building RP2 from cycles C,C ′ ⊆ Hu,u′ and disks D,D′ ⊆ H.

be the two neighbors of v0 in C, and let v3, v4 be the two neighbors of v0 in C ′. Consider
the edge subsets D = {uv0v1, uv0v3} ⊆ E(A) and D′ = {u′v0v2, u′v0v3} ⊆ E(A′), which
correspond to disks with boundaries v0v1uv3v0 and v0v2u′v3v0 respectively. We locate al-
ternate sub-hypergraphs D,D′ ⊆ H homeomorphic to disks with the same boundaries, and
replace D and D′ with them. If D and D′ are chosen appropriately, the altered hypergraphs
(A\D)∪D and (A′ \D′)∪D′ are homeomorphic to D2− with shared boundary C ∪C ′. In
fact, they are created by attaching disks to C ∪ C ′ along the loops v0v2

C· · · v1v0v3
C′
· · · v4v0

and v0v1
C· · · v2v0v3

C′
· · · v4v0, respectively. Using Proposition 2.1, one can show that their

union is homeomorphic to RP2.

3 Probabilistic Techniques
We have reduced Theorem 1.1 to finding substructures C,C ′,D,D′ of a 3-uniform hyper-
graph H arranged as in Fig. 3. We locate these substructures via a probabilistic approach,
analyzing the likelihood that a randomly chosen subset of V (H) will contain each of these
substructures. To quantify these probabilities, we require some new definitions. Write
U ⊆p V to indicate that U is a randomly chosen subset of V , containing each vertex
independently with probability p.

Definition 3.1. Fix p, ε ∈ (0, 1]. Let H be a 3-uniform hypergraph and let x1, . . . , x4 be
four distinct vertices of H. Sampling U ⊆p V (H), let Ax1x2x3x4 be the event that there is
some sub-hypergraph D ⊆ H[{x1, . . . , x4} ∪ U ] which is homeomorphic to a disk bounded
by the 4-cycle x1x2x3x4, and which contains neither 1-simplex x1x3 or x2x4. We say the
4-cycle x1 · · ·x4 is (p, ε)-disk-coverable if Pr[Ax1···x4 ] ≥ 1− ε.

Kupavskii, Polyanskii, Tomon, and Zakharov implicitly studied disk-coverability when
upper-bounding the Turán number of the torus in [5]. They introduced the following
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related notion.

Definition 3.2. Fix p, ε ∈ (0, 1]. Let G be a graph and e = xy an edge of G. Sample
U ⊆p V (G) and let Ae be the event that there is a cycle containing xy in G[U ∪ {x, y}].
We say the edge e is (p, ε)-admissible if Pr[Ae] ≥ 1− ε.

The concept of admissibility is useful due to the following observation: if an edge vw in
a link graph Hu,u′ is (p, ε)-admissible, then the 4-cycle uvu′w is (p, ε)-disk-coverable. This
is because any cycle v0 · · · v` with v = v0 and w = w` gives rise to a sub-hypergraph with
edge set

`−1⋃
i=0

{vivi+1u, vivi+1u
′},

which is homeomorphic to a disk with boundary uvu′w.
At this point, we may sketch the proof of Theorem 1.1. Given a hypergraph H, we

locate vertices u, u′, v0, · · · , v4, cycles C,C ′ ⊆ Hu,u′ , and disks D,D′ ⊆ H as pictured in
Fig. 3.

Proof Overview of Theorem 1.1. Let p = 1/4 and fix ε (to be determined later). Let H be
a 3-uniform hypergraph with at least cn5/2 edges. If c is sufficiently large in terms of p
and ε then, using techniques from [5], we may pass to a sub-hypergraph H′ ⊆ H with at
least c

2
n5/2 edges such that for any neighboring edges xyz, x′yz ∈ H′, the 4-cycle xyx′z is

(p, ε)-disk-coverable in H.
We locate vertices u, u′, a graph G ⊆ H′u,u′ , and incident edges v0v1, v0v3 ∈ E(G) which

are both (p, δ)-admissible in G, with δ = 1/3. Additionally, we show that degG(v0) is at
most some fixed constant d, which is computed in terms of the admissibility parameters
(p, δ). The details of this step may be found in [10].

Choose v2 ∈ NG(v0) uniformly at random and partition V (G) = U1 ∪ · · · ∪ U4 by
placing each vertex in a given set Ui independently with probability p = 1/4. Consider the
following three events.

(A1) There are cycles C,C ′ satisfying the inclusions v0v1 ⊂ C ⊂ G[U1 ∪ {v0, v1}] and
v0v3 ⊂ C ′ ⊂ G[U2 ∪ {v0, v3}].

(A2) The cycle C described in (A1) contains v1v0v2 as a subpath.

(A3) There are D,D′ ⊆ H homeomorphic to disks with boundaries uv1v0v3 and u′v2v0v3
whose non-boundary vertices are contained in U3 and U4, respectively. Moreover, D
does not contain the 1-simplex uv0, and D′ does not contain the 1-simplex u′v0.

If all three events hold simultaneously, then the structures C,C ′,D,D′ do not intersect
except at the vertices u, u′, v0, v1, v3. To obtain a homeomorphic copy of RP2, we must
additionally ensure that the structures do not contain any of these five vertices unless
mentioned in (A1) and (A3). This is summarized in the following two conditions.

(B1) We have v3 /∈ C and v1 /∈ C ′.
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(B2) We have u′ /∈ D and u /∈ D′.
It remains to show that the five events (A1), (A2), (A3), (B1), (B2) occur simultaneously
with positive probability.

Because the edges v0v1 and v0v3 are (p, δ)-admissible in G, the event (A1) occurs with
probability at least 1−2δ = 1/3. To additionally show that v3 /∈ C and v1 /∈ C ′, as in (B1),
we check that the edges v0v1 and v0v3 are admissible (with suitable parameters) in G− v3
and G− v1, respectively. If xy ∈ E(G) is a (p, δ)-admissible edge in G and G′ = G− z is
a subgraph created by deleting a third vertex z from G, then

Pr
U ′⊆pV (G′)

[@ cycle in G′[U ′ ∪ {x, y}] containing xy]

= Pr
U⊆pV (G)

[@ cycle in G[U ∪ {x, y}] containing xy | z /∈ U ]

≤
PrU⊆pV (G)[@ cycle in G[U ∪ {x, y}] containing xy]

PrU⊆V (G)[z /∈ U ]
≤ δ

1− p
.

It follows that the edges v0v1 and v0v3 are (p, δ
1−p)-admissible in G − v3 and G − v1,

respectively. Thus, with probability at least 1− 2δ
1−p = 1/9, there are cycles C,C ′ satisfying

(A1) and (B1).
Notice that (A2) is independent of (A1) and (B1) — the latter two events depend only

on the choice of U1, . . . , U4, while (A2) depends on the choice of v2. It follows that (A1),
(B1), (A2) simultaneously hold with probability at least 1

9
Pr[(A2)] = 1/9d.

Lastly, we consider (A3) and (B2). Observe that uv1v0 and uv3v0 are neighboring edges
ofH′, so uv1v0v3 is (p, ε)-disk-coverable inH. Similarly, u′v2v0v3 is also (p, ε)-disk-coverable
in H. It follows that (A3) holds with probability at least 1 − 2ε. To additionally include
(B2), we note that uv1v0v3 and u′v2v0v3 are (p, ε

1−p)-disk-coverable in H − u′ and H − u,
respectively, by a calculation analogous to that for (B1) above. Thus, (A3) and (B2) hold
simultaneously with probability at least 1− 2ε

1−p ≥ 1− 3ε.
By a union bound, the five events (A1), (B1), (A2), (A3), (B2) hold simultaneously

with probability at least 1/9d−3ε. Thus, assuming that ε was chosen to satisfy ε < 1/27d,
there is a sub-hypergraph of H homeomorphic to RP2.
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Abstract

Equations with one catalytic variable and one univariate unkown, also known as
discrete difference equations of order one, form a familly of combinatorially relevant
functional equations first discussed in full generality by Bousquet-Mélou and Jehanne
(2006) who proved that their power serie solutions are algebraic. Drmota, Noy and
Yu (2022) recently showed that in the non linear case the singular expansions of these
series have a universal dominant term of order 3/2, as opposed to the dominant square
root term of generic N-algebraic series. Their direct analysis of the cancellation under-
lying this behavior is a tour de force of singular analysis. We show that the result can
instead be given a straightforward explanation by showing that the derivative of the
solution series conforms to the standard square root singular behavior. Consequences
also include an atypical, but generic in this situation, n5/4 asymptotic behavior for
the cumulated values of the underlying catalytic parameter.
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Context and known results. Our interest is in families of bigraded combinatorial
structures F = (Fn,k)n,k>0 whose bivariate generating series satisfiy a so-called equation
with one catalytic variable and one univariate unknown [3], or discrete difference equation
of order one [1]. Many examples of such combinatorial structures have surfaced over the
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last fifty years in the combinatorial literature, among which proeminent topics of recent
interest like lattice paths , rooted planar maps , two-stack-sortable permutations , normal
linear lambda terms , intervals of the Tamari lattice, figting fish or tree parking functions
(see e.g. references in [1, 3, 7, 8, 5]).

Catalytic equations as a generic class of functional equations were notably studied by
Bousquet-Mélou and Jehanne [3] who proved that the power series solutions of catalytic
equations with one catalytic variable (and arbitrary order) are in general algebraic func-
tions. Further explicit universal results were more recently obtained for order one catalytic
equations: complexity issues were discussed by Bostan et al [1], while Drmota, Noy and
Yu [7] exibited a universal critical exponant governing the polynomial correction in the
asymptotic of the coefficients of the solution series (see also Chen [5] for more detailed
universality results concerning a slightly more restricted class of functions, and Chapuy [4]
for earlier partial results along the same lines as [7]).

Here we concentrate on the generic order one catalytic equation with one variable, as
studied by Drmota, Noy and Yu [7]:

F (u) = Q
(
F (u), 1

u
(F (u)− f), u, t

)
(1)

where F (u) ≡ F (u, t) =
∑

n,k>0 |Fn,k|tnuk and f ≡ f(t) = F (0, t) are respectively the
ordinary generating functions of elements of F and of f = ∪n>0Fn,0, with t marking the
size n and umarking the secondary parameter k (refered to as the catalytic parameter), and
where Q(v, w, u, t) =

∑
i,j,k,`>0 qi,j,k,`v

iwjukt`, is assumed1 to take the form Q(v, w, u, t) =
Q0(u)+tQ+(v, w, u, t) with Q0 and Q+ polynomials with non negative coefficients such that
Q′′vv +Q′′vw +Q′′ww 6= 0 (non linearity condition), and Q′w +Q′′vu 6= 0 (catalytic condition).

Following Bousquet-Mélou and Jehanne [3], we consider the derivative of Equation (1)
with respect to u, as given formally by the standard chain rule for derivation:

∂F

∂u
(u) =

(
∂Q

∂v

(
F (u), 1

u
(F (u)− f), u, t

)
+
∂Q

∂w

(
F (u), 1

u
(F (u)− f), u, t

)
1
u

)
∂F

∂u
(u) (2)

+

(
∂Q

∂u

(
F (u), 1

u
(F (u)− f), u, t

)
− ∂Q

∂w

(
F (u), 1

u
(F (u)− f), u, t

)
1
u2 (F (u)− f)

)
.

Under our assumptions on Q, upon extracting coefficients of successives powers of t, the
equation

U = U
∂Q

∂v

(
F (U), 1

U
(F (U)− f), U, t

)
+
∂Q

∂w

(
F (U), 1

U
(F (U)− f), U, t

)
extracted from the first line of Equation (2) is seen to have a unique power series solution
U ≡ U(t) in t · Q[t], and ∂F

∂u
(U(t)) is a well defined power series in t. The substitution

1Actually our analysis applies in a slighltly more general analytic setting, provided Q has non negative
coefficients and the equation is non degenerate, non linear and catalytic, but we stick for simplicity with
the polynomiality assumptions used in [3, 7] which covers most known examples.
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u = U then cancels the first line of Equation (2), and therefore also its second line. This
implies that the series U , V ≡ V (t) = F (U), and W ≡ W (t) = F (U)−f

U
satisfy the systems

V = Q(V,W,U, t),

U = U ∂Q
∂v
(V,W,U, t) + ∂Q

∂w
(V,W,U, t),

0 = ∂Q
∂u
(V,W,U, t)− ∂Q

∂w
(V,W,U, t)W

U
,

f = V − UW,

and


V = Q(V,W,U),

U = U ∂Q
∂v
(V,W,U) + ∂Q

∂w
(V,W,U),

W = W ∂Q
∂v
(V,W,U) + ∂Q

∂u
(V,W,U),

f = V − UW.
(3)

where the second system is obtained, following Drmota, Noy and Yu [7], by replacing Line
3 of the first system by the linear combination W

U
(Line 2) + (Line 3).

This system was used by Drmota, Noy and Yu [7] to derive the asymptotic behavior
of the coefficients of the series f under the aforementioned assumption that Q(v, w, u, t) =
Q0(u)+ tQ+(v, w, u, t) where Q0 and Q+ are polynomials of Q[v, w, u, t] with non negative
coefficients. Apart in the linear case and in a few other simple degenerate situations dis-
cussed in [7], these assumptions imply that the three series V , U , and W are the unique
power series solutions of a system of three polynomial equations with non negative co-
efficients whose dependancy graph is strongly connected: the celebrated Drmota-Lalley-
Woods theorem [10, Thm VII.6, p. 489] then immediately yields that these series have a
common dominant singular behavior of the square root type:

V (t) = aV − bV
√

1− t/ρ+ cV (1− t/ρ) + dV (1− t/ρ)3/2 +O((1− t/ρ)2,
W (t) = aW − bW

√
1− t/ρ+ cW (1− t/ρ) + dW (1− t/ρ)3/2 +O((1− t/ρ)2,

U(t) = aU − bU
√
1− t/ρ+ cU(1− t/ρ) + dU(1− t/ρ)3/2 +O((1− t/ρ)2,

(4)

near their common radius of convergence ρ >0, for positive constants aV , bV , aW , bW , aU ,
and bU and constants cV , dV , cW , dW , cU , and dU that can be explicitely expressed in terms
of ρ, Q and its derivatives.

A first computation with these explicit expressions shows that a systematic cancellation
of the square root terms occurs when these singular expansions are pluged in the expression
f(t) = V (t) −W (t)U(t), so that f is generically expected to admit a singular expansion
with the next possible higher order 3/2:

f = α + β(1− t/ρ)− γ(1− t/ρ)3/2 +O((1− t/ρ)2).

Using higher order expansions given by Drmota-Lalley-Wood theorem, the constant γ can
be in turn expressed in terms of higher derivatives of Q. However showing that γ is positive
is non trivial (as opposed to the easy statement that it is non negative), and Dmota, Noy
and Yu [7] develop a quite delicate analysis to obtain this result, showing that the exponent
3/2 is indeed universal.

Under standard technical aperiodicity conditions (see the detailed discussion in [7]),
classical transfer theorems [10, Thm VI.3, p390] then imply Drmota, Noy and Yu’s main
result [7, Thm 2] that the coefficients of f behave as [tn]f(t) ∼ cte ·ρ−n · n−5/2. This is
a beautiful achievement to be compared for instance to the standard universal cte ·ρ−n ·
n−3/2 asymptotic behavior of the coefficients of generating series of irreducible context free
structures amenable to the Drmota-Lalley-Wood theorem [10, Thm VII.5, p483].
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Our short derivation. The purpose of this note is to make an observation that allows
to circumvent the delicate analysis of the cancellation at the heart of Drmota, Noy and
Yu’s approach, and to give a direct explanation of the universal asymptotic behavior of
the coefficients of f . Consider the derivation of Equation (1) with respect to t :

∂F
∂t
(u) =

(
∂Q
∂v

(
F (u), 1

u
(F (u)− f), u, t

)
+ ∂Q

∂w

(
F (u), 1

u
(F (u)− f), u, t

)
1
u

)
∂F
∂t
(u)

+
(
∂Q
∂w

(
F (u), 1

u
(F (u)− f), u, t

)) (−1)
u

∂f
∂t

+ ∂Q
∂t

(
F (u), 1

u
(F (u)− f), u, t

)
.
(5)

In view of the chain rule for derivation, the first line of Equation (5) has the exact same
form as the first line of Equation (2) so that it also cancels upon substituting u = U . As
a consequence, the second line of Equation (5) yields the identity(

∂Q

∂w
(V,W,U, t)

)
(−1)
U

∂f

∂t
+
∂Q

∂t
(V,W,U, t) = 0. (6)

Using again a linear combination, 1
U

∂f
∂t

(Line 2 of System (3)) + (Equation (6)), we obtain:

∂f

∂t
=
∂f

∂t

∂Q

∂v
(V,W,U, t) +

∂Q

∂t
(V,W,U, t).

Upon letting S ≡ S(t) denote the unique formal power series inQ[t] solution of the equation
S = 1 + S ∂Q

∂v
(V,W,U, t), we obtain the larger but completely non negative system

V = Q(V,W,U, t),

S = 1 + S ∂Q
∂v
(V,W,U, t),

U = S ∂Q
∂w

(V,W,U, t),

W = S ∂Q
∂u
(V,W,U, t),

∂f
∂t

= S ∂Q
∂t
(V,W,U, t).

(7)

Observe in particular that apart in a few degenerate cases (which are the same already
listed in [7]) the dependancy graph of the four first unknowns {F, S, U,W} in the four first
equations of System (7) is strongly connected. Hence with the same assumptions as above,
the hypotheses of the classical Drmota-Lalley-Woods theorem are satisfied again. As a
consequence these four series have a singular expansion of the form ax − bx

√
1− t/ρ +

O(1 − t/ρ) near their common dominant singularity ρ > 0, with computable positive
constants ax and bx specific to each series x ∈ {V, S,W,U}.

Our main observation is then that, since singular expansions of the square root type
are preserved via finite products and sums, the last equation of our system immediately
provides a singular expansion of the square root type for the derivative of f :

∂f

∂t
(t) = S(t)

∂Q

∂t
(V (t),W (t), U(t), t) = α′ − β′

√
1− t/ρ+O(1− t/ρ).

In particular the positivity of β′ immediately follows from the positivity of the coefficients
of Q and of the various constants a∗ and b∗.

Under the usual aperiodicity conditions, this immediately yields that

[tn]
∂f

∂t
(t) ∼ cte ·ρ−n · n−3/2 and [tn]f(t) =

1

n
[tn−1]

∂f

∂t
(t) ∼ cte ·ρ−n · n−5/2.
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n
1/4

n
3/4

Figure 1: A fighting fish and its average parameters

Cumulated catalytic parameter. Equation like (1) typically arise from a combina-
torial recursive decomposition using a so-called catalytic parameter, an auxiliary param-
eter which characterizes the substructures involved in the decomposition. Refinements of
Equations (7) then allow to derive the asymptotic behavior of a number of interesting
combinatorial parameters that are closely related to the catalytic parameter: typically the
average depth of a node in the decomposition trees with root parameter 0 is of order n3/4,
and the average value of a random substructure is of order n1/4. In this context the basic
quantity that governs these behavior is the cumulated value of the catalytic parameter over
all decreasing substructures of the structures of size n. This quantity is captured by the
series Z = U · ∂F

∂u
(U), whose singular behavior can be derived upon derivating Equation (2)

a second time with respect to u and using Equations (7): the series Z satisfies a quadratic
equation with coefficients that depends on derivatives of Q evaluated at V , W and U ,
whose discriminant cancels at first order at the singularity, leading to a dominant term
(1− t/ρ)1/4 in the singular expansion.

A concrete example is that of fighting fish, where the cumulated label corresponds to
a variant of the area (namely the area in the narrowing columns of the fish), in terms of
which the width, as well as the depth of a random point of the boundary can be computed,
leading to the results illustrated by Figure 1. The random instance displayed in Figure 1
has size 10000 and was generated using a random sampling algorithm for non separable
maps [11] combined with the recent bijection of Duchi and Henriet [8].

Concluding remarks. From a combinatorial point of view, and in accordance with
Schützenberger methodology [2], the fact that the derivative of the solution f(t) of an
order one equations with one catalytic variable is the solution of a system of polynomial
equations with non negative coefficients suggests that if a combinatorial family admits a
first order recursive specification with one catalytic variable, its derivative family should
enjoy a context free specification in the sense of [10, Chapter VII.6]. This is the topic of a
forthcoming article of Duchi and the author [9].

From an analytic point of view a natural question is to understand if the results can be
extended to higher order catalytic equations with one catalytic variable, that are expected
to share the same universal asymptotic behavior. A first remarkable achievment in this
direction was recently obtained by Drmota and Hainzl for second order equations [6].
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Abstract

The celebrated Brown-Erdős-Sós conjecture states that for every fixed e, every 3-
uniform hypergraph with Ω(n2) edges contains e edges spanned by e+ 3 vertices. Up
to this date all the approaches towards resolving this problem relied on highly involved
applications of the hypergraph regularity method, and yet they supplied only approx-
imate versions of the conjecture, producing e edges spanned by e+O(log e/ log log e)
vertices. We describe a completely different approach, which reduces the problem to
a variant of another well-known conjecture in extremal graph theory. A resolution of
the latter would resolve the Brown-Erdős-Sós conjecture up to an absolute additive
constant.
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1 Introduction

1.1 Background and previous results

Some of the most well studied problems in extremal combinatorics are those asking which
objects are guaranteed to appear in “dense” objects. Among notable examples are Roth’s
Theorem [18] on 3-term arithmetic progressions in dense sets of integers, and the Kővári-
Sós-Turán Theorem [16] on bipartite subgraphs of dense graphs. In this paper we consider
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a question raised by Brown, Erdős and Sós in 1973 [3, 2], which is one of the most famous
open problems of this type.

Given an integer e ≥ 3, one would expect a dense 3-uniform hypergraph (3-graph for
short) to contain e edges spanned by a small number of vertices. To quantify this, let
(v, e)-configuration denote a set of e edges spanned by at most v vertices. The Brown–
Erdős–Sós Conjecture (BESC) states that for every fixed e ≥ 3 and all large enough n,
every 3-graph with Ω(n2) edges contains an (e+ 3, e)-configuration. Despite a lot of effort
over the past 50 years, the BESC is only known to hold for e = 3, due to a result of Ruzsa
and Szemerédi [21].

Since even the e = 4 case of the BESC seems hopeless, it is natural to try to prove
approximate versions of the conjecture, namely that 3-graphs with Ω(n2) edges contain
(e + f(e), e)-configurations, for some slowly growing function f . The first result of the
above type was obtained by Sárközy and Selkow [22] who showed that every 3-graph with
Ω(n2) edges contains for every fixed e an (e + 2 + blog2 ec, e)-configuration. This was im-
proved by Solymosi and Solymosi [23] for the special case e = 10 from 15 to 14 vertices. A
general asymptotic improvement of the result of [23] was obtained recently by Conlon, Gish-
boliner, Levanzov and Shapira [8], who proved the existence of (e + O(log e/ log log e), e)-
configurations.

Besides its intrinsic interest, the BESC turned out to be one of the most influential
problems in extremal combinatorics. For example, the proof of the case e = 3 [21] was
one of the first applications of Szemerédi’s regularity lemma [24], and further introduced
the famous graph removal lemma. One of the main motivations for the development of
the celebrated hypergraph regularity method [11, 17, 19, 20, 26] was the hope that it will
lead to a resolution of BESC. While this did not materialize, the hypergraph regularity
method was instrumental in the latest works [8, 23]. However, although the above proofs
rely on highly involved applications of the hypergraph regularity method, it appears that
the following natural approximate version of the BESC is beyond their reach.

Conjecture 1.1 (Constant deficiency BESC). There is an absolute constant d so that for
every e and every large enough n, every 3-graph with Ω(n2) edges contains an (e + d, e)-
configuration.

1.2 A new approach for Conjecture 1.1

Our aim in this paper is to reduce Conjecture 1.1 to a problem involving graphs. Let us
denote by ex(n,H) the maximum number of edges in an n vertex graph not containing
a copy of H as a subgraph. The Kővári-Sós-Turán Theorem [16] which we mentioned
above, states that for every fixed t ≤ s, we have ex(n,Ks,t) = O(n2−1/t) where Ks,t is the
complete bipartite graph with parts of size t and s. This bound is known to be tight for
large s, see [4] for recent progress and references. One of the main research directions in
extremal graph theory is to obtain better bounds for sparser bipartite graphs. One such
problem was raised by Erdős [9], who conjectured that if H is a t-degenerate bipartite
graph then ex(n,H) = O(n2−1/t). While there are some approximate results towards this
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conjecture [1, 10, 13, 15], the question is open even for t = 2. Note that in general, the
conjectured bound O(n2−1/t) for t-degenerate bipartite graphs cannot be improved since the
aforementioned Ks,t is t-degenerate. In particular, the bound is tight for every t-degenerate
H which contains a copy of Ks,t. In light of this, Conlon [5] conjectured that if we assume
that a t-degenerate bipartite graph H has no Kt,t then we have ex(n,H) = O(n2−1/t−δ)
for some δ = δ(H) > 0. Lending plausibility to this conjecture, Sudakov and Tomon [25]
showed that if all vertices in one of the parts of H have degree at most t but H has no Kt,t

then ex(n,H) = o(n2−1/t). For t = 2 Conlon’s conjecture can be stated as:

Conjecture 1.2 (Conlon [5]). For every 2-degenerate C4-free bipartite graph H there exists
a constant δ = δ(H) > 0 such that

ex(n,H) = O(n3/2−δ) .

There are several results supporting Conjecture 1.2. For example, Conlon and Lee [7]
proved that if H is a bipartite graph so that each vertex in one of H’s sides has maximum
degree 2 (such a graph is clearly 2-degenerate) and H is C4-free then ex(n,H) = O(n3/2−δ)
for some δ = δ(H) > 0. Further results in this direction were obtained in [6, 14].

Let Hk,t be the family of 2-degenerate graphs on k vertices and 2k − t edges. We raise
the following weaker version of Conjecture 1.2.

Conjecture 1.3. There are absolute constants t, k0 such that for every k ≥ k0 and large
enough n, every graph with Ω(n3/2) edges contains a copy of some H ∈ Hk,t.

Let us briefly explain why Conjecture 1.3 is indeed weaker than Conjecture 1.2. It
is not hard to see that for every t and large enough k, the family Hk,t contains C4-free
graphs (see Claim 3.1). Conjecture 1.2 then states that if G has Ω(n3/2) edges then G
should contain a copy of every H ∈ Hk,t which is C4-free, while Conjecture 1.3 only asks
G to contain a copy of some H ∈ Hk,t. Note also that Conjecture 1.3 is weaker than the
statement that for every k ≥ k0 we have ex(n,H) = o(n3/2) for some H ∈ Hk,t, which is
itself weaker than Conjecture 1.2.

Our main result in this paper is the following alternative approach for resolving Con-
jecture 1.1.

Theorem 1.4. Conjecture 1.3 implies Conjecture 1.1.

Before turning to the proof of Theorem 1.4, we mention that it might very well be the
case that in Conjecture 1.3 we can replace the lower bound Ω(n3/2) by Ω(n3/2−δ) for some
δ = δ(k) > 0. Indeed, this bound is implied by Conjecture 1.2. It is not hard to see that
in this case the proof of Theorem 1.4 would give that for some absolute constant d and
for every e there is ε = ε(e) > 0 so that one can find (e + d, e)-configurations in every
3-graph with n2−ε edges. Such a result would be an approximate version of a conjecture
suggested by Gowers and Long [12], stating that 3-graphs with n2−ε edges contain (e+4, e)-
configurations.
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2 Proof of Theorem 1.4
To avoid confusion, we will refer to edges of a 3-graph as hyperedges. Fix e ≥ 3 and let G be
a 3-graph with n vertices and Ω(n2) hyperedges. We will rely on the well known observation
that in the context of the BESC one can assume that G is linear and 3-partite on vertex
sets (A,B, C). We now apply a variant of the construction of Solymosi and Solymosi [23].
Given G, define an auxiliary bipartite multigraph G′ as follows. Set V (G′) = (A,B) where
A =

(A
2

)
and B =

(B
2

)
. For two vertices {a1, a2} ∈ A and {b1, b2} ∈ B put an edge between

them if there is a c ∈ C so that a1b1c and a2b2c are hyperedges of G, and (independently)
put an edge between them if there is a c′ ∈ C such that a1b2c′ and a2b1c′ are hyperedges of
G. Since G is linear, each pair of vertices in G′ are connected by at most 2 edges. If we let
d(c) denote the degree of a vertex c ∈ C in G then

|E(G′)| =
∑
c∈C

(
d(c)

2

)
≥ |C|

( 1
|C|
∑

c∈C d(c)

2

)
= |C|

(
|E(G)|/|C|

2

)
≥ |E(G)|2

4|C|
.

Since e(G) = Ω(n2), |C| ≤ n, and |V (G′)| ≤ n2, we obtain |E(G′)| = Ω(|V (G′)|3/2). Since,
as noted above, each pair of vertices in G′ are connected by at most 2 edges, G′ has a
simple subgraph G which also contains Ω(|V (G)|3/2) edges. Therefore, if k0 and t are the
constants from Conjecture 1.3 and n is large enough, then we may assume the following.

Observation 2.1. For every k0 ≤ k ≤ e, the graph G contains a 2-degenerate bipartite
graph F on k vertices with at least 2k − t edges.

We would now like to understand what kind of (v, e)-configuration in G we get by
“unpacking” each of the graphs F in Observation 2.1. Optimistically, if v1, . . . , vk is the or-
dering of V (F ) certifying its 2-degeneracy, then every time we add a vertex vi to v1, . . . , vi−1
of degree 2 to the previous vertices, we expect to get 4 new vertices in G; these are c1, c2
and either a1, a2 (if vi ∈ A) or b1, b2 (if vi ∈ B). We also expect to get 4 new hyperedges in
G; these are the 4 hyperedges that correspond to the 2 new edges in G that connect vi to 2
of the vertices v1, . . . , vi−1. If this holds for all but a bounded number of F ’s vertices, then
we will get a (4k, 4k − Ok(1)) configuration, hence taking k ≈ e/4 would finish the proof.
Unfortunately, we do not know how to prove such a statement, since in certain cases (see
below) some of the 4 vertices/hyperedges might have already appeared when adding one of
the previous vertices vj. Instead, the main idea in Lemma 2.2 below is to show that F gives
rise to a (e′ + d, e′)-configuration, so that if e′ is not very close to 4k (as in the optimistic
analysis above) then we have d ≤ 0. It is then easy to show how repeated applications of
Lemma 2.2 give Theorem 1.4. In what follows G and G are those we discussed above.

Lemma 2.2. Let k ≥ t ≥ 4 be integers, and suppose F is a 2-degenerate subgraph of G
with k vertices and 2k − t edges. Then G contains a subgraph F such that

(1) |V (F)| − 4t ≤ |E(F)| ≤ 4k, and

(2) Either |E(F)| ≥ 4k − 104t3 or |E(F)| ≥ |V (F)| > 0.
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For the proof of Lemma 1.4 we refer the reader to the full version of the paper. We will
now show how to derive Theorem 1.4 from Lemma 2.2. Assuming Conjecture 1.3 holds
with constants t, k0 we show that Conjecture 1.1 holds with d = max{24k0, 3(4t+ 104t3)}.
Indeed, we claim that for every 0 ≤ e′ ≤ e we can find e′ hyperedges in G spanned by at most
e′+d vertices. If e′ ≤ max{8k0, 4t+104t3}, we just take e′ arbitrary hyperedges from G. For
larger e′ we apply Lemma 2.2 with the above t and with k = be′/4c ≥ k0 (by Observation 2.1
we know that G contains an F with these parameters). If the lemma returns a configuration
F ′ whose number of edges satisfies e′ − 104t3 − 4 ≤ |E(F ′)| ≤ e′ (and is on at most e′ + 4t
vertices), we just add to F ′ arbitrarily chosen e′ − |E(F ′)| ≤ 104t3 + 4 hyperedges to get
a set of e′ edges on at most e′ + d vertices. Otherwise, we have |E(F ′)| ≥ |V (F ′)| > 0
so we can remove F ′ from G and then restart the process with e′′ = e′ − |E(F ′)| (the
3-graph G \ F still has Ω(n2) hyperedges assuming n is large). We will obtain a set F ′′
of e′′ hyperedges on at most e′′ + d vertices, and can then return F ′′ ∪ F ′ as the set of e′
hyperedges on at most e′ + d vertices.

3 C4-free graphs in Hk,t

We say that a graph is exactly-(2, t)-degenerate if it can be obtained from a set of t isolated
vertices by repeatedly adding new vertices of degree exactly 2. Note that every exactly-
(2, t)-degenerate graph belongs to Hk,t. The following claim shows that Hk,t contains not
only C4-free graphs, but in fact graphs of arbitrary large girth.

Claim 3.1. For every g there is t = t(g) so that for every k ≥ t, there is a k-vertex
exactly-(2, t)-degenerate bipartite graph of girth at least g.

Proof. We claim that starting with an independent set of size t = t(g) (to be chosen later),
we can repeatedly add vertices so that each k-vertex graph in the sequence is exactly-
(2, t)-degenerate, bipartite, of girth at least g, and in addition satisfies the following two
conditions: (i) it has maximum degree at most 8 and (ii) it has a bipartition into two set
of sizes dk/2e and bk/2c. The initial independent set under a balanced bipartition clearly
satisfies these two conditions, so let us show how to add a vertex and maintain them.
Suppose the graph has k − 1 vertices and bipartition into sets A,B satisfying |A| ≤ |B|.
Since it has maximum degree at most 8, it contains O(k) pairs of vertices connected by a
path of length at most g − 2. Since the average degree of the vertices in B is less than 4,
at least half the vertices have degree at most 7. Hence, at least

(
(k−1)/4

2

)
≥ k2

50
of the pairs

of vertices in B both have degree at most 7. Assuming t is large enough so that k ≥ t
satisfies k2

50
−O(k) > 1, we thus have a pair of vertices u, v ∈ B so that both of them have

degree at most 7 and there is no path of length at most g− 2 connecting them. Hence, we
can add a new vertex to A and connect it to u and v.

Acknowledgement: We would like to thank David Conlon for useful discussions.
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An oriented graph is called antidirected if it has no directed path with 2 edges.
We prove that asymptotically, any oriented graph D of minimum semidegree greater
than k
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specific subgraph. We study this type of question for oriented host graphs and restricting
ourselves to finding antidirected subgraphs.

We present three theorems. The first of these relates high semidegree to the existence
of balanced antidirected trees, where we call an oriented tree balanced if its bipartition
classes have the same size.

Theorem 1.1. For all η ∈ (0, 1), c ∈ N there is n0 such that for all n ≥ n0 and k ≥
ηn, every oriented graph D on n vertices with δ0(D) > (1 + η)k

2
contains every balanced

antidirected tree T with k edges and with ∆(T ) ≤ (log(n))c.

The second theorem relates high semidegree to the existence of antidirected subdivisions
of complete graphs. For h, k ∈ N, consider any subdivision H of Kh where each edge
e ∈ E(Kh) is substituted by a path with g(e) edges, with

∑
e∈E(Kh)

g(e) = k, and such that
the edges of Kh with g(e) < 3 induce a forest in Kh. If H has antidirected orientations,
then call any antidirected orientation of H a long k-edge antidirected subdivision of Kh.

Theorem 1.2. For all η ∈ (0, 1) there are n0 ∈ N, γ > 0 such that for each n ≥ n0, each
k ≥ ηn and each h ≤ γ

√
n the following holds. Every oriented graph D on n vertices with

δ0(D) > (1 + η)k
2

contains each long k-edge antidirected subdivision of Kh.

The third theorem related high edge density to the existence of balanced antidirected
trees.

Theorem 1.3. For all η ∈ (0, 1), c ∈ N, there is n0 ∈ N such that for every n ≥ n0 and
every k ≥ ηn, every oriented graph D on n vertices with more than (1 + η)(k − 1)n edges
contains each balanced antidirected tree T with k edges and ∆(T ) ≤ (log(n))c.

Each of our theorems will be motivated and discussed in one of the sections below
(the sections follow the same order we chose for stating the theorems here). We provide
a discussion of the context of the results and include a sketch of the proof of each of the
results. We refer to [14] for more discussion and full proofs.

2 Paths and trees
Dirac (see [5]) observed that if an undirected connected graph G on at least k+ 1 vertices
satisfies δ(G) ≥ k

2
, then G contains a k-edge path (here and later, k is any natural number,

independent of the order of the host graph). Trying to translate this result to oriented
graphs, a natural possibility would be to replace the minimum degree by the minimum
semidegree δ0(D), which is defined as the minimum over all the in- and all the out-degrees
of the vertices in D, and to ask for certain oriented paths in D.

Jackson [7] showed that every oriented graph D with δ0(D) > k
2
contains the directed

path on k edges. The first author conjectured [13] that in this result, the directed path can
be replaced with any oriented path of the same length. This conjecture is best possible
for directed paths [7] and also for antidirected paths: observe that in an `-blow-up of
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the directed triangle (where each vertex is replaced with ` independent vertices), any
antidirected path covers at most 2` vertices. We show that the conjecture from [13] is
asymptotically true:

Corollary 2.1. For all η ∈ (0, 1) there is n0 such that for all n ≥ n0 and k ≥ ηn every
oriented graph D on n vertices with δ0(D) > (1 + η)k

2
contains every antidirected path with

k edges.

To see that Corollary 2.1 follows from Theorem 1.1, observe that any path either is
balanced, or can be extended by one to become balanced. (In the latter case we apply
Theorem 1.1 with a sufficiently smaller η.)

Note that the class of trees considered in Theorem 1.1 is very similar to antidirected
paths, not only because of the balancedness, but also because of the bounded degree. In
graphs, there is a very well-known result for finding bounded degree trees by Komlós,
Sárközy and Szemerédi [10]. It states that asymptotically, every graph of minimum degree
larger than n

2
contains every spanning tree of maximum degree at most O( n

logn
). Recently,

this result was extended to digraphs by Kathapurkar and Montgomery [8]. Theorem 1.1 can
be considered as a version for smaller antidirected trees of Kathapurkar and Montgomery’s
result, in oriented graphs.

We actually prove a stronger version of Theorem 1.1, namely Theorem 2.2 below, which
allows us to choose where the root of the antidirected tree goes. This more general result
will be useful in the proof of Theorem 1.3.

Theorem 2.2. For all η ∈ (0, 1), c ∈ N there is n0 such that for all n ≥ n0 and k ≥ ηn the
following holds for every oriented graph D on n vertices with δ0(D) > (1 + η)k

2
, and every

balanced antidirected tree T with k edges and ∆(T ) ≤ (log(n))c. For each set V ∗ ⊆ V (D)
with |V ∗| ≥ ηn and for each x ∈ V (T ), there is an embedding of T in D with x mapped to
V ∗.

Sketch of the proof of Theorem 2.2
Given an oriented graph D and an antidirected tree T fulfilling the conditions of the
theorem, we apply the digraph regularity lemma to D to find a partition into a bounded
number of clusters Ci. The reduced oriented graph R will have a minimum semidegree
similar to the one of D (proportionally). Let x ∈ V (T ) and V ∗ ⊆ V (D) be given, with
|V ∗| ≥ ηn. Note that at least one cluster Ci contains η|Ci| vertices from V ∗. Let C∗ be
one such cluster.

Next, we need the concept of a connected antimatching : this is a set M of disjoint
edges in D such that every pair of edges in M is connected by an antidirected walk or
simply antiwalk, which is a sequence of edges that alternate direction. The length of an
antidirected walk is its number of edges, where we count repeated edges once for each time
they appear.

We show that the minimum semidegree in the reduced oriented graph R suffices to en-
sure that R contains a large connected antimatchingM . Further, the antiwalks connecting
the edges of M have bounded length:
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Lemma 2.3 (Lemma 4.8 in [14]). Let t ∈ N+, let D be an oriented graph with δ0(D) ≥ t,
and let w ∈ V (D). Then D has a connected antimatching M = {aibi}1≤i≤t of size t, with
w = a1, and such that, for every 1 ≤ i ≤ t, there is an antiwalk of length at most 8t
containing aibi and a1b1.

Now we turn to our antidirected tree T . We decompose T into a family T of small
subtrees, connected by a constant number of vertices. This type of decomposition has been
widely used lately, appearing for the first time in [3]. We prove that it is possible to assign
the trees in T to edges of M in a way that they will fit comfortably into the corresponding
clusters, while respecting the orientations. We let Pi denote the set of trees in T that are
assigned to the clusters associated to the edge aibi ∈M .

We now embed T as follows. In each step, we embed one small tree S ∈ T . When we
choose a new small tree to embed, we make sure that we keep the embedded part connected
in the underlying tree. We embed the first d levels of S into the clusters of an antiwalk WS

in R that starts in the cluster containing the image of the parent of the root of S and ends
in aibi, if S ∈ Pi. The remaining levels of S are embedded into the clusters corresponding
to ai and bi.

Since T has bounded maximum degree, the union of the first d levels of the trees in
T is very small, and therefore it is not a problem that the first d levels of each S ∈ T
are embedded in the connecting antidirected walk WS. After going through all S ∈ T , we
have embedded all of T . For the full proof see [14]. �

3 Subdivisions and cycles
Mader [11] proved that there is a function g(h) such that every (undirected) graph of mini-
mum degree at least g(h) contains a subdivision of the complete graph Kh. Thomassen [15]
showed that a direct translation of this result to digraphs is not true. Mader [12] suggested
to replace the subdivision of the complete digraph with the transitive tournament, i.e. the
tournament without directed cycles:

Conjecture 3.1 (Mader [12]). There is a function f(h) such that every digraph of min-
imum outdegree at least f(h) contains a subdivision of the transitive tournament of order
h.

This conjecture is open even for h = 5. Aboulker, Cohen, Havet, Lochet, Moura and
Thomassé [1] observed that in Conjecture 3.1, the minimum outdegree can be replaced with
the minimum semidegree, and the resulting conjecture is equivalent to Conjecture 3.1. Our
Theorem 1.2 can be seen as a version of Conjecture 3.1 for oriented graphs and antidirected
subdivisions of Kh.

For h = 3, the objects found in Theorem 1.2 are antidirected cycles. In the existing
literature, there are already a number of results on finding oriented cycles with conditions
on the minimum semidegree. We will quickly discuss those related to antidirected cycles.

For an oriented cycle C, the cycle type of C is defined as the number of forward edges
minus the number of backwards edges of C. Note that antidirected cycles have cycle type
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0. Kelly, Kühn and Osthus [9] showed that for each k ≥ 3 and η > 0 every large enough
n-vertex oriented graph of minimum semidegree at least ηn contains all oriented cycles of
length at most k and cycle type 0. Further, δ0(D) ≥ 3n

8
+ o(n) is enough to find a copy

of any oriented cycle of length between 3 and n in an oriented graph D [9]. Both results
give (quite different) bounds on the semidegree for antidirected cycles. While in the first
result, the cycle is small compared to n, in the second result there are antidirected cycles
of any even length. Theorem 1.2 provides us with an intermediate semidegree bound for
finding an antidirected cycle of medium length:

Corollary 3.2. For all η ∈ (0, 1) there is n0 such that for all n ≥ n0 and k ≥ ηn, every
oriented graph D on n vertices with δ0(D) > (1 + η)k

2
contains any antidirected cycle of

length at most k.

Indeed, this corollary follows from Theorem 1.2 since any antidirected cycle with more
than four edges can be expressed as a long antisubdivision of K3, while antidirected C4 is
guaranteed by the results of [9].

Sketch of the proof of Theorem 1.2
Let D be an oriented graph satisfying the conditions of Theorem 1.2. Let a long k-
antisubdivision of Kh be given and remove two consecutive inner vertices (along with all
adjacent edges) from one of the long antidirected paths of this antisubdivision. Keep re-
moving two vertices from other long antidirected paths until we are left with an antidirected
tree T . Denote by P the set of long antidirected paths of which we removed vertices.

As in the proof of Theorem 2.2, we find a connected antimatching M in the reduced
graph R of D. We embed the branch vertices of the antisubdivision into a pair of clusters
B, C, such that BC is some fixed edge of M . We start embedding the long antipaths in
the clusters corresponding to edges of M , using the antiwalks given by Lemma 2.3 to move
between the matching edges.

The only vertices left are the ones removed at the beginning. Since their neighbours
are already embedded in B ∪ C, they can be embedded in B ∪ C by regularity. For all
details see [14].

4 Edge density
In 1970, Graham [6] confirmed a conjecture he attributes to Erdős: for every antidirected
tree T there is a constant cT such that every sufficiently large directed graph D on n
vertices and with at least cTn edges contains T . A similar statement is false for other
oriented trees [2, 4]. In 1982, Burr [4] gave an improvement of Graham’s result: Every
n-vertex digraph D with more than 4kn edges contains each antidirected tree T on k edges,
and provides an example where (k − 1)n edges are not sufficient. In 2013, Addario-Berry,
Havet, Linhares Sales, Reed and Thomassé [2] formulate the following conjecture.
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Conjecture 4.1 (Addario-Berry et al. [2]). Every n-vertex digraph D with more than
(k − 1)n edges contains each antidirected tree on k edges.

Theorem 1.3 implies that Conjecture 4.1 is approximately true in oriented graphs for
all balanced antidirected trees of bounded maximum degree.

Sketch of the proof of Theorem 1.3
Given the antidirected tree T and the oriented graph D as in the theorem, we start by
finding a non-empty oriented subgraph D′ of D where each vertex has either out-degree at
least k

2
or out-degree 0, and either in-degree at least k

2
or in-degree 0 (see Lemma 7.1 in

[14]). We construct a new oriented graph D′′ consisting of four copies of D′, two of them
with all edges reversed. Because of the way we put those copies together, D′′ will have
minimum semidegree greater than k

2
.

Using Theorem 2.2, we embed T into D′′, with the root v of T embedded in one of
the copies of D′ with the original orientations. Taking a little more care, we can ensure
that an edge at v is also embedded in this copy. It is then easy to deduce that all of T is
embedded into the same copy. Since D′ ⊆ D, we proved the statement. For the full proof
see [14]. �
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Abstract

A family F ⊂ 2G of subsets of an abelian group G is a Sidon system if the sumsets
A + B with A,B ∈ F are pairwise distinct. Cilleruelo, Serra and the author previ-
ously proved that the maximum size Fk(n) of a Sidon system consisting of k-subsets
of the first n positive integers satisfies Ckn

k−1 ≤ Fk(n) ≤
(
n−1
k−1
)
+ n − k for some

constant Ck only depending on k. We close the gap by proving an essentially tight
structural result that in particular implies Fk(n) ≥ (1− o(1))

(
n

k−1
)
. We also use this

to establish a result about the size of the largest Sidon system in the binomial random
family

([n]
k

)
p
. Extensions to h-fold sumsets for any fixed h ≥ 3 are also obtained.
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Introduction and main results
A subset A of an abelian group G is a Sidon set if the twofold sums of elements in A are
pairwise distinct. The study of Sidon sets in the integers is a classical topic in additive
number theory, see for instance the survey of O’Bryant [8]. A topic of particular interest
is to determine the maximum size of a Sidon set contained in the first n positive integers.
Seminal results of Erdős and Turán [5] concerning the upper bound, as well as Ruzsa [9],
Bose [2] and Singer [11] for the lower bound established the following result.

Theorem 1 ([5, 11, 2, 9]). A maximum size Sidon set A ⊂ [n] satisfies |A| = (1±o(1))
√
n.
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Interestingly, it is still an open problem to establish the lower order behavior of this
cardinality. The main lower order term in the upper bound stood at n1/4 since 1969, due to
Lindström [7], but the leading constant has recently been pushed below 1 due to Balogh,
Füredi and Souktik [1]. The main question, whether the lower order term diverges or not,
is still wide open.

One can naturally extend the notion of a Sidon set to set systems. Recall that the
sumset (or Minkowski sum) of two sets A and B is defined as

A+B = {a+ b : a ∈ A, b ∈ B}.

For an integer h ≥ 2, we will often write hA as shorthand for the sumset (h − 1)A + A.
In [3], Cilleruelo, Serra and the author defined the following notion of a Sidon system.

Definition 2. Let F ⊂ 2G be a family of subsets of an abelian group G. Then F is a
Sidon system if for any A,B,C,D ∈ F it holds that

A+B = C +D ⇐⇒ {A,B} = {C,D}.

So a Sidon set is just a Sidon system composed entirely of singleton sets. Another way
to interpret Sidon systems in an abelian group G is as Sidon sets in the abelian monoid of
subsets of G together with the sumset operation.

The size and structure of large Sidon systems of k-sets in [n]. In [3] the au-
thors established the following analogue to Theorem 1. We write Fk(n) for the maximum
cardinality of a Sidon system composed entirely of k-element subsets of [n].

Theorem 3 ([3]). Let n > k ≥ 2 be positive integers. Then there exists a constant Ck only
depending on k such that

Ckn
k−1 ≤ Fk(n) ≤

(
n− 1

k − 1

)
+ n− k.

The major problem left open in [3] was to conclude whether the upper bound in The-
orem 3 is asymptotically correct. In fact, a case analysis in the specific case of k = 3 did
establish this fact. Actually, the authors formulated a stronger conjecture on the structure
of Sidon systems, motivated by the proof of the upper bound in Theorem 3.

For integers n > k ≥ 2, define the set system(
[n]

k

)
0

= {A ⊂ {0, 1, . . . , n} : |A| = k, 0 ∈ A}.

Then the following conjecture was posed implicitly in [3].

Conjecture 4 ([3]). Let n > k ≥ 3, and suppose F ⊂
(
[n]
k

)
is any family of k-subsets of

the first n integers such that for every A ∈
(
[n]
k

)
0
it holds that

|{x ∈ Z : A+ x ∈ F}| ≤ 1. (1)
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Then one can remove o(nk−1) sets from F to make it a Sidon system. In particular, by
starting with any family that satisfies Eq. (1) with equality,

Fk(n) ∼ nk−1

(k − 1)!
.

As mentioned above, a motivation for Conjecture 4 is the following observation which
is one of the main ideas going into proving the upper bound in Theorem 3. For distinct
A,B ∈

(
[n]
k

)
0
such that x+A, y+A, u+B, v+B are pairwise distinct sets in a Sidon system

F , we must have |x− y| 6= |u− v|. Since the minimum element of any set in
(
[n]
k

)
can be at

most n− k + 1, their positive differences must lie in [n− k]. Hence, after starting with a
set system F as described in Conjecture 4, one can only add at most n− k additional sets
to it before it necessarily contains a violation to the Sidon condition. If k ≥ 3, we see that
n is negligible when compared to nk−1, and so here these additional sets can be ignored.
The same is not true for k = 2, and in fact, while the first part of Conjecture 4 holds here,
the second does not: In [3] the authors showed that the family

F = {{1, n− i}+ {0, i} : i = 1, . . . , n− 1}

is a Sidon system. We see that every set in
(
[n−1]

2

)
0
that has a translation in F except for

{0, n − 1} in fact has two of them. It is also not difficult to check that the size of this
family matches the upper bound given by Theorem 3.

As our first result, we resolve Conjecture 4 in the affirmative. Recall that for an
integer h ≥ 2, a subset A ⊂ G of an abelian group G is called a Bh-set if for any
a1, . . . , ah, b1, . . . , bh ∈ A it holds that

a1 + · · ·+ ah = b1 + · · ·+ bh ⇐⇒ {a1, . . . , ah} = {b1, . . . , bh} as multisets.

This generalizes the notion of Sidon sets by observing that Sidon sets are B2-sets. We
prove the following result.

Theorem 5. For any positive integer k, there exists an integer `(k) = ` such that the
following holds. Let A,B,C,D ⊂ R be B`-sets of cardinality k all having the same minimal
element. Then

A+B = C +D ⇐⇒ {A,B} = {C,D}.

Note that Theorem 5 indeed implies Conjecture 4 by the following argument. Any set
in
(
[n]
k

)
0
that is not a B`-set for some ` corresponds to a solution to a system of linear

equations (
1 0 . . . 0
λ1 λ2 . . . λk

)a1...
ak

 = 0,

with λi ∈ Z,
∑
|λi| ≤ 2` and such that there are at least two indices 0 < i < j ≤ k with

λi, λj 6= 0. In particular, the matrix on the left-hand side has rank 2, and so there are
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at most nk−2 solutions to this system of linear equations in [n]. Since there are clearly at
most (2`)k = Ok(1) such matrices, we see that

(
[n]
k

)
0
contains Ok(nk−2) non-B`-sets for any

` only depending on k, so one can remove their representatives to obtain a Sidon system.
In fact, the following stronger version of Theorem 5 is proved.

Proposition 6. For any positive integer k and h, there exists an integer `(k, h) = ` such
that the following holds. Let G be an abelian group, and let A1, . . . , Ah, B1, . . . , Bh ⊂ G be
B`-subsets of cardinality k all sharing an element. If there exist indices i, j ∈ [h] such that
|Ai ∩Bj| ≥ 2, then

A1 + · · ·+ Ah = B1 + · · ·+Bh ⇐⇒ {A1, . . . , Ah} = {B1, . . . , Bh} as multisets.

This implies Theorem 5 for h = 2, since one can show that in any linearly ordered
group, this minimum intersection requirement is satisfied, even without assuming the sets
to be B`. The key tool in proving Proposition 6 is following simple statement, which holds
in arbitrary abelian groups.

Lemma 7. Let A,B,C ⊂ G be subsets of an abelian group G such that A is a Sidon set.
Then for any set X ⊂ A satisfying |X| > |C|, it holds that

X +B ⊂ A+ C =⇒ B ⊂ C.

It would be interesting to find out whether an intersection size of size 1 in Proposition 6
is actually possible, and we prove some partial results regarding this.

The largest Sidon system in
(
[n]
k

)
p
and δ-additive families. Recall that the bino-

mial random family
(
[n]
k

)
p
is defined such that every k-set A ⊂ [n] is contained in

(
[n]
k

)
p

independently with probability p. We write [n]p for
(
[n]
1

)
p
. An interesting question is to

study a sparse random analogue of determining bounds on Fk(n). That is, instead of
investigating the size of the largest Sidon system in

(
[n]
k

)
, what happens if we do this in(

[n]
k

)
p
? The Sidon set equivalent of this question was answered by Kohayakawa, Lee, Rödl

and Samotij in [6] and they discovered an interesting phase transition. Essentially, as long
as p = o(n−1/3), the expected number of quadruples violating the Sidon set condition is
negligible when compared to the expected size of the random set, and hence standard
concentration bounds tell us that the size of the largest Sidon subset will be the same as
the size of the random set. For p in the range between n−1/3 and constant, the situation
is similar to that in [n], that is, the size of the largest Sidon subset is approximately the
square root of np, the size of the random set. This range can be seen as an example of the
transference principle (cf. [4, 10]) that says that results in the dense setting can be moved
to the sparse random one in appropriate contexts. Since the problem is clearly monotone
in nature, the situation when n−2/3 ≤ p ≤ n−1/3 is that the largest Sidon subset must stay
constant in the exponent at approximately n1/3. Let us summarize.
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Theorem 8 ([6]). Let 0 ≤ a ≤ 1 be a fixed constant. Suppose p = p(n) = (1 + o(1))n−a.
There exists a constant b = b(a) such that almost surely the largest Sidon subset of [n]p has
size nb+o(1). Furthermore,

b(a) =


1− a, if 2/3 ≤ a ≤ 1,

1/3, if 1/3 ≤ a ≤ 2/3,

(1− a)/2, if 0 ≤ a ≤ 1/3.

Our second main result establishes a somewhat less nuanced analogue of Theorem 8.
It will be helpful to change the language from the absence to the appearance of additive
structures.

Definition 9. Let G be an abelian group and suppose A,B,C,D ⊂ G are subsets. We
say that (A,B,C,D) forms an additive quadruple if A + B = C + D, and furthermore, it
is called nontrivial if {A,B} 6= {C,D}.

Hence, a Sidon system is a family that contains no nontrivial additive quadruples. We
can now define a relative version of this concept.

Definition 10. Let G be an abelian group and δ > 0. Then a finite family of subsets
F ⊂ 2G is called δ-additive if every subfamily G ⊆ F with |G| ≥ δ|F| contains a nontrivial
additive quadruple.

Using Theorem 5, we are able to determine the threshold probability for when
(
[n]
k

)
p
is

δ-additive.

Theorem 11. Let k ≥ 2 be a fixed integer and δ ∈ (0, 1). Then there exist constants C, c
that only depend on k, δ such that

lim
n→∞

Pr

((
[n]

k

)
p

is δ-additive

)
=

{
1, if p ≥ c/n

0, if p ≤ C/n
.

Recalling that Fk(n) ≤ Ok(nk−1) by Theorem 3, this immediately gives us the following
analogue of Theorem 8.

Corollary 12. Let k ≥ 2 be a fixed integer. Then there exist constants C, c that only
depend on k such that asymptotically almost surely, the largest Sidon system F ⊂

(
[n]
k

)
p

has size

|F| =

{
Θ(nk−1), if p ≥ C/n

Θ(nkp), if p ≤ c/n
.

In other words, we are essentially always in the regime that one can remove a negli-
gible number of k-subsets in order to transform the random family into a Sidon system
comparable to the p = o(n−2/3) case for Sidon sets.
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Abstract

For a multi-set λ = {k1, k2, . . . , kq} of positive integers, let kλ = ∑
q
i=1 ki. A λ-list

assignment of G is a list assignment L of G such that the colour set ⋃v∈V (G)L(v) can
be partitioned into the disjoint union C1∪C2∪ . . .∪Cq of q sets so that for each i and
each vertex v of G, ∣L(v) ∩Ci∣ ≥ ki. We say G is λ-choosable if G is L-colourable for
any λ-list assignment L of G. The concept of λ-choosability puts k-colourability and
k-choosability in the same framework: If λ = {k}, then λ-choosability is equivalent
to k-choosability; if λ consists of k copies of 1, then λ-choosability is equivalent to
k-colourability. If G is λ-choosable, then G is kλ-colourable. On the other hand,
there are kλ-colourable graphs that are not λ-choosable, provided that λ contains an
integer larger than 1. Let φ(λ) be the minimum number of vertices in a kλ-colourable
non-λ-choosable graph. This paper determines the value of φ(λ) for all λ.
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1 Introduction
A proper colouring of a graph G is a mapping f ∶ V (G) → N such that f(u) ≠ f(v) for
any edge uv of E(G). The chromatic number χ(G) of G is the minimum positive integer
k such that G is k-colourable, i.e., there is a proper colouring f of G using colours from
{1,2, . . . , k}. The choice number ch(G) of G is the minimum positive integer k such that
G is k-choosable, i.e., if L is a list assignment which assigns to each vertex v a set L(v) ⊆ N
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of at least k integers as permissible colours, then there is a proper colouring f of G such
that f(v) ∈ L(v) for each vertex v.

It follows from the definitions that χ(G) ≤ ch(G) for any graph G, and it was shown
in [5] that bipartite graphs can have arbitrarily large choice number. An interesting prob-
lem is for which graphs G, χ(G) = ch(G). Such graphs are called chromatic-choosable.
Chromatic-choosable graphs have been studied extensively in the literature. There are a
few challenging conjectures that assert certain families of graphs are chromatic-choosable.
The most famous problem concerning this concept is perhaps the list colouring conjecture,
which asserts that line graphs are chromatic-choosable [1]. Another problem concerning
chromatic-choosable graphs that has attracted a lot of attention is the minimum order of
a non-chromatic-choosable graph with given chromatic number. For a positive integer k,
let

φ(k) =min{n ∶ there exists a non-k-choosable k-chromatic n-vertex graph}.

Ohba [20] conjectured that φ(k) ≥ 2k + 2. In other words, k-colourable graphs on at most
2k + 1 vertices are k-choosable. This conjecture was studied in many papers [14,16,18–22,
24,25], and was finally confirmed by Noel, Reed and Wu [18]. This lower bound is tight if
k is even, i.e., φ(k) = 2k + 2 when k is even. Noel [17] further conjectured that if k is odd,
then k-colourable graphs on at most 2k + 2 vertices are also k-choosable. Recently, the
authors of this paper confirmed Noel’s conjecture [28], and determined the value of φ(k)
for all k.

Theorem 1. [28] For k ≥ 2,

φ(k) =
⎧⎪⎪⎨⎪⎪⎩

2k + 2, if k is even,
2k + 3, if k is odd.

The concept of λ-choosability is a refinement of choosability introduced in [32]. Assume
that λ = {k1, k2, . . . , kq} is a multi-set of positive integers. Let kλ = ∑q

i=1 ki and ∣λ∣ = q. A
λ-list assignment of G is a list assignment L such that the colour set ⋃v∈V (G)L(v) can be
partitioned into the disjoint union C1 ∪ C2 ∪ . . . ∪ Cq of q sets so that for each i and each
vertex v of G, ∣L(v)∩Ci∣ ≥ ki. Note that for each vertex v, ∣L(v)∣ ≥ ∑q

i=1 ki = kλ. So a λ-list
assignment L is a kλ-list assignment with some restrictions on the set of possible lists. We
say G is λ-choosable if G is L-colourable for any λ-list assignment L of G.

For a positive integer a, let mλ(a) be the multiplicity of a in λ. If mλ(a) = m, then
instead of writing m times the integer a, we may write a ⋆m. For example, λ = {1 ⋆ k1,2 ⋆
k2,3} means that λ is a multi-set consisting of k1 copies of 1, k2 copies of 2 and one copy
of 3. If λ = {k}, then λ-choosability is the same as k-choosability; if λ = {1 ⋆ k}, then
λ-choosability is equivalent to k-colourability [32]. So the concept of λ-choosability puts
k-choosability and k-colourability in the same framework.

Assume that λ = {k1, k2, . . . , kq} and λ′ = {k′1, k′2, . . . , k′p}. We say λ′ is a refinement of
λ if p ≥ q and there is a partition I1 ∪ I2 ∪ . . . ∪ Iq of {1,2, . . . , p} such that ∑j∈It k

′

j = kt
for t = 1,2, . . . , q. We say λ′ is obtained from λ by increasing some parts if p = q and
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kt ≤ k′t for t = 1,2, . . . , q. We write λ ≤ λ′ if λ′ is a refinement of λ′′, and λ′′ is obtained
from λ by increasing some parts. It follows from the definitions that if λ ≤ λ′, then
every λ-choosable graph is λ′-choosable. Conversely, it was proved in [32] that if λ /≤ λ′,
then there is a λ-choosable graph which is not λ′-choosable. In particular, λ-choosability
implies kλ-colourability, and if λ ≠ {1 ⋆ kλ}, then there are kλ-colourable graphs that are
not λ-choosable.

All the partitions λ of a positive integer k are sandwiched between {k} and {1 ⋆ k}
in the above order. As observed above, {k}-choosability is the same as k-choosability,
and {1 ⋆ k}-choosability is equivalent to k-colourability. For other partitions λ of k, λ-
choosability reveals a complex hierarchy of colourability of graphs sandwiched between k-
colourability and k-choosability. The framework of λ-choosability provides room to explore
generalizations of colourability and choosability results or problems (see [8, 10,32])

2 Preliminaries
In this paper, we are interested in Ohba type question for λ-choobility. Similar to the
definition of φ(k), for a multi-set λ of positive integers, we define φ(λ) as follows:

Definition 1. Assume λ is a multi-set of positive integers. Let

φ(λ) =min{n ∶ there exists a non-λ-choosable kλ-chromatic n-vertex graph}.

If λ = {1 ⋆ k}, then λ-choosable is equivalent to k-colourable. In this case, we set
φ(λ) =∞. We call such a multi-set λ trivial. In the following, we only consider non-trivial
multi-sets of positive integers.

If λ = {k}, then φ(λ) = φ(k). The value of φ(k) is determined in Theorem 1. For
general multiset λ of positive integers, the function φ(λ) was first studied in [30]. Let
mλ(odd) be the number of odd integers in λ. The following result was proved in [30].

Theorem 2. For any non-trivial multi-set λ of positive integers,

2kλ +mλ(1) + 2 ⩽ φ(λ) ⩽min{2kλ +mλ(odd) + 2,2kλ + 5mλ(1) + 3}.

If mλ(1) =mλ(odd) = t, then it follows from Theorem 2 that φ(λ) = 2kλ+t+2. However,
when mλ(1) and mλ(odd) −mλ(1) are both large, then the gap between the upper and
lower bounds for φ(λ) in Theorem 2 becomes large.

3 Main result
This paper proves Theorem 3 below, which strengthens Theorem 1 and Theorem 2 and
determines the value of φ(λ) for all λ.

Theorem 3. Assume λ is a non-trivial multi-set of positive integers. Then

φ(λ) =min{2kλ +mλ(odd) + 2,2kλ + 3mλ(1) + 3}.
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Below is a sketch of the proof of Theorem 3.
By Theorem 2, to prove Theorem 3, it suffices to consider the case that mλ(odd) >

mλ(1).
First we consider the case that mλ(1) = 0 and mλ(odd) > 0. In this case, we need to

show that φ(λ) = 2kλ + 3.
Let kλ = k. By Theorem 2, 2k+2 ≤ φ(λ) ≤ 2k+3. So it suffices to show that φ(λ) ≠ 2k+2,

i.e., any graphG with χ(G) ≤ k and ∣V (G)∣ ≤ 2k+2 is λ-choosable. We only need to consider
the case that G is a complete k-partite graph. The following result was proved in [29].

Theorem 4. Assume G is a complete k-partite graph with ∣V (G)∣ ≤ 2k + 2. Then G is
k-choosable, unless k is even and G =K4,2⋆(k−1) or G =K3⋆(k/2+1),1⋆(k/2−1).

Thus we may assume that k is even and G =K4,2⋆(k−1) or G =K3⋆(k/2+1),1⋆(k/2−1). We say
a k-list assignment L of G is bad if G is not L-colourable. All bad assignments forK4,2⋆(k−1)

and K3⋆(k/2+1),1⋆(k/2−1) are characterized in [4] and [29], respectively and we can verify that
such bad list assignments is not λ-list assignment (using the assumptionmλ(odd) > 0). This
implies that all graphs K4,2⋆(k−1) and K3⋆(k/2+1),1⋆(k/2−1) are λ-choosable. This completes
the proof for the case mλ(1) = 0.

Next we consider the case that mλ(1) = a ≥ 1 and mλ(odd) −mλ(1) = c ≥ 1. We need
to show that φ(λ) =min{2k + a + c + 2,2k + 3a + 3}. First, we prove the upper bound, i.e.,

φ(λ) ≤min{2k + a + c + 2,2k + 3a + 3}.

By Theorem 2, φ(λ) ≤ 2k + a + c + 2. It remains to show that φ(λ) ≤ 2k + 3a + 3. Observe
that kλ = k, mλ(1) = a and mλ(odd) = a + c implies that {1 ⋆ a,2 ⋆ (k − a − 3c)/2,3 ⋆ c} is a
refinement of λ. Hence it suffices to prove the following lemma.

Lemma 5. Assume λ = {1 ⋆ a,2 ⋆ b,3 ⋆ c} and k = a + 2b + 3c (and hence mλ(1) = a,
mλ(odd) = a + c and kλ = k). Then there exists a k-chromatic graph G with ∣V (G)∣ =
2k + 3a + 3 which is not λ-choosable.

LetG =K5⋆(a+1),2⋆(k−a−1) be the complete k-partite graph with partite sets Ui = {ui,1, ui,2,
ui,3, ui,4, ui,5} where i = 1,2, . . . , a + 1, and Vj = {vj,1, vj,2} where j = 1,2, . . . , k − a − 1.

Let Si = {si,1, si,2, . . . , si,6} be pairwise disjoint sets of size 6 where i = 1,2, . . . , c and let
Ti = {ti,1, ti,2, ti,3, ti,4} be pairwise disjoint sets of size 4 where i = 1,2, . . . , b. Let E be a set
of a colours, and the sets E,Si, Ti are pairwise disjoint and let

A1 =
c

⋃
i=1

{si,1, si,3, si,5}, A2 =
c

⋃
i=1

{si,1, si,3, si,6}, A3 =
c

⋃
i=1

{si,1, si,2, si,4}, A4 =
c

⋃
i=1

{si,2, si,3, si,4},

A5 =
c

⋃
i=1

{si,2, si,5, si,6}, A6 =
c

⋃
i=1

{si,1, si,2, si,3}, A7 =
c

⋃
i=1

{si,4, si,5, si,6},

B1 =
b

⋃
i=1

{ti,2, ti,3}, B2 =
b

⋃
i=1

{ti,2, ti,4}, B3 =
b

⋃
i=1

{ti,1, ti,2}, B4 =
b

⋃
i=1

{ti,1, ti,3},

B5 =
b

⋃
i=1

{ti,1, ti,4}, B6 =
b

⋃
i=1

{ti,1, ti,2}, B7 =
b

⋃
i=1

{ti,3, ti,4}.
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Let L be the λ-list assignment of G defined as follows:

L(v) =
⎧⎪⎪⎨⎪⎪⎩

Aj ∪Bj ∪E, if v = ui,j,1 ≤ i ≤ a + 1,1 ≤ j ≤ 5,

Aj+5 ∪Bj+5 ∪E, if v = vi,j,1 ≤ i ≤ k − a − 1,1 ≤ j ≤ 2,

It can be proved that L is λ-list assignment and G is not L-colourable. The proof is a
little complicated, and the details are omitted.

It remains to prove the lower bound that φ(λ) ⩾min{2k + 3a + 3,2k + a + c + 2}.
Assume to the contrary that φ(λ) <min{2k+a+c+2,2k+3a+3} for some λ. We choose

such a multi-set λ = {k1, k2, . . . , kq} with ∣λ∣ = q minimum. Assume that k1 = k2 = . . . = ka = 1
and 3 ≤ ka+1 ≤ ka+2 ≤ . . . ≤ ka+c are the odd integers in λ.

Let n = min{2k + a + c + 2,2k + 3a + 3}. Then there is a k-chromatic graph G with
∣V (G)∣ ≤ n − 1 which is not λ-choosable. We may assume that G is a complete k-partite
graph with ∣V (G)∣ = n−1 and with partite sets P1, P2, . . . , Pk such that ∣P1∣ ≥ ∣P2∣ ≥ . . . ≥ ∣Pk∣.
For a positive integer i, let

Ii = {j ∶ ∣Pj ∣ = i}.
Note that ∣P1∣ ≥ 3 (as ∣V (G)∣ > 2k). Using the assumption mλ(1) ≥ 1 and the minimality
of ∣λ∣, we can conclude that ∣P1∣ ≤ 4, and if c ≤ 2a + 1, then ∣P1∣ ≤ c − 2a + 3. Since a ≥ 1, we
know that c ≥ 2a ≥ 2, and if c = 2, then a = 1 and ∣P1∣ = 3.

Definition 2. A 4-tuple (a1, a2, a3, a4) of integers is reducible if

0 ≤ ai ≤ ∣Ii∣,
4

∑
i=1

ai = ka+1 and 2ka+1 + 1 ≤
4

∑
i=1

iai ≤ 2ka+1 + 2.

Combining with Theorem 4 and the minimality of ∣λ∣, we conclude that

Claim 6. There is no reducible 4-tuple.

It follows from Claim 6 that ∣I2∣ ≤ ka+1−2 and if c ≥ 3, then ∣I1∣ ≥ 2
3ka+1 and if c = 2, then

∣I1∣ ≥ (ka+1 − 1)/2. Recall that 3 ≤ ∣P1∣ ≤ 4. By Claim 6, we can conclude that if ∣P1∣ = 4,
then ∣I3∣ < ⌊ka+1−∣I2∣−12 ⌋, ∣I4∣ < ⌈ka+1−∣I2∣−2∣I3∣−13 ⌉ + 1 and if ∣P1∣ = 3, then ∣I3∣ < ⌈ka+1−∣I2∣−12 ⌉ + 1.
This contradicts to ∣V (G)∣ = n − 1 ≥ 2k + 1. This completes the proof of Theorem 3.
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