Tiling Dense Hypergraphs
EUROCOMB’23
702–707
Y. Cheng, J. Han, B. Wang, and G. Wang, Rainbow spanning structures in graph and hypergraph systems, arXiv:2105.10219 (2021).
L. Ding, J. Han, S. Sun, G. Wang, and W. Zhou, F -factors in quasi-random hypergraphs, arXiv:2108.10731 (2021).
P. Erdős, On extremal problems of graphs and generalized graphs, Israel Journal of Mathematics 2 (1964), 183-190.
https://doi.org/10.1007/BF02759942
A. Freschi and A. Treglown, Dirac-type results for tilings and coverings in ordered graphs, Forum Math. Sigma 10 (2022), e104.
https://doi.org/10.1017/fms.2022.92
J. Han, On perfect matchings in k-complexes, Int. Math. Res. Not. 2021 (2021), no. 11, 8741-8762.
https://doi.org/10.1093/imrn/rnz343
J. Han, C. Zang, and Y. Zhao, Minimum vertex degree thresholds for tiling complete 3-partite 3-graphs, J. Combin. Theory Ser. A 149 (2017), 115-147.
https://doi.org/10.1016/j.jcta.2017.02.003
E. Hurley, F. Joos, and R. Lang, Sufficient conditions for perfect tilings, arXiv:2201.03944 (2022).
P. Keevash, The existence of designs, arXiv:1401.3665 (2014).
P. Keevash, Hypergraph matchings and designs, arXiv:1807.05752 (2018).
P. Keevash and R. Mycroft, A geometric theory for hypergraph matching, vol. 233, Amer. Math. Soc., 2015.
https://doi.org/10.1090/memo/1098
F. Knox and A. Treglown, Embedding spanning bipartite graphs of small bandwidth, Comb. Probab. Comput. 22 (2013), no. 1, 71-96.
https://doi.org/10.1017/S0963548312000417
J. Komlós, Tiling Turán theorems, Combinatorica 20 (2000), no. 2, 203-218.
https://doi.org/10.1007/s004930070020
D. Kühn and D. Osthus, Embedding large subgraphs into dense graphs, arXiv:0901.3541 (2009).
https://doi.org/10.1017/CBO9781107325975.007
D. Kühn and D. Osthus, The minimum degree threshold for perfect graph packings, Combinatorica 29 (2009), no. 1, 65-107.
https://doi.org/10.1007/s00493-009-2254-3
D. Kühn, D. Osthus, and A. Treglown, Hamiltonian degree sequences in digraphs, J. Combin. Theory Ser. B 100 (2010), no. 4, 367-380.
https://doi.org/10.1016/j.jctb.2009.11.004
R. Lang and N. Sanhueza-Matamala, On sufficient conditions for spanning substructures in dense graphs, to appear in Proc. Lond. Math. Soc. (2023).
A. Lo and K. Markström, F -factors in hypergraphs via absorption, Graphs Combin. 31 (2015), no. 3, 679-712.
https://doi.org/10.1007/s00373-014-1410-8
R. Montgomery, A. Müyesser, and Y. Pehova, Transversal factors and spanning trees, Adv. Comb. (2022), Paper No. 3, 25.
https://doi.org/10.19086/aic.2022.3
R. Mycroft, Packing k-partite k-uniform hypergraphs, J. Combin. Theory Ser. A 138 (2016), 60-132.
https://doi.org/10.1016/j.jcta.2015.09.007
V. Rödl, A. Ruciński, and E. Szemerédi, Perfect matchings in large uniform hypergraphs with large minimum collective degree, J. Combin. Theory Ser. A 116 (2009), no. 3, 613-636.
https://doi.org/10.1016/j.jcta.2008.10.002
M. Simonovits and E. Szemerédi, Embedding Graphs into Larger Graphs: Results, Methods, and Problems, Building Bridges II: Mathematics of László Lovász, Bolyai Society Mathematical Studies, 28. Springer, 2019, pp. 445-592.
https://doi.org/10.1007/978-3-662-59204-5_14
Y. Zhao, Recent advances on Dirac-type problems for hypergraphs, Recent trends in combinatorics, 2016, pp. 145-165.
https://doi.org/10.1007/978-3-319-24298-9_6
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2023 Richard Lang