Unified study of the phase transition for block-weighted random planar maps
EUROCOMB’23
790–798
Louigi Addario-Berry. A probabilistic approach to block sizes in random maps. ALEA - Latin American Journal of Probability and Mathematical Statistics, XVI:1-13, 2019.
https://doi.org/10.30757/ALEA.v16-01
Louigi Addario-Berry and Marie Albenque. The scaling limit of random simple triangulations and random simple quadrangulations. The Annals of Probability, 45(5):2767 - 2825, 2017.
https://doi.org/10.1214/16-AOP1124
Louigi Addario-Berry and Marie Albenque. Convergence of odd-angulations via symmetrization of labeled trees. Annales Henri Lebesgue, 4:653-683, 2021.
https://doi.org/10.5802/ahl.84
David Aldous. The continuum random tree. II. an overview. Stochastic analysis, 167:23-70, 1991.
https://doi.org/10.1017/CBO9780511662980.003
Cyril Banderier, Philippe Flajolet, Gilles Schaeffer, and Michèle Soria. Random Maps, Coalescing Saddles, Singularity Analysis, and Airy Phenomena. Random Struct. Algorithms, 19(3-4):194-246, oct 2001.
https://doi.org/10.1002/rsa.10021
Valentin Bonzom. Large N limits in tensor models: Towards more universality classes of colored triangulations in dimension d ⩾ 2. Symmetry, Integrability and Geometry: Methods and Applications, 12(073):39, 2016.
https://doi.org/10.3842/SIGMA.2016.073
Ariane Carrance. Convergence of Eulerian triangulations. Electronic Journal of Probability, (26):1-48, 2021.
https://doi.org/10.1214/21-EJP579
William Fleurat and Zéphyr Salvy. A phase transition in block-weighted random maps. 2023.
Omer Giménez and Marc Noy. Asymptotic enumeration and limit laws of planar graphs. Journal of the American Mathematical Society, 22(2):309-329, 2009.
https://doi.org/10.1090/S0894-0347-08-00624-3
Xavier Gourdon. Largest component in random combinatorial structures. Discrete Mathematics, 180(1):185-209, 1998.
https://doi.org/10.1016/S0012-365X(97)00115-5
Svante Janson. Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation. Probability Surveys, 9(none):103 - 252, 2012.
https://doi.org/10.1214/11-PS188
Jean-François Le Gall. Uniqueness and universality of the Brownian map. The Annals of Probability, 41(4):2880 - 2960, 2013.
https://doi.org/10.1214/12-AOP792
Cyril Marzouk. Scaling limits of random bipartite planar maps with a prescribed degree sequence. Random Struct. Algorithms, 53(3):448-503, 2018.
https://doi.org/10.1002/rsa.20773
Grégory Miermont. The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Mathematica, 210(2):319-401, 2013.
https://doi.org/10.1007/s11511-013-0096-8
Jacques Neveu. Arbres et processus de Galton-Watson. Annales de l'I.H.P. Probabilités et statistiques, 22(2):199-207, 1986.
Gilles Schaeffer. Random sampling of large planar maps and convex polyhedra. In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, STOC '99, pages 760-769, New York, NY, USA, 1999. Association for Computing Machinery.
https://doi.org/10.1145/301250.301448
Benedikt Stufler. Random enriched trees with applications to random graphs. Electronic Journal of Combinatorics, 25(3), 2018.
https://doi.org/10.37236/7328
Benedikt Stufler. Limits of random tree-like discrete structures. Probability Surveys, 17(none):318 - 477, 2020.
https://doi.org/10.1214/19-PS338
Benedikt Stufler. On the maximal offspring in a subcritical branching process. Electronic Journal of Probability, 25(none):1 - 62, 2020.
https://doi.org/10.1214/20-EJP506
W. T. Tutte. A census of planar maps. Canadian Journal of Mathematics, 15:249-271, 1963.
https://doi.org/10.4153/CJM-1963-029-x

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2023 Zéphyr Salvy