The Turán Number of Surfaces
EUROCOMB’23
799–805
Füredi, Zoltán, and Miklós Simonovits. 2013. "The History of Degenerate (Bipartite) Extremal Graph Problems." In Erdős Centennial, 25:169-264. Bolyai Soc. Math. Stud. János Bolyai Math. Soc., Budapest. https://doi.org/10.1007/978-3-642-39286-3_7.
https://doi.org/10.1007/978-3-642-39286-3
Georgakopoulos, Agelos, John Haslegrave, Richard Montgomery, and Bhargav Narayanan. 2022. "Spanning Surfaces in 3-Graphs." J. Eur. Math. Soc. 24 (1): 303-39. https://doi.org/10.4171/jems/1101.
https://doi.org/10.4171/JEMS/1101
Keevash, Peter. 2011. "Hypergraph Turán Problems." In Surveys in Combinatorics 2011, 392:83-139. London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge. https://mathscinet-ams-org.stanford.idm.oclc.org/mathscinet-getitem?mr=2866732.
https://doi.org/10.1017/CBO9781139004114.004
Keevash, Peter, Jason Long, Bhargav Narayanan, and Alex Scott. 2021. "A Universal Exponent for Homeomorphs." Israel J. Math. 243 (1): 141-54. https://doi.org/10.1007/s11856-021-2156-7.
https://doi.org/10.1007/s11856-021-2156-7
Kupavskii, Andrey, Alexandr Polyanskii, István Tomon, and Dmitriy Zakharov. n.d. "The Extremal Number of Surfaces." Int. Math. Res. Not. 2022: 13246-71. https://doi.org/10.1093/imrn/rnab099.
https://doi.org/10.1093/imrn/rnab099
Linial, Nati. 2008. "What Is High-Dimensional Combinatorics?" In. Random-Approx.
Linial, Nati. 2018. "Challenges of High-Dimensional Combinatorics." In. Lovász's Seventieth Birthday Conference.
Luria, Zur, and Ran J. Tessler. 2019. "A Sharp Threshold for Spanning 2-Spheres in Random 2-Complexes." Proc. Lond. Math. Soc. 119 (3): 733-80. https://doi.org/10.1112/plms.12247.
https://doi.org/10.1112/plms.12247
Mubayi, Dhruv, Oleg Pikhurko, and Benny Sudakov. 2011. "Hypergraph Turán Problem: Some Open Questions." In AIM Workshop Problem Lists, Manuscript.
Sankar, Maya. 2022. "The Turán Number of Surfaces." Preprint available at https://arxiv.org/abs/2210.11041.
Sós, V. T., P. Erdős, and W. G. Brown. 1973. "On the Existence of Triangulated Spheres in -Graphs, and Related Problems." Period. Math. Hungar. 3 (3-4): 221-28. https://doi.org/10.1007/BF02018585.
https://doi.org/10.1007/BF02018585

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2023 Maya Sankar